
 978-1-4577-0557-1/12/$26.00 ©2012 IEEE
 1

Risk-Based Sensing in Support of Adjustable Autonomy

Abstract—Current unmanned systems are typically tele-
operated and manpower intensive relying on human operators
and their decision-making capabilities to perform platform
and mission tasks. We envision a future where unmanned
platforms have greater decision making abilities and
autonomous behaviors are the norm. For example, unmanned
autonomous systems will be deployed as teams along with their
human supervisor. The UAS will interact with the supervisor
at a high level, then take on an expanded role in mission
planning, resource allocation and route planning.

Toward this end, we have developed a risk-based adjustable
autonomy system with a task directed adaptive sensing
technology concept to allow system autonomy operation at a
level in which an operator has confidence of success. We test
our idea in simulation for a natural disaster recovery task. We
present experimental results verifying the utility of our
technology.

TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. INNOVATIONS .. 2
3.ARCHITECTURE ... 2
4. ALGORITHMS. ... 3
5. ALGORITHM DEMONSTRATION RESULTS 11
6. SUMMARY ... 17
REFERENCES ... 18
BIOGRAPHIES .. 18

1. INTRODUCTION
While sensing and avionics technology has made great
strides in the past decade, the autonomous capabilities of
UAVs lag behind. Autonomous systems lack humans’
creative reasoning abilities to maintain safe and robust
behavior in uncertain environments. Thus, most unmanned
systems still rely on human tele-operation, which is
manpower intensive and requires reliable communication
with a ground base. In this work, we propose a new
approach to adjustable autonomy for reducing operator
workload while retaining trust that the mission will proceed
safely. Previous work in adjustable autonomy usually
involves humans manually assessing the utility and setting

the level of autonomy. This approach requires them to
maintain complete situational awareness throughout the
mission. However, applications that demand large-scale
distributed efforts, such as disaster relief, environmental
surveys, and convoy protection render this approach
impractical. Our goal is to design a system that assesses its
own abilities and requests human assistance in the amount
needed. The challenge is to build the trust of the human
operator that this system truly knows what assistance it
needs and can operate safely otherwise.

Our approach to adjustable autonomy gains operator trust by
making and explaining decisions based on risk. Our work is
developed in the context of a disaster relief scenario, where
a rescue vehicle must traverse an uncertain landscape to
administer aid. The mission planner must tradeoff between
risk reduction and decision deadlines. We consider two
aspects to risk: the probability of mission failure and
decision uncertainty in the mission planning process. Due to
the inherent uncertainty in our belief, the probability of
mission failure is not known exactly, so the mission planner
evaluates risk as a distribution over this probability. In
particular, the metric used to evaluate risk is the confidence
that the probability lies above a threshold. The metric is
calculated over the entire rescue vehicle mission path and it
is calculated through a combination of Dijkstra's algorithm
and value iteration. These risk distributions give rise to
uncertainty when choosing between mission plans for
lowest probability of failure.

To mitigate this, aerial scouts are sent ahead of the rescue
vehicle to reduce belief uncertainty where it is needed most.
The scouts are tasked with surveying areas that yield the
highest expected uncertainty reduction within the time
before the mission vehicle makes its next decision. Path
planning for the scouts is achieved via approximate dynamic
programming using a stochastic value function represented
by a Gaussian Process. For each scout, we use a unique
representation of the state-space which is centered and
rotated around the vehicle. Based on the updated belief
provided by the scouts and the timing constraints of the
scenario, the mission planner determines whether mission
plans exist that have low enough risk associated with them.

Lawrence A. M. Bush
Massachusetts Institute of

Technology
Department of Aeronautics and

Astronautics
77 Massachusetts Avenue

Cambridge MA 02139-4307
339-368-1078

bushL2@csail.mit.edu

Andrew J. Wang
Massachusetts Institute of

Technology
Department of Electrical

Engineering and Computer Science
77 Massachusetts Avenue

Cambridge MA 02139-4307
617-452-4012

wangaj@mit.edu

Brian C. Williams
Massachusetts Institute of

Technology
Department of Aeronautics and

Astronautics
77 Massachusetts Avenue

Cambridge MA 02139-4307
617-253-1678

williams@csail.mit.edu

2

Figure 1 - Motivating Scenario: Natural Disaster Relief Scenario

Based on a series of risk thresholds, different amounts of
human assistance are requested. Thus, we can engage the
operator specifically when needed and at the proper amount,
as well as provide reasoning and context for why and where
the operator’s help is needed. Simulation experimental
results are presented which verify that the scout planner
effectively reduces belief and decision uncertainty given any
area to survey. The results demonstrate the potential of this
new approach to achieve consistent safety and robustness
throughout a mission by requesting operator assistance at
the appropriate times.

2. INNOVATIONS

Adjustable autonomy has long been appealing for its vision
to utilize the best abilities of humans and autonomous
agents. However, the difficulties in creating a truly
synergistic dynamical relationship between humans and
robots make adjustable autonomy a loosely defined concept.
In this section, we introduce the risk-based innovations of
our approach to adjustable autonomy, describe the system
architecture, and explain the major algorithms driving our
framework.

An adjustable autonomy system makes two types of
decisions: The first type determines what vehicle actions to
take in the future and the second governs when and how to
engage the human operator. Our first innovation is that we
ground both these decision types on the risk to the mission
goals. Given a logistical plan for the mission, we
probabilistically quantify the risk to each component of the
plan. The component risks imply a risk configuration over
each mission goal, which informs how we engage the
human. Furthermore, the notion of risk is built into the

planning process. Our adjustable autonomy architecture
takes advantage of this to provide situational awareness,
keeping the human involved at the appropriate level of
detail for each mission component.

Our second innovation is how we improve our knowledge of
the risks to the mission through the use of scout aerial
vehicles. Using only the initial low-resolution knowledge of
map risk severely limits the quality of decisions we can
make, so we dynamically deploy scouts to collect more
detailed information. Our algorithms lead the scouts toward
the most valuable data that will help us identify the least
risky paths for future components of the mission. The scouts
are tasked to survey areas least well known about relative to
the logistics plan. Flying over an area that our logistics
vehicles will never cross on ground is useless unless it lies
on the quickest path from one area of interest to the next. In
summary, our contribution to adjustable autonomy is to
encode risk at each decision-making process.

3. ARCHITECTURE

The algorithmic modules within our artificial intelligence
architecture enable the incorporation of risk information and
involvement of the human operator. The modules include
the logistics executive, the scout executive, and the
adjustable autonomy module. These components interact
with the logistics vehicle, the scout vehicle, and the human
operator, respectively, depicted in Figure 2. The logistics
executive contains several sub-modules. Two of them are
the “high-level" logistics planner and the “low-level"
roadmap planner, each containing a risk assessment
functionality that operates on the risk belief map. Together,
these items determine the course of action for the

3

Figure 2 - System Architecture

logistics vehicle. The logistics planner accepts mission goals
from the operator and generates sequences of waypoints,
producing a “high-level roadmap" which will achieve the
mission goals. Then, finding the actual path taken between
waypoints is performed by the roadmap planner.

It is the job of the logistics planner to choose the actual
sequence of waypoints in such a way that it balances and
reduces the risk among each component of the mission.
However, to make well-informed decisions, it will need the
scouts to gather additional data in areas the logistics vehicle
may cross in the future. The scout dispatcher determines
where to send the scouts, given the plans currently
considered by the logistics planner. Each plan has some
uncertainty in how truly risky it is to execute. This plan risk
uncertainty is mapped into map uncertainty, or, in other
words, the scout dispatcher determines the map locations
that are responsible for most of the plan uncertainty. It tasks
the scouts to survey these areas, for the information they
collect will help disambiguate candidate plans. Each scout's
executive runs a scout planner that accepts these areas as
input as well as a time limit for reporting results on each
area. The executive must also receive the current risk belief
for the relevant area. The planner runs an adaptive sampling
algorithm that is trained to fly the path that achieves the
highest expected information gain within the time allotted.
As sensor measurements arrive, the belief update module
incorporates them into the risk belief, and at the end of a
sensing task, the scout reports the updated risk belief back to
the logistics executive.

In a non-adjustable autonomy architecture, the human
operator would directly interface with the logistics
executive, but here, the adjustable autonomy module

mediates their interaction. This module continuously
monitors the risk associated with each mission component
according to the entire state of the logistics executive. It
tracks the possibility that each component's risk might
exceed user-specified thresholds. As these risks evolve due
to additional planning and updated risk beliefs, adjustable
autonomy gradually requests human attention or
intervention for certain mission components. Thus, while
the operator still specifies mission goals to the logistics
planner, she now has an interface to override the different
components of the logistics executive at varying levels of
control. Together, all these modules provide a rational, risk-
based framework to help direct the operator's attention to
the most pressing issues.

4. ALGORITHMS

Below high-level descriptions of the major algorithmic
components corresponding to our two innovations are
presented. Respectively, the focus is on the risk assessment
calculation and the scout planner.

4.1 Risk Assessment

A key capability of our system is to assess the risk to the
mission goals. Risk is defined as the likelihood that the
logistical plans we produce will achieve each goal. In other
words, if a plan is to succeed, then every part of the plan
must succeed. The risk assessment problem is then stated as
follows: Given a path plan that nominally achieves the
mission goals and a belief map of the environment, we wish
to compute a distribution over the path success probability.
While we would like to know the true path success

JL = E!PI = E [gPi]
n n

IIE [Pi] == Il-
i=l i=l

Unfortunately, the true distribution for the entire path is not
a Beta distribution and is hard to compute, so we
approximate it as a Gaussian. Gaussian distributions are also
parameterized by a mean and variance. Thus, by applying
the independence property, we obtain the following
expressions for mean and variance of the path's risk
distribution.

probability, this is impossible since we do not have the true
map of the environment. Rather, we possess a belief map
which models not just where we think certain features and
obstacles are, but also how well we know them. This
reflects the intuition that although we may know a certain
type of obstacle exists at a general vicinity, without
extremely fine sensing, we have only a general idea of its
precise location and threat level. Thus, we must compute
and our algorithms must operate on a probability
distribution over the success probability, i.e. a risk
distribution.

Given this definition of risk, we describe how we represent
risk in a belief map. Then, we can build paths over this map
and operate on the risks this path encounters to devise a risk
distribution for the path. Finally, we will explain how the
scout measures and updates the risk belief map.

n

P = IIpi.
i=l (4.1)

Our belief map is represented by a grid of square cells. Each
cell contains a distribution over the probability of success if
we traverse that cell in any direction, independently of all
other cells. We use this interpretation because it allows us to
use the Markov assumption later when composing cells into
paths. The distribution in each cell takes the form of a Beta
distribution, which represents a distribution over the
probability parameter P of a binomial distribution. It is
parameterized by (Q;~ ,8), where 0: and /1 are the effective
number of observed successes and failures, respectively.
The mean and variance of a Beta distribution are given by

q2 == E [p2] _ E [p]2

= E [gP~] - JL2

n

IIE [p~] - J.L~
i=l (4.2)

n

II(a; + J,t~) - /12
.

i=l (4.3)

J.1. =
a:

a:+t1
a:f3

Equation 4.2 is straightforwardly interpreted as the
estimated risk. Equation 4.3 specifies that due to the
multiplicative nature of Equation 4.1, a cell will amplify the
variance effects of other cells if both its mean probability of
success and its variance are large, and vice versa.

We may compute the inverse relationships as well:

/3 =

In our belief map, we parameterize each cell with a mean
and variance to represent a Beta distribution. Not only does
the Beta admit an intuitive interpretation, its
parameterization is also appealing for real-time calculation.

The form of our belief map makes it convenient to compose
cells into paths, although we will need to approximate the
distribution for the resulting path. We make the Markov
assumption that the probability of successfully traversing a
certain cell is independent of the probabilities for other
cells. Then, given a path of length n cells with random
variable probabilities PI, ... ,P·fl of successfully traversing
each one, the success probability for the entire path is

4

The Gaussian introduces the issue that it extends to ± ex).
Thus, we introduce another approximation by truncating the
distribution at 0 and 1 and scaling the resulting curve so that
the area beneath it integrates to 1.

There still remains the question of how we measure and
model obstacles from the environment into our belief map.
We assume our sensor has algorithms for detecting and
characterizing features of the environment. For example,
suppose the scout's camera detects a pothole and computes
a "measurement" of P for the success probability. If the
camera's resolution is characterized by a variance a;, then
the pothole's risk distribution is characterized by J..t == P and
0-

2 == 0";. Now, we must encode this information into the
grid cells Ci that the pothole occupies. Assuming each grid
cell has the same distribution, we take the characteristic
length d of the pothole (such as diameter or side length),
and invert the relationships in Equations 4.2 and 4.3 to get

J-ti J-t{l/d)

a; = ((72 + J.t2)(1/d) - j..t;.

5

Thus, we are effectively spreading the obstacle’s risk
distribution over the set of cells it occupies.

However, the Beta distribution parameterized by is
a measurement and not what we insert into the belief map.
At each time step , the belief map will already have a prior
distribution . We use a Kalman filter to integrate the
measurement into the belief, which reduces to the
Equations 4.4 and 4.5.

 (4.4)

 (4.5)

To summarize, we formulate risk assessment in terms of
finding the risk distribution over a path, given a risk belief
map. The map is gridded into cells, each of which contains a
Beta distribution. Paths are sequences of adjacent cells, and
we represent their risk distributions as truncated and scaled
Gaussians. To update the belief map with scout
measurements of an obstacle, we spread the obstacle’s
distribution over the grid cells it encompasses, and we apply
the Kalman filter to update our belief.

4.2 Scout Planner

This section describes the algorithm for the Scout Planner
component of the ARCAL architecture (Autonomous Robot
Control via Autonomy Levels). As described in Section 1

and Section 2, the scout’s purpose is to obtain more detailed
scans of certain areas that could yield safe routes for the
logistics vehicle. The scenario is depicted in Figure 1. While
the logistics executive tasks the scout to examine certain
areas, it would be inefficient for the scout to traverse every
square mile of its assigned area. For example, a human
operator would pilot the scout immediately to the areas that
we are most uncertain about and thus stand to gain the most
from detailed surveillance. Furthermore, the scout only has
limited time to complete its scans and report back to the
logistics executive. Our scout planner algorithm addresses
these observations and directs the scouts to collect data that
optimally reduces risk uncertainty for the logistics vehicle.

Figure 3 zooms into the scout planner within the ARCAL
architecture and illustrates various components of the scout
planner algorithm. The following subsections motivate and
walk through these components. Section 4.2.1 begins by
defining the scout planning problem in the framework of the
Markov Decision Process (MDP). Using this formalism, we
can use well-developed value iteration techniques described
in Section 4.2.2 to solve for the optimal policy that dictates
what path the scout should take. The policy is typically
encoded as a value function. However, solving this MDP
exactly for a typical scout scenario would require intractable
computation, and the value function could only be
represented in unreasonable amounts of storage space. Thus,
Section 4.2.2 augments the value iteration process with
approximations to yield non-optimal but reasonable
solutions. These calculations are performed offline, and the
approximate solution is stored in an approximate value

Figure 3 - Scout Planner Architecture

Thus, we are effectively spreading the obstacle's risk
distribution over the set of cells it occupies.

However, the Beta distribution parameterized by (/i·i., a-r) is
a measurement and not what we insert into the belief map.
At each time step l, the belief map will already have a prior
distribution (tIt l al.). We use a Kalman filter to integrate the
measurement into the belief, which reduces to the
Equations 4.4 and 4.5.

2 2

JLt+l
at Pi + (fi f-lt

a; + (1; (4.4)

2 atai
(Jt+l ---

at +ai (4.5)

6

function. When the time comes for the scout to execute
actions online, it further re-optimizes the value function to
its particular situation within the available computation
time. This online process is described in Section 4.2.4.

4.2.1 Scout Planning Problem as a Markov Decision
Process—The scout planning problem in the context of
ARCAL is formulated as follows. The scout dispatcher tells
the scout which subset of the full map needs to be examined
to have the uncertainty in the risk belief reduced. This
subset is represented as a set of grid cells. Each grid cell has
a prior risk distribution associated with it. The scout’s goal
is to fly a path over the area in the allotted time exactly such
that it maximizes the total reduction in variance over these
grid cells. (The total variance reduction is the sum of all
variance reductions in each grid cell.) To solve this problem,
we cast it in the general framework of the MDP, which is as
follows.

An MDP is a tuple , where:

• is the set of all possible states.
• is the set of all possible actions in each

state.
• is the set of state transition probabilities.
• is the reward function, with γ as a

discount factor for future rewards.

MDPs operate on discrete time steps. When executing
action , in state , the probability of transitioning to state
in the next time step is denoted as and the expected
reward associated with that transition is denoted . The
state transition probabilities enable MDPs to be used in
stochastic environments. In a deterministic setting, is 1
if and only if taking action in state takes us to state ;
otherwise it is 0. The reward structure is set up so that over
sequences of actions, the rewards accumulate but with a
discount factor γ so that future payoffs are less valuable than
more immediate payoffs.

A solution to an MDP is a policy, which assigns an action to
each state of the MDP. The value of a state under a policy,

, is the expected sum of discounted rewards obtained
when policy is followed, starting in state . The objective
is to find an optimal policy , which maximizes the value
of every state (). Note that for a
policy to be optimal, it must choose action in state such
that the expected value of the subsequent state is
maximized. In mathematical terms, , the optimal
policy and value function are related as follows.

 (4.6)

 (4.7)

Equations 4.6 and 4.7 codify Bellman’s Principle of
Optimality. In other words, the optimal plan starting from
state is to choose the action that lands us in the next best
state, and then continue with the optimal plan starting from

. Thus, to find the optimal policy, it suffices to solve for
the optimal value function, and then read-off the policy
from it.

For our scout planning problem, we define the following
components of an MDP.

• The state includes the vehicle location and
pose as well as the belief map (i.e. the risk
distributions over the relevant grid cells).

• The action set defines how the scout
vehicle can move. In our problem, the
available actions are left, right, and straight
at any grid cell.

• Our problem is deterministic. Thus, the
transition probabilities are 1 if and only
if the new location, pose, and belief in state

 match those according to the dynamics
and Kalman filtering resulting from taking
action in state . In effect, is the
specification of the problem dynamics.

• The reward is defined to be the total
reduction in uncertainty in the relevant grid
cells going from state to . It is calculated
by taking the sum over all the reductions in
variance resulting from the Kalman filter
updating the state from the observations.

It is interesting to note that the state space includes the
belief map in addition to the location and pose. This
information is a necessary part of the state because the
reward in going between states is solely defined by the
reduction of variance. It is more valuable to move between
cells and see a great decrease in variance because of high
initial uncertainty in the area swept over by the sensor than
to move between the same cells and see a small decrease
because the uncertainty was already low to begin with. Also,
including the belief map makes our state space continuous.
This will prompt our approximation architecture described
in Section 4.2.3.

4.2.2 Value Iteration for Exact MDP Solutions—Given our
MDP model , the classical method to
determine the optimal value function is to use value
iteration. Starting with an initial that is zero for all states,
we iterate on Equation 2.7 for all states, which gives us the
following recursion:

 (4.8)

The contraction mapping

11"*(8) = argmax L P:81 [n:S' + '1V*(S')]
aEA BleB (4.6)

V*(s) = max L P:8/[R~s' +1'V*(s')]
(lEA s'ES (4.7) The contraction mapping

max IVk+l (S) - V*(s)1 :5 jmax IVk(S) - V*(s) (4 9)
sES sES .

V(s) == maxQ{s,a}
aEA (4.13)

implies that \/!(. converges to 1-:'" ~ as k ----1 ::x. At any point, we
may choose to stop the iteration, and with our resulting l:~,

we can compute the policy:

Now, referring back to Equation 4.8, we can rewrite the
value iteration step in terms of Q-functions:

which implies the inverse relationship between the value
function and the Q-function:

11"(8) = arg max '"'" P:s/[R~SI +,V(s'))
aEA L..J

!I'ES (4.10)

In our scout scenario, the one downside of this
representation is that querying the policy online is
cumbersome. The reward is calculated based on the sensor
dynamics, which can be complicated. Therefore, we adopt
the alternative but equivalent convention of computing the
state-action value function, or sometimes called the Q
function, rather than the value function directly. Like the
value function, the Q-function represents the value obtained
by following a particular policy, but with respect to a given
state and action from that state, rather than just the state.
Therefore, the Q-function is related to a regular value
function as follows:

This section introduced the classic value iteration algorithm.
The algorithm essentially "learns" the best action to take in
any state, using the mathematical property that iterating on
the Bellman equation converges to the optimal value
function. The advantage of this method is that it finds the
optimal solution within epsilon tolerance. However, it is
only practical for a small, discrete state space. Our scenario
deals with a large, continuous state space. Nevertheless,
value iteration is central to nearly all MDP solution

Algorithm 1 details the entire value iteration algorithm
formulated in terms of Q-functions. Each state value is
initialized to zero. Using the state values, a state-action
value is updated for each state-action pair using the Bellman
Equation. The policy and state values are recalculated from
the state-action values. This process repeats until a
convergence threshold is met. Finally, the algorithm returns
the Q-function.

Using Equation 4.14, we can perform value iteration with
the same amount of effort as before, but now we store the
result as a single Q-function. Now it is more convenient to
query the policy, as Equation 4.12 shows that we just need
to select the maximum over a small set of discrete actions.

(4.11)

(4.12)
7r(S) = argmaxQ(s,a)

aEA

ot»,a) == L P:SI [R: s ' + ,V(S/)]
s'ES

Substituting into Equation 2.10, the policy is simply

Algorithm 1 Exact value iteration algorithm for solving MDPs using Q-values.

ValuelterationQ((S, A, P:s" R~st, /)) {:= {

for all s E S do
Vo(s) {:= 0

end for
t{:=O
repeat

t{:=t+l
for all S E S do

for all a E A do
Qt(s, a) {:= Es'Es P:s ' [R:st + ,~_l(SI)]

end for
1rt(s) {:= arg max, Qt(s, a)
~(s) {:= Qt(s,1rt(s))

end for
until max, I~(s) - vt-t(s)1 < E

return 1ft

}

7

8

methods. We will use Algorithm 1 as a building block to the
more sophisticated techniques discussed in Sections 4.2.3
and 4.2.4.

4.2.3 Approximation Architecture for MDP Value
Iteration—The above formulation assumes a discrete state
set . If the state space is discrete, and can be
represented as a table of values, one record for each discrete
state. The table of values is initialized arbitrarily and
improved iteratively. The problem with this approach is that
many real world state spaces are continuous and an
acceptable discrete representation is intractably large. In
many cases we cannot even store the huge table
representation in memory. Additionally, to learn the value
function, we must perform a value iteration backup for
every single state, which would take far too long.

We address these complexities by representing using
approximation architecture (). This architecture stores the
state-action value function in a compressed form, such as a
linear function over problem variables rather than an
explicit combination of each possible variable assignment.
When inserted in the value iteration process, we get an
approximate value iteration procedure which alleviates the
storage problem and shares information across state
variables, thus decreasing learning time. The approximation
architecture, therefore, solves both problems inherent to
exact value iteration.

Algorithm 2 outlines the approximate value iteration
algorithm where is the approximate value function
represented by an estimation architecture. Algorithm 2 takes
as input the MDP tuple , where is very
large and possibly infinite. Algorithm 2 begins by randomly
initializing state-action value table over state subset

. We then perform a Bellman backup over state subset ,
using for future state-action value estimates. The newly
computed state-action values are stored in table . The
policy, approximation architecture and state value table are
then updated. This process repeats until a convergence
threshold is met. Algorithm 2 returns approximation
architecture .

Although this approximation yields better storage space and
learning time, it may suffer from an inability to adequately
represent the state-action value function. We acknowledge
this by augmenting the state-action value function so that for
every state-action pair, we return a distribution over the
value rather than just a single number. Assuming normal
distributions, we can write this in terms of a mean and
variance:

 (4.15)

Thus, we incorporate representational uncertainty into the
approximate state-action value iteration process so that we

Algorithm 2 Approximate state-action value iteration algorithm where Q stands for an
approximation architecture representation of the state-action value function, Qstands for
a lookup table of state action values over a subset S of the full statespace S. The key
changes from the exact algorithm are highlighted in greeIl.

ApproxStateActionValuelteration(S, A ,P, R,,)) {= {

for all s ESC S do
foraD a E A do

Initialize (Q(s,a))
end for

end for
Initia1izeApproximationArchitecture(Qt, Qt)
t {= 0
repeat

t{=t+l
for aD s ESC S do

for all a E A do
Q(s,a) <= Es/Es p:s/[n:s' +iIDaxaQ(s',a)]

end for
end for
Q<=updateApproximationArchitecture(Q,Q)
foraD s E S do

1r(s) {= arg max, Q(s, a)
~(s) {= Q(s,7r(s))

end for
until maxsES I~(s) - ~-l(s)1 < E , \Is E S
return Qt
}

9

learn a distribution estimate over the value. Our offline
value function returns these distributions, not just an
expectation function. This enables the online algorithm,
when deciding between possible actions to execute, to
specifically investigate the values of state-action pairs which
are not well known and are likely to be viable alternatives.
Stated another way, we can use an online search algorithm
that is guided by the state-action value function. We discuss
this next in Section 4.2.4.

Before moving on, we first summarize the offline scout
algorithm, which is illustrated in Figure 4. The scouts use
approximate dynamic programming to create a policy for
acting in the world. A policy is a mapping from states to
actions, which tells the scouts what to do in any situation.
Their state-space includes not only location, pose and risk,
but it also encompasses uncertainty in the risk map belief.

Computing a value function can be computationally
expensive, so we compute this offline approximately
through value iteration before the mission starts. We do so
by simulating the scout flying to explore where the greatest
reward lies, and we save snapshots of this simulation as data
points for our table. We then generate an approximation
architecture on each iteration by regressing over these data
points, taking into account the representational uncertainty.

4.2.4 Online Planning and Re-Optimization Algorithms—In
this section we highlight the weaknesses of the previous
algorithm and explain how it can be augmented with a
search algorithm. The previous algorithm computes a policy
offline. Another approach is to compute an action online,
just for the current situation. We actually propose both. We
suggest using the offline policy as a starting point and then
improving it online, tailored to the current situation.

In this section we summarize why we need online planning
and re-optimization. In short, re-evaluating actions over a
pre-determined horizon helps to reduce the approximation
error, which helps us select the best action to ultimately
execute. This re-evaluation turns out to be more accurate
than the off-line state-action value, because the off-line
function is necessarily compressed and therefore not
expressive enough to capture every detail. The discussion
includes how we use the state-action value function
uncertainty to select actions for re-evaluation. In particular,
we will describe a family of tree-search algorithms which
use the state-action value function to determine which
branches of the tree to search.

Section 4.2.3 outlines a method for computing the state-
action value function. Computing the state-action value
function is tantamount to computing a policy because it tells
you how good each currently available action is given your
current state or situation. In other words, it tells you how
good each action is and you simply have to select and
execute the best one. However, the resulting state-action
value estimates are not as accurate as they could be. The
off-line generated function is necessarily compressed and
therefore not expressive enough to capture every detail.
Therefore, instead of using it raw, we improve upon the
estimates by performing some additional simulations online.
Recall that the state-action value function covers the entire
state-space. In other words, it will provide an estimate of the
action values emanating from any state or situation we may
encounter. This is a challenging request. In contrast, our
situation is a far less daunting task. However, since we do it
in real-time, we do not have as much time to complete that
task. Our approach attempts to make the best trade-off
between online and offline computation by computing a
state-action value function offline and using it as a starting
point for our online algorithm.

.

Figure 4 - Visualization of Q-function in the Approximation Architecture with Uncertainty

10

The process of online reevaluation involves generating a
tree of candidate scout vehicle paths to test (Figure 5). We
generate the tree of paths with the help of the offline
generated state-action value function. Starting from the
current state, the algorithm selects b actions to simulate,
where b is called the branching factor. After simulating the
actions, the algorithm will reach b new states. From each of
those new states, the algorithm again selects b actions to
simulate. After two steps, the algorithm will reach b2 new
states. This process proceeds to a predetermined planning
horizon h. Collectively, the algorithm simulates bh paths.
The algorithm’s task is to re-estimate how much each scout
collection path will improve our knowledge about the risks
to the mission vehicle. We think of this increase in
knowledge as a reward in accordance with the MDP
framework. Thus, the algorithm adds up the cumulative
reward garnered from each path. If the planning horizon is
long enough to reach the end of the mission, then the
simulated accumulated reward is used as the value of the
initial action. If the planning horizon is not long enough to
reach the end of the mission, then the remaining value is
estimated using the offline state-action value function.

The above algorithm uses branching factor b and horizon h.
We select b and h such that we have enough time to re-
evaluate bh paths. To do this, we first determine how many
computations can be performed in the allotted time between
decisions. We then select a planning horizon and calculate a
branching factor which will result in that number of
calculations.

A central question in this process is how to choose the
actions to reevaluate. As stated above, we generate the tree
of paths with the help of the offline generated state-action
value function and we select b and h such that we have
enough time to re-evaluate bh paths. One assumption in this
process is that we do not have enough time to reevaluate
every action over the planning horizon. Therefore, we elect
to evaluate actions that have a promising outcome, with
consideration for how sure we are about our estimates of
those outcomes.

At each step in the algorithm described above, we select b
actions to simulate. This selection uses the offline state-
action value function. The function provides an estimate of
the value (future cumulative reward) of each action, if taken
from the current state. The estimate actually includes a
distribution described by a mean and variance. The
distribution captures how well we know a given value. A
high variance distribution means that we do not know that
value very well. Likewise, a low variance distribution
means that we know that value rather precisely.

We select a sample from these distributions, one for each
action, and then choose the action with the highest sample
value. If one of the action distributions consistently
produces a high sample value, this tells us that we have little
reason to evaluate other options.

However, if there is a state-action value distribution with an
especially high variance, it will sometimes produce a sample

Figure 5 - Process of online reevaluation involves generating a tree of candidate scout vehicle paths to test.

11

with the highest value even though its’ mean is lower. This
phenomenon exactly mirrors the probability that said action
is the best, given what we know. In other words, we explore
the actions in proportion to how good they are and how
certain we are about that. In summary, we determine which
actions to re-evaluate by representing the uncertainty about
their true value. This distribution is used to select actions
(Figure 5) for re-evaluation which appear to be good but the
truth is uncertain. We may also evaluate poorer looking
plans which do not look very good, yet the true value has
such high variance that it warrants a second look.

To summarize, our method allows us to use offline
knowledge and processing to guide our scouts online. The
way we construct the offline policy informs the additional
online processing. In this way, we can exploit both on and
offline control processing in a complimentary way. We can
compare this to how people deal with a planning task.
Suppose you are navigating home from work. You have a
policy based on experience, which tells you which road to
take from a given intersection. However, given the time of
day you may wish to consider alternatives. For example,
given the traffic, you may be unsure if your standard policy
is optimal. Therefore, you can simulate in your head the
consequences of some alternative routes. The result of the
simulation tells you which way to go (what action to take)
right now. Your mental simulations will surely be biased
toward perceived viable alternatives. In other words, you
will consider some alternatives and others you will not. In
this way, your offline knowledge informs your online
situational reevaluation.

The above process actual describes a family of algorithms
because changing our search horizon and branching factor
fundamentally changes the algorithm. For example, if we
use a very small branching factor with a long horizon, the
algorithm closely resembles the rollout algorithm. Rollout is
a longstanding method of evaluating moves in the game of
backgammon [5]. On the other hand using a short horizon
with a large branching factor closely resembles model
predictive control. Different configurations will work better
for different applications as well as at different points in the
mission. For example, toward the end of a mission, it could
be helpful to use a wider search (larger branching factor) to
make sure that we rightfully consider the end goal. Further
extensions to our algorithm may include using different
branching factors at different levels of the search tree. For
example, it is easier for a function to capture long term
objectives then short term details. Therefore, this small
extension would allow the algorithm to rely more on offline
knowledge in the middle of the mission and rely more on
simulation for starting and ending the mission. All in all, our
method describes a broad family of algorithms via a set of
configuration parameters. Describing the algorithm in this
way enables us to tune it, making it broadly applicable to
many applications.

5. ALGORITHM DEMONSTRATION RESULTS

At this stage, we are currently designing and implementing
the Logistics Executive and Adjustable Autonomy
components. We have implemented the scout path planning
algorithm and run preliminary tests on it, with results
discussed in this section. Section 4.2 above describes the
theory underlying the scout path-planning problem, the
offline value iteration procedure, and the online search for
decision-making. In this section, we visualize the latter two
to demonstrate the effectiveness of this theory.

To show how our scout finds efficient sensing paths, we
center our discussion on four example scenarios. Each
scenario tasks the scout to reduce variance within a 10-by-
10 area, but the areas of high variance differ across
scenarios. Scenario A has high variance in the southwest
quarter patch and zero variance (i.e. perfect knowledge)
everywhere else. This corresponds to a very large feature in
one corner of the map which we have no information about,
and everywhere else we have perfect information already. In
scenario B, we split the uncertain feature into two smaller
features, one in the southwest corner and the other in the
northeast. Scenario C involves a feature in the middle that
we know a great deal about (i.e. low variance) but we grow
more uncertain the farther we go toward the edges. Finally,
scenario D randomly smears high variance across the entire
map, simulating a realistic setting where we may have poor
prior information of a certain region.

Each scenario was run with a mission length of 25 time
steps. Within each scenario’s context, we first illustrate the
evolution and convergence of the approximate value
function during value iteration. We use 100 samples to
represent the state subset. Note that there are 100 unique
grid cells the scout can be in, four possible orientations in
each, and an infinite number of map beliefs possible. Thus,
our value function representation is extremely sparse
relative to the actual state space. Then, we display the paths
constructed during online execution to show how the scout
chooses to survey areas with higher uncertainty within the
time allotted. The tree search algorithm is limited to 20 node
traversals of computation, but searches down to a depth of
seven nodes.

5.1 Scenario A

Figure 6 below depicts the state-action value table
evolving over ten sets of value iteration. The x-axis
represents different sample states in our lookup table, and
the y-axis shows the value associated with that state. When
querying the value of a state, we are not querying , but
rather representing the estimation architecture which
interpolates over the sample states in the table. However,
to aid conceptual convenience and transparency, we will

12

Figure 6 - Value Function Representation for Scenario A

Figure 7 - Belief Variance and Scout Path for Scenario A

refer to the plots as the value function plots. The sample
states were constructed by initializing a simulated scenario
four times and letting the scout fly a pre-determined
lawnmower pattern which sweeps across the area for the
length of the mission, 25 time steps. To avoid gathering the
exact same data each time, stochasticity was introduced into
the path, more with each subsequent pass.

The resulting representation of on the even iterations are
shown in sequence on value plots in Figure 6. At first, the
values for each sample state are initialized with low random

noise, which is not visible at the scale shown. In subsequent
iterations, the values accrue at each step, since each state
“looks ahead” to the next best state and adds that state’s
value to its own reward (i.e. variance reduction) for taking
the action leading into that state. The values gradually
converge (i.e. the increase at each step gets smaller) since
the accruement is increasingly discounted over later
iterations. This is consistent with equation (1.8) in the Scout
Planner section. However, the most interesting parts of these
plots are the four peaks, corresponding to when the scout
passes over the patch of high variance and hence gathers the

13

most reward. Afterward, the reward tapers off since the
scout’s sensor coverage is overlapping areas just previously
seen. This illustrates how the value function effectively
encodes and exploits the structure of belief variance in the
scenario.

We have shown the construction of the path at time-steps 1,
4, 16, and 25 of the algorithm’s run in Figure 7. The top plot
in each frame shows the belief variance with a color scale
on the side, and the bottom plot the scout’s path so far. As
can been seen, the scout takes the reasonable action to
plunge south into the area of highest uncertainty and then
loops through it until the end of the mission. Note how the
scout “carves away” at the belief variance in the top plots.
We rescale the colors so that areas with the highest
remaining variance always appear yellow, and hence one
can see how they guide and attract the scout. However, one
should note how much the scale has changed by the end of
the mission, thus showing the extent of variance reduction.

5.2 Scenario B

Figure 8 shows the value function for two uncertain features
in this scenario. For each of the four runs, the value function
peaks in two places, corresponding to the two features.
However, the first peak in each of the first three runs is
slightly taller than the second peak. This is due to the width
of the sensor footprint. When it is primarily sensing the first
feature, it also captures a little bit of the second, given their
proximity. Thus, when it actually flies over the second, it
will not generate as much variance reduction as the first.

Since there are only these two features, the effects of
stochasticity in generating the sample states are not very
pronounced. However, as the stochasticity is turned up with
each pass, we notice the peaks for the last pass look
substantially different than the first three. This indicates we
have allowed ourselves to learn about the features from a
slightly different perspective, which gives us a richer
representation.

Now we turn to the scout’s path shown in Figure 9. The
scout begins by heading to the feature in the southwest
corner. Not only is it slightly closer to the scout’s initial
position, but the value function also suggests it is of higher
value than the other features. This is an artifact of our
approximation architecture, but it is a small price to pay and
easily mitigated on average with stochasticity introduced
during the online algorithm. Yet, the scout does not go all
the way to the bottom feature because as it approaches, its
sensor footprint already provides good coverage of the
feature. Thus, two steps away, it turns toward the northeast
feature.

Similarly, it does not need to head all the way east. About
halfway through the mission, it turns back again to better
understand the first feature, rather than spend all its
remaining time around the second feature and not reducing
overall variance as much. This kind of behavior illustrates
the value of the online search algorithm, for knowing when
to turn back cannot be encoded in the value function itself.
The look-ahead feature of search allows the scout to plan
based on how far ahead its mission end is. Here we used a
search depth of seven. Had we searched even deeper, we

Figure 8 – Value Function Representation for Scenario B

14

Figure 9 – Belief Variance and Scout Path for Scenario B

may have arrived at the more efficient solution of spending
half the time at each feature and not have to turn back.
However, searching deeper costs time. If we are to maintain
the same online computational time, then searching too deep
would prune the branching factor and thus degrade the
quality of search.

5.3 Scenario C

In this scenario, we have the highest variance on the
boundaries, and it decreases as we approach the center.
Since we are flying a lawnmower pattern over the area, we
notice periodic peaks as we approach the edges in the value
function plots shown in Figure 10. As we make sweeps over
the central area where variance is lower, we notice a
decreasing trend in the values, but it picks back up as we
start to swing closer to the opposite edge. The high initial
peak at each run is due to the scout sensing completely new
terrain; it corresponds to states where the scout is in the top-
left corner and the belief map variance is high throughout
the region covered by the sensor footprint. Since there is
much more total variance spread across the region in this
scenario than in A and B, the effects of stochasticity are
much more clearly seen. While the general trend for the
values across each run is similar, the details are quite
different. This captures a much richer and more informative
representation of the value function.

The reasonable thing for the scout in this scenario is to hug
the edges where the variance is highest. This is exactly what
Figure 11 shows. However, it does not just hug the edges
statically, but it dynamically tries to go inside a bit, too,
where valuable information also exists. Given the time it
has, the scout tries to balance how much time it spends

closer to the outside and inside. In 25 time-steps, it is
infeasible for the scout to make a full circuit around the
perimeter, which is 36 grid cells. With an online look-head
depth of seven, the scout realizes in the south leg of its path
that it is more valuable to maintain a distance of one cell
away from the south edge rather than travel right on the
edge. Also, in this path, we can notice stochasticity in the
online process. On the third step of its path, the scout turns
north toward the edge rather than continue on its present
path east. This is clearly suboptimal, and it could only have
arisen by “mistake.” The “mistake” arises from the
representational uncertainty in the value function
approximation architecture . We encode uncertainty into
the value function because we know it is not perfect.
However, this means each query to the value function is a
probabilistic draw from a distribution characterized by this
uncertainty. Thus, we have to submit to the possibility of a
clearly suboptimal decision every once in a while. As the
path shows, though, these mistakes are uncommon and
quickly recovered from.

5.4 Scenario D

When we have random high variance everywhere in the
graph, the corresponding value function shown in Figure 12
is messy and difficult to interpret by hand. It bears some
resemblance to Scenario C’s value function, since there is
value everywhere in the region. However, it is substantially
less structured. Nevertheless, the value function still
encodes the random variations in this map as well as the
larger structure, and this will be apparent in the path the
scout chooses.

Similar to the plots for Scenario C, Figure 13 shows that the

15

Figure 10 – Value Function Representation for Scenario C

Figure 11 - Belief Variance and Scout Path for Scenario C

scout chooses to fly a circuit around the region to provide
greatest coverage. As before, the scout does not have
enough time to fly cover every piece of high uncertainty,
and thus the scale at the end is much larger than the scale for
Scenarios A and B. However, the path leaves less
uncertainty uncovered than in Scenario C because the scout
can afford to hug the outer edges less and thus has less
distance to travel to make a circuit. Note that the scout does
not even have to complete the circuit or else it would
overlap with its initial sensor footprint. It is worth noting
that in running multiple trials for each of these scenarios,

Scenario D showed the greatest variation in the planned
path. That is, while the paths for the other scenarios
followed predictable and expected patterns, sans the
occasional “mistake,” the paths for Scenario D may choose
to wander in toward the center or wander out at any given
point. This suggests there is larger representational
uncertainty in the value function, which is to be expected in
a less structured environment. It means multiple good
solutions may exist, and since our representation models
this aspect, we do not limit ourselves to a single
deterministic path in any scenario.

16

Figure 12 - Value Function Representation for Scenario D

Figure 13 - Belief Variance and Scout Path for Scenario D

5.5 Algorithm Summary

These examples show that our scout planning algorithm is
capable of finding a path through an area which
purposefully surveys the most uncertain features, thus
generating the most valuable data for the logistics planner.
This is accomplished through a combination of the offline
value iteration and online search procedures discussed in
Section 4.2. The flexibility of our algorithm arises from the
Markov Decision Process framework, which easily adapts to
any given scenario. An important detail of our approach is
that since we cannot exactly represent the value function,

we acknowledge it by introducing stochasticity into our
decision-making. Thus, our non-deterministic solutions,
while rarely optimal, are more robust to this uncertainty.
When integrated with the entire ARCAL system, the scouts
shall be valuable additions to the logistics vehicle.

6. SUMMARY

In the future, unmanned platforms will gain high-order
decision-making intelligence, form teams, and perform
collaborative tasks. However, for successful field

17

deployment, operators will need confidence that
autonomous decision-making leads to proper behaviors,
especially in uncertain environments.

To address this issue, the ARCAL project proposes two
complimentary areas of research which when combined can
increase operator confidence in future autonomous system
behaviors. The first incorporates concepts of risk-based
adjustable autonomy with risk verification within system
functions and task-directed adaptive search techniques. An
operator can adjust the autonomy level, employ autonomy
functions in which he has confidence in success, or can
revert to fully manual control at any time. The second
involves new methods to effectively test and evaluate
collaborative autonomous team behaviors prior to field
deployment.

In this paper we presented simulation results. However, we
plan to implement the entire scenario on a test bed
consisting of a radio controlled ground vehicle and two
Parrot ARDrone quadrotors (Figure 14). Building the
framework for the test bed commenced last summer (2011)
and is ongoing.

To develop and validate the concepts and technologies used
in this project a natural disaster recovery scenario has been
employed as an example. A team of UASs is dispatched to
determine the safest and fastest path for a disaster recovery
convoy to deliver relief supplies. Although a natural disaster
recovery scenario is used as an example, the autonomous
algorithms, concepts and technologies being developed can
certainly be used for other scenarios with the UAS
Simulation Environment as well.

The theoretical basis for adjustable autonomy used during
control and supervision of a team of UASs performing a
collaborative task with innovations of applying risk to
mission goals is introduced. Task-directed search algorithms
for UAS scout path-planning, used to improve knowledge of
the risks to the mission, are developed and implemented. An
algorithm test battery was developed and used to run tests
on the scout path-planning algorithms. Test results from a
number of runs with the algorithm applied to terrain
examples with various belief uncertainty concentrations are
shown and described. An ARCAL systems architecture is
developed incorporating these autonomy algorithms as
applied to the natural disaster recovery scenario example.
Initial results are encouraging showing that the algorithm
performs quite effectively.

Although considerable autonomous systems research has
been performed and progress made over the past decade,
current unmanned systems are still for the most part tele-
operated and manpower intensive relying on human
operators and their decision-making capabilities to perform
platform and mission tasks. However as unmanned systems
become more complex and costs continue to rise for
specialized training and deployment of operators,
incorporation of autonomous capabilities is designated to
assist operators and lighten their task load. Autonomous
functions will need to be robust, reliable, exhibit the correct
behaviors for the situation and operators will need
confidence that the mission can be performed effectively.

Figure 14 – Heterogeneous Robotics Test Bed

18

REFERENCES
[1] D. P. Bertsekas, Dynamic Programming and Optimal

Control, 3rd ed. Vol. 1, MIT Press, Cambridge MA, 2005.

[2] D. P. Bertsekas, Dynamic Programming and Optimal
Control, 3rd ed. Vol. 2, MIT Press, Cambridge MA, 2007.

[3] D. P. Bertsekas and D. A. Castanon, Rollout Algorithms
for Stochastic Scheduling Problems, Journal of Heuristics;
5 (1); 89-108; 1999.

[4] R. S. Sutton and A.G. Barto, Reinforcement Learning: An
Introduction, 1998.

[5] G. Tesauro, “Temporal Difference Learning and TD-
Gammon,” Communications of the ACM, 1995.

[6] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods
for large scale dynamic programming,” Machine
Learning, 22(1):59–94, 1996.

BIOGRAPHIES
Lawrence A. M. Bush holds a
Bachelor of Science in Industrial
Engineering and Operations Research
from the University at Buffalo. Larry
has a Master of Science in Computer
Science from Rensselaer Polytechnic
Institute. He is a Ph.D. Candidate at
the Massachusetts Institute of
Technology in the Department of

Aeronautics and Astronautics and the Computer Science
and Artificial Intelligence Laboratory (CSAIL). Larry’s
thesis topic is Decision Uncertainty Minimization for
Sensing Missions. His areas of expertise are pattern
recognition, optimization, active learning and active
sensing. His prior employment includes work on expert
systems at Cornell University, New York State Agricultural
Research Station and work on machine learning at MIT
Lincoln Laboratory.

Andrew J. Wang earned Bachelor of
Science degrees in Aerospace and
Electrical Engineering & Computer
Science from the Massachusetts Institute
of Technology in 2011. He is currently a
Master’s of Engineering student at
MIT’s Computer Science and Artificial
Intelligence Lab (CSAIL) with plans to
pursue a Ph.D. Andrew’s research

interests involve autonomous decision-making for
transportation and exploration vehicles as well as for
communications and energy infrastructures.

Brian C. Williams leads the Model-
based Embedded and Robotic
Systems group, within the Computer
Science and Artificial Intelligence
Laboratory (CSAIL) at the
Massachusetts Institute of
Technology. His research
concentrates on model-based
autonomy -- the creation of long-

lived systems that explore autonomously, while
commanding, diagnosing and repairing themselves using
fast, commonsense reasoning.

Professor Williams received his S.B., S.M and Ph.D. in
Computer Science and Electrical Engineering at MIT, and
worked at the Xerox Palo Alto Research Center and NASA
Ames Research Center, prior to joining the faculty at MIT.
He is a pioneer in the fields of qualitative reasoning, model-
based diagnosis and autonomous systems. He received a
NASA Space Act Award for Remote Agent, the first fully
autonomous, self-repairing space explorer, demonstrated
onboard the NASA Deep Space One probe in May, 1999. He
was a member of the Tom Young Blue Ribbon Team in
2000, assessing future Mars missions in light of the Mars
Climate Orbiter and Polar Lander incidents, and is
currently a member of the Advisory Council of the NASA Jet
Propulsion Laboratory at Caltech. He has won four best
paper prizes for his research in diagnosis, qualitative
algebras, propositional inference and soft constraints. He is
a fellow of AAAI, has served as guest editor of the Artificial
Intelligence Journal and has been on the editorial boards of
the Journal of Artificial Intelligence Research, and MIT
Press.

