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Risk-Based Sensing in Support of Adjustable Autonomy 

 
Abstract—Current unmanned systems are typically tele-
operated and manpower intensive relying on human operators 
and their decision-making capabilities to perform platform 
and mission tasks. We envision a future where unmanned 
platforms have greater decision making abilities and 
autonomous behaviors are the norm. For example, unmanned 
autonomous systems will be deployed as teams along with their 
human supervisor. The UAS will interact with the supervisor 
at a high level, then take on an expanded role in mission 
planning, resource allocation and route planning. 

Toward this end, we have developed a risk-based adjustable 
autonomy system with a task directed adaptive sensing 
technology concept to allow system autonomy operation at a 
level in which an operator has confidence of success. We test 
our idea in simulation for a natural disaster recovery task. We 
present experimental results verifying the utility of our 
technology. 
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1. INTRODUCTION 
While sensing and avionics technology has made great 
strides in the past decade, the autonomous capabilities of 
UAVs lag behind. Autonomous systems lack humans’ 
creative reasoning abilities to maintain safe and robust 
behavior in uncertain environments. Thus, most unmanned 
systems still rely on human tele-operation, which is 
manpower intensive and requires reliable communication 
with a ground base. In this work, we propose a new 
approach to adjustable autonomy for reducing operator 
workload while retaining trust that the mission will proceed 
safely. Previous work in adjustable autonomy usually 
involves humans manually assessing the utility and setting 

the level of autonomy. This approach requires them to 
maintain complete situational awareness throughout the 
mission. However, applications that demand large-scale 
distributed efforts, such as disaster relief, environmental 
surveys, and convoy protection render this approach 
impractical. Our goal is to design a system that assesses its 
own abilities and requests human assistance in the amount 
needed. The challenge is to build the trust of  the human 
operator that this system truly knows what assistance it 
needs and can operate safely otherwise. 

Our approach to adjustable autonomy gains operator trust by 
making and explaining decisions based on risk. Our work is 
developed in the context of a disaster relief scenario, where 
a rescue vehicle must traverse an uncertain landscape to 
administer aid. The mission planner must tradeoff between 
risk reduction and decision deadlines. We consider two 
aspects to risk: the probability of mission failure and 
decision uncertainty in the mission planning process. Due to 
the inherent uncertainty in our belief, the probability of 
mission failure is not known exactly, so the mission planner 
evaluates risk as a distribution over this probability. In 
particular, the metric used to evaluate risk is the confidence 
that the probability lies above a threshold. The metric is 
calculated over the entire rescue vehicle mission path and it 
is calculated through a combination of Dijkstra's algorithm 
and value iteration. These risk distributions give rise to 
uncertainty when choosing between mission plans for 
lowest probability of failure.  

To mitigate this, aerial scouts are sent ahead of the rescue 
vehicle to reduce belief uncertainty where it is needed most. 
The scouts are tasked with surveying areas that yield the 
highest expected uncertainty reduction within the time 
before the mission vehicle makes its next decision. Path 
planning for the scouts is achieved via approximate dynamic 
programming using a stochastic value function represented 
by a Gaussian Process. For each scout, we use a unique 
representation of the state-space which is centered and 
rotated around the vehicle. Based on the updated belief 
provided by the scouts and the timing constraints of the 
scenario, the mission planner determines whether mission 
plans exist that have low enough risk associated with them.  
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Figure 1 - Motivating Scenario: Natural Disaster Relief Scenario 

Based on a series of risk thresholds, different amounts of 
human assistance are requested. Thus, we can engage the 
operator specifically when needed and at the proper amount, 
as well as provide reasoning and context for why and where 
the operator’s help is needed. Simulation experimental 
results are presented which verify that the scout planner 
effectively reduces belief and decision uncertainty given any 
area to survey. The results demonstrate the potential of this 
new approach to achieve consistent safety and robustness 
throughout a mission by requesting operator assistance at 
the appropriate times. 

 
2. INNOVATIONS 

Adjustable autonomy has long been appealing for its vision 
to utilize the best abilities of humans and autonomous 
agents. However, the difficulties in creating a truly 
synergistic dynamical relationship between humans and 
robots make adjustable autonomy a loosely defined concept. 
In this section, we introduce the risk-based innovations of 
our approach to adjustable autonomy, describe the system 
architecture, and explain the major algorithms driving our 
framework.  

An adjustable autonomy system makes two types of 
decisions: The first type determines what vehicle actions to 
take in the future and the second governs when and how to 
engage the human operator.  Our first innovation is that we 
ground both these decision types on the risk to the mission 
goals. Given a logistical plan for the mission, we 
probabilistically quantify the risk to each component of the 
plan. The component risks imply a risk configuration over 
each mission goal, which informs how we engage the 
human. Furthermore, the notion of risk is built into the 

planning process. Our adjustable autonomy architecture 
takes advantage of this to provide situational awareness, 
keeping the human involved at the appropriate level of 
detail for each mission component. 

Our second innovation is how we improve our knowledge of 
the risks to the mission through the use of scout aerial 
vehicles. Using only the initial low-resolution knowledge of 
map risk severely limits the quality of decisions we can 
make, so we dynamically deploy scouts to collect more 
detailed information. Our algorithms lead the scouts toward 
the most valuable data that will help us identify the least 
risky paths for future components of the mission. The scouts 
are tasked to survey areas least well known about relative to 
the logistics plan. Flying over an area that our logistics 
vehicles will never cross on ground is useless unless it lies 
on the quickest path from one area of interest to the next. In 
summary, our contribution to adjustable autonomy is to 
encode risk at each decision-making process. 

 
3. ARCHITECTURE 

The algorithmic modules within our artificial intelligence 
architecture enable the incorporation of risk information and 
involvement of the human operator. The modules include 
the logistics executive, the scout executive, and the 
adjustable autonomy module. These components interact 
with the logistics vehicle, the scout vehicle, and the human 
operator, respectively, depicted in Figure 2. The logistics 
executive contains several sub-modules. Two of them are 
the “high-level" logistics planner and the “low-level" 
roadmap planner, each containing a risk assessment 
functionality that operates on the risk belief map. Together, 
these items determine the course of action for the
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Figure 2 - System Architecture 

logistics vehicle. The logistics planner accepts mission goals 
from the operator and generates sequences of waypoints, 
producing a “high-level roadmap" which will achieve the 
mission goals. Then, finding the actual path taken between 
waypoints is performed by the roadmap planner. 

It is the job of the logistics planner to choose the actual 
sequence of waypoints in such a way that it balances and 
reduces the risk among each component of the mission. 
However, to make well-informed decisions, it will need the 
scouts to gather additional data in areas the logistics vehicle 
may cross in the future. The scout dispatcher determines 
where to send the scouts, given the plans currently 
considered by the logistics planner. Each plan has some 
uncertainty in how truly risky it is to execute. This plan risk 
uncertainty is mapped into map uncertainty, or, in other 
words, the scout dispatcher determines the map locations 
that are responsible for most of the plan uncertainty. It tasks 
the scouts to survey these areas, for the information they 
collect will help disambiguate candidate plans. Each scout's 
executive runs a scout planner that accepts these areas as 
input as well as a time limit for reporting results on each 
area. The executive must also receive the current risk belief 
for the relevant area. The planner runs an adaptive sampling 
algorithm that is trained to fly the path that achieves the 
highest expected information gain within the time allotted. 
As sensor measurements arrive, the belief update module 
incorporates them into the risk belief, and at the end of a 
sensing task, the scout reports the updated risk belief back to 
the logistics executive. 

In a non-adjustable autonomy architecture, the human 
operator would directly interface with the logistics 
executive, but here, the adjustable autonomy module 

mediates their interaction. This module continuously 
monitors the risk associated with each mission component 
according to the entire state of the logistics executive. It 
tracks the possibility that each component's risk might 
exceed user-specified thresholds. As these risks evolve due 
to additional planning and updated risk beliefs, adjustable 
autonomy gradually requests human attention or 
intervention for certain mission components. Thus, while 
the operator still specifies mission goals to the logistics 
planner, she now has an interface to override the different 
components of the logistics executive at varying levels of 
control. Together, all these modules provide a rational, risk-
based framework to help direct the operator's attention to 
the most pressing issues. 

 
4. ALGORITHMS 

Below high-level descriptions of the major algorithmic 
components corresponding to our two innovations are 
presented. Respectively, the focus is on the risk assessment 
calculation and the scout planner. 

 
4.1 Risk Assessment 

A key capability of our system is to assess the risk to the 
mission goals. Risk is defined as the likelihood that the 
logistical plans we produce will achieve each goal. In other 
words, if a plan is to succeed, then every part of the plan 
must succeed. The risk assessment problem is then stated as 
follows: Given a path plan that nominally achieves the 
mission goals and a belief map of the environment, we wish 
to compute a distribution over the path success probability. 
While we would like to know the true path success 
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Unfortunately, the true distribution for the entire path is not
a Beta distribution and is hard to compute, so we
approximate it as a Gaussian. Gaussian distributions are also
parameterized by a mean and variance. Thus, by applying
the independence property, we obtain the following
expressions for mean and variance of the path's risk
distribution.

probability, this is impossible since we do not have the true
map of the environment. Rather, we possess a belief map
which models not just where we think certain features and
obstacles are, but also how well we know them. This
reflects the intuition that although we may know a certain
type of obstacle exists at a general vicinity, without
extremely fine sensing, we have only a general idea of its
precise location and threat level. Thus, we must compute
and our algorithms must operate on a probability
distribution over the success probability, i.e. a risk
distribution.

Given this definition of risk, we describe how we represent
risk in a belief map. Then, we can build paths over this map
and operate on the risks this path encounters to devise a risk
distribution for the path. Finally, we will explain how the
scout measures and updates the risk belief map.

n

P = IIpi.
i=l (4.1)

Our belief map is represented by a grid of square cells. Each
cell contains a distribution over the probability of success if
we traverse that cell in any direction, independently of all
other cells. We use this interpretation because it allows us to
use the Markov assumption later when composing cells into
paths. The distribution in each cell takes the form of a Beta
distribution, which represents a distribution over the
probability parameter P of a binomial distribution. It is
parameterized by (Q;~ ,8), where 0: and /1 are the effective
number of observed successes and failures, respectively.
The mean and variance of a Beta distribution are given by

q2 == E [p2] _ E [p]2
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Equation 4.2 is straightforwardly interpreted as the
estimated risk. Equation 4.3 specifies that due to the
multiplicative nature of Equation 4.1, a cell will amplify the
variance effects of other cells if both its mean probability of
success and its variance are large, and vice versa.

We may compute the inverse relationships as well:

/3 =

In our belief map, we parameterize each cell with a mean
and variance to represent a Beta distribution. Not only does
the Beta admit an intuitive interpretation, its
parameterization is also appealing for real-time calculation.

The form of our belief map makes it convenient to compose
cells into paths, although we will need to approximate the
distribution for the resulting path. We make the Markov
assumption that the probability of successfully traversing a
certain cell is independent of the probabilities for other
cells. Then, given a path of length n cells with random
variable probabilities PI, ... ,P·fl of successfully traversing
each one, the success probability for the entire path is

4

The Gaussian introduces the issue that it extends to ± ex).
Thus, we introduce another approximation by truncating the
distribution at 0 and 1 and scaling the resulting curve so that
the area beneath it integrates to 1.

There still remains the question of how we measure and
model obstacles from the environment into our belief map.
We assume our sensor has algorithms for detecting and
characterizing features of the environment. For example,
suppose the scout's camera detects a pothole and computes
a "measurement" of P for the success probability. If the
camera's resolution is characterized by a variance a;, then
the pothole's risk distribution is characterized by J..t == P and
0-

2 == 0";. Now, we must encode this information into the
grid cells Ci that the pothole occupies. Assuming each grid
cell has the same distribution, we take the characteristic
length d of the pothole (such as diameter or side length),
and invert the relationships in Equations 4.2 and 4.3 to get

J-ti J-t{l/d)

a; = ((72 + J.t2)(1/d) - j..t;.
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Thus, we are effectively spreading the obstacle’s risk 
distribution over the set of cells it occupies. 

However, the Beta distribution parameterized by  is 
a measurement and not what we insert into the belief map. 
At each time step , the belief map will already have a prior 
distribution . We use a Kalman filter to integrate the 
measurement into the belief, which reduces to the 
Equations 4.4 and 4.5. 

                 (4.4) 

                    (4.5) 

To summarize, we formulate risk assessment in terms of 
finding the risk distribution over a path, given a risk belief 
map. The map is gridded into cells, each of which contains a 
Beta distribution. Paths are sequences of adjacent cells, and 
we represent their risk distributions as truncated and scaled 
Gaussians. To update the belief map with scout 
measurements of an obstacle, we spread the obstacle’s 
distribution over the grid cells it encompasses, and we apply 
the Kalman filter to update our belief. 

 
4.2 Scout Planner 

This section describes the algorithm for the Scout Planner 
component of the ARCAL architecture (Autonomous Robot 
Control via Autonomy Levels).  As described in Section 1 

and Section 2, the scout’s purpose is to obtain more detailed 
scans of certain areas that could yield safe routes for the 
logistics vehicle. The scenario is depicted in Figure 1. While 
the logistics executive tasks the scout to examine certain 
areas, it would be inefficient for the scout to traverse every 
square mile of its assigned area.  For example, a human 
operator would pilot the scout immediately to the areas that 
we are most uncertain about and thus stand to gain the most 
from detailed surveillance. Furthermore, the scout only has 
limited time to complete its scans and report back to the 
logistics executive.  Our scout planner algorithm addresses 
these observations and directs the scouts to collect data that 
optimally reduces risk uncertainty for the logistics vehicle. 

Figure 3 zooms into the scout planner within the ARCAL 
architecture and illustrates various components of the scout 
planner algorithm. The following subsections motivate and 
walk through these components. Section 4.2.1 begins by 
defining the scout planning problem in the framework of the 
Markov Decision Process (MDP). Using this formalism, we 
can use well-developed value iteration techniques described 
in Section 4.2.2 to solve for the optimal policy that dictates 
what path the scout should take. The policy is typically 
encoded as a value function. However, solving this MDP 
exactly for a typical scout scenario would require intractable 
computation, and the value function could only be 
represented in unreasonable amounts of storage space. Thus, 
Section 4.2.2 augments the value iteration process with 
approximations to yield non-optimal but reasonable 
solutions. These calculations are performed offline, and the 
approximate solution is stored in an approximate value 

 
 

Figure 3 - Scout Planner Architecture 

Thus, we are effectively spreading the obstacle's risk
distribution over the set of cells it occupies.

However, the Beta distribution parameterized by (/i·i., a-r) is
a measurement and not what we insert into the belief map.
At each time step l, the belief map will already have a prior
distribution (tIt l al.). We use a Kalman filter to integrate the
measurement into the belief, which reduces to the
Equations 4.4 and 4.5.
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function. When the time comes for the scout to execute 
actions online, it further re-optimizes the value function to 
its particular situation within the available computation 
time. This online process is described in Section 4.2.4. 

4.2.1 Scout Planning Problem as a Markov Decision 
Process—The scout planning problem in the context of 
ARCAL is formulated as follows. The scout dispatcher tells 
the scout which subset of the full map needs to be examined 
to have the uncertainty in the risk belief reduced. This 
subset is represented as a set of grid cells. Each grid cell has 
a prior risk distribution associated with it. The scout’s goal 
is to fly a path over the area in the allotted time exactly such 
that it maximizes the total reduction in variance over these 
grid cells. (The total variance reduction is the sum of all 
variance reductions in each grid cell.) To solve this problem, 
we cast it in the general framework of the MDP, which is as 
follows. 

An MDP is a tuple , where: 

•  is the set of all possible states. 
•  is the set of all possible actions in each 

state. 
•  is the set of state transition probabilities. 
•  is the reward function, with γ as a 

discount factor for future rewards. 
 

MDPs operate on discrete time steps. When executing 
action , in state , the probability of transitioning to state  
in the next time step is denoted as  and the expected 
reward associated with that transition is denoted . The 
state transition probabilities enable MDPs to be used in 
stochastic environments. In a deterministic setting,  is 1 
if and only if taking action  in state  takes us to state ; 
otherwise it is 0. The reward structure is set up so that over 
sequences of actions, the rewards accumulate but with a 
discount factor γ so that future payoffs are less valuable than 
more immediate payoffs. 

A solution to an MDP is a policy, which assigns an action to 
each state of the MDP. The value of a state under a policy, 

, is the expected sum of discounted rewards obtained 
when policy  is followed, starting in state . The objective 
is to find an optimal policy , which maximizes the value 
of every state ( ). Note that for a 
policy to be optimal, it must choose action  in state  such 
that the expected value of the subsequent state  is 
maximized. In mathematical terms, , the optimal 
policy and value function are related as follows. 

      (4.6) 

      (4.7) 

Equations 4.6 and 4.7 codify Bellman’s Principle of 
Optimality. In other words, the optimal plan starting from 
state  is to choose the action that lands us in the next best 
state, and then continue with the optimal plan starting from 

. Thus, to find the optimal policy, it suffices to solve for 
the optimal value function, and then read-off the policy 
from it. 

For our scout planning problem, we define the following 
components of an MDP. 

• The state  includes the vehicle location and 
pose as well as the belief map (i.e. the risk 
distributions over the relevant grid cells). 

• The action set  defines how the scout 
vehicle can move. In our problem, the 
available actions are left, right, and straight 
at any grid cell. 

• Our problem is deterministic. Thus, the 
transition probabilities  are 1 if and only 
if the new location, pose, and belief in state 

 match those according to the dynamics 
and Kalman filtering resulting from taking 
action  in state . In effect,  is the 
specification of the problem dynamics. 

• The reward  is defined to be the total 
reduction in uncertainty in the relevant grid 
cells going from state  to . It is calculated 
by taking the sum over all the reductions in 
variance resulting from the Kalman filter 
updating the state from the observations. 

It is interesting to note that the state space includes the 
belief map in addition to the location and pose. This 
information is a necessary part of the state because the 
reward in going between states is solely defined by the 
reduction of variance. It is more valuable to move between 
cells and see a great decrease in variance because of high 
initial uncertainty in the area swept over by the sensor than 
to move between the same cells and see a small decrease 
because the uncertainty was already low to begin with. Also, 
including the belief map makes our state space continuous. 
This will prompt our approximation architecture described 
in Section 4.2.3. 

4.2.2 Value Iteration for Exact MDP Solutions—Given our 
MDP model , the classical method to 
determine the optimal value function is to use value 
iteration. Starting with an initial  that is zero for all states, 
we iterate on Equation 2.7 for all states, which gives us the 
following recursion: 

     (4.8) 

The contraction mapping  

11"*(8) = argmax L P:81 [n:S' + '1V*(S' )]
aEA BleB (4.6)

V*(s) = max L P:8/[R~s' +1'V*(s')]
(lEA s'ES (4.7) The contraction mapping



max IVk+l (S) - V*(s)1 :5 jmax IVk(S) - V*(s) (4 9)
sES sES .

V(s) == maxQ{s,a}
aEA (4.13)

implies that \/!(. converges to 1-:'" ~ as k ----1 ::x. At any point, we
may choose to stop the iteration, and with our resulting l:~,

we can compute the policy:

Now, referring back to Equation 4.8, we can rewrite the
value iteration step in terms of Q-functions:

which implies the inverse relationship between the value
function and the Q-function:

11"(8) = arg max '"'" P:s/[R~SI +,V(s'))
aEA L..J

!I'ES (4.10)

In our scout scenario, the one downside of this
representation is that querying the policy online is
cumbersome. The reward is calculated based on the sensor
dynamics, which can be complicated. Therefore, we adopt
the alternative but equivalent convention of computing the
state-action value function, or sometimes called the Q­
function, rather than the value function directly. Like the
value function, the Q-function represents the value obtained
by following a particular policy, but with respect to a given
state and action from that state, rather than just the state.
Therefore, the Q-function is related to a regular value
function as follows:

This section introduced the classic value iteration algorithm.
The algorithm essentially "learns" the best action to take in
any state, using the mathematical property that iterating on
the Bellman equation converges to the optimal value
function. The advantage of this method is that it finds the
optimal solution within epsilon tolerance. However, it is
only practical for a small, discrete state space. Our scenario
deals with a large, continuous state space. Nevertheless,
value iteration is central to nearly all MDP solution

Algorithm 1 details the entire value iteration algorithm
formulated in terms of Q-functions. Each state value is
initialized to zero. Using the state values, a state-action
value is updated for each state-action pair using the Bellman
Equation. The policy and state values are recalculated from
the state-action values. This process repeats until a
convergence threshold is met. Finally, the algorithm returns
the Q-function.

Using Equation 4.14, we can perform value iteration with
the same amount of effort as before, but now we store the
result as a single Q-function. Now it is more convenient to
query the policy, as Equation 4.12 shows that we just need
to select the maximum over a small set of discrete actions.

(4.11)

(4.12)
7r(S) = argmaxQ(s,a)

aEA

ot»,a) == L P:SI [R: s ' + ,V(S/)]
s'ES

Substituting into Equation 2.10, the policy is simply

Algorithm 1 Exact value iteration algorithm for solving MDPs using Q-values.

ValuelterationQ((S, A, P:s" R~st, /)) {:= {

for all s E S do
Vo(s) {:= 0

end for
t{:=O
repeat

t{:=t+l
for all S E S do

for all a E A do
Qt(s, a) {:= Es'Es P:s ' [R:st + ,~_l(SI)]

end for
1rt(s) {:= arg max, Qt(s, a)
~(s) {:= Qt(s,1rt(s))

end for
until max, I~(s) - vt-t(s)1 < E

return 1ft

}

7
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methods. We will use Algorithm 1 as a building block to the 
more sophisticated techniques discussed in Sections 4.2.3 
and 4.2.4. 

4.2.3 Approximation Architecture for MDP Value 
Iteration—The above formulation assumes a discrete state 
set . If the state space is discrete,  and  can be 
represented as a table of values, one record for each discrete 
state. The table of values is initialized arbitrarily and 
improved iteratively. The problem with this approach is that 
many real world state spaces are continuous and an 
acceptable discrete representation is intractably large. In 
many cases we cannot even store the huge table 
representation in memory. Additionally, to learn the value 
function, we must perform a value iteration backup for 
every single state, which would take far too long.  

We address these complexities by representing  using 
approximation architecture ( ). This architecture stores the 
state-action value function in a compressed form, such as a 
linear function over problem variables rather than an 
explicit combination of each possible variable assignment. 
When inserted in the value iteration process, we get an 
approximate value iteration procedure which alleviates the 
storage problem and shares information across state 
variables, thus decreasing learning time. The approximation 
architecture, therefore, solves both problems inherent to 
exact value iteration. 

Algorithm 2 outlines the approximate value iteration 
algorithm where  is the approximate value function 
represented by an estimation architecture. Algorithm 2 takes 
as input the MDP tuple , where  is very 
large and possibly infinite. Algorithm 2 begins by randomly 
initializing state-action value table  over state subset 

. We then perform a Bellman backup over state subset , 
using  for future state-action value estimates. The newly 
computed state-action values are stored in table . The 
policy, approximation architecture and state value table are 
then updated. This process repeats until a convergence 
threshold is met. Algorithm 2 returns approximation 
architecture  .  

Although this approximation yields better storage space and 
learning time, it may suffer from an inability to adequately 
represent the state-action value function. We acknowledge 
this by augmenting the state-action value function so that for 
every state-action pair, we return a distribution over the 
value rather than just a single number. Assuming normal 
distributions, we can write this in terms of a mean and 
variance: 

               (4.15) 

Thus, we incorporate representational uncertainty into the 
approximate state-action value iteration process so that we 

 

 

Algorithm 2 Approximate state-action value iteration algorithm where Q stands for an
approximation architecture representation of the state-action value function, Qstands for
a lookup table of state action values over a subset S of the full statespace S. The key
changes from the exact algorithm are highlighted in greeIl.

ApproxStateActionValuelteration(S, A ,P, R,,)) {= {

for all s ESC S do
foraD a E A do

Initialize (Q(s,a))
end for

end for
Initia1izeApproximationArchitecture(Qt, Qt)
t {= 0
repeat

t{=t+l
for aD s ESC S do

for all a E A do
Q(s,a) <= Es/Es p:s/[n:s' +iIDaxaQ(s',a)]

end for
end for
Q<=updateApproximationArchitecture(Q,Q)
foraD s E S do

1r(s) {= arg max, Q(s, a)
~(s) {= Q(s,7r(s))

end for
until maxsES I~(s) - ~-l(s)1 < E , \Is E S
return Qt
}
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learn a distribution estimate over the value. Our offline 
value function returns these distributions, not just an 
expectation function. This enables the online algorithm, 
when deciding between possible actions to execute, to 
specifically investigate the values of state-action pairs which 
are not well known and are likely to be viable alternatives. 
Stated another way, we can use an online search algorithm 
that is guided by the state-action value function. We discuss 
this next in Section 4.2.4. 

Before moving on, we first summarize the offline scout 
algorithm, which is illustrated in Figure 4. The scouts use 
approximate dynamic programming to create a policy for 
acting in the world. A policy is a mapping from states to 
actions, which tells the scouts what to do in any situation. 
Their state-space includes not only location, pose and risk, 
but it also encompasses uncertainty in the risk map belief.  

Computing a value function can be computationally 
expensive, so we compute this offline approximately 
through value iteration before the mission starts. We do so 
by simulating the scout flying to explore where the greatest 
reward lies, and we save snapshots of this simulation as data 
points for our  table. We then generate an approximation 
architecture on each iteration by regressing over these data 
points, taking into account the representational uncertainty. 

4.2.4 Online Planning and Re-Optimization Algorithms—In 
this section we highlight the weaknesses of the previous 
algorithm and explain how it can be augmented with a 
search algorithm. The previous algorithm computes a policy 
offline. Another approach is to compute an action online, 
just for the current situation. We actually propose both. We 
suggest using the offline policy as a starting point and then 
improving it online, tailored to the current situation. 

In this section we summarize why we need online planning 
and re-optimization. In short, re-evaluating actions over a 
pre-determined horizon helps to reduce the approximation 
error, which helps us select the best action to ultimately 
execute. This re-evaluation turns out to be more accurate 
than the off-line state-action value, because the off-line 
function is necessarily compressed and therefore not 
expressive enough to capture every detail. The discussion 
includes how we use the state-action value function 
uncertainty to select actions for re-evaluation. In particular, 
we will describe a family of tree-search algorithms which 
use the state-action value function to determine which 
branches of the tree to search. 

Section 4.2.3 outlines a method for computing the state-
action value function. Computing the state-action value 
function is tantamount to computing a policy because it tells 
you how good each currently available action is given your 
current state or situation. In other words, it tells you how 
good each action is and you simply have to select and 
execute the best one. However, the resulting state-action 
value estimates are not as accurate as they could be. The 
off-line generated function is necessarily compressed and 
therefore not expressive enough to capture every detail. 
Therefore, instead of using it raw, we improve upon the 
estimates by performing some additional simulations online. 
Recall that the state-action value function covers the entire 
state-space. In other words, it will provide an estimate of the 
action values emanating from any state or situation we may 
encounter. This is a challenging request. In contrast, our 
situation is a far less daunting task. However, since we do it 
in real-time, we do not have as much time to complete that 
task. Our approach attempts to make the best trade-off 
between online and offline computation by computing a 
state-action value function offline and using it as a starting 
point for our online algorithm. 

. 
 

 
Figure 4 - Visualization of Q-function in the Approximation Architecture with Uncertainty 
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The process of online reevaluation involves generating a 
tree of candidate scout vehicle paths to test (Figure 5). We 
generate the tree of paths with the help of the offline 
generated state-action value function. Starting from the 
current state, the algorithm selects b actions to simulate, 
where b is called the branching factor. After simulating the 
actions, the algorithm will reach b new states. From each of 
those new states, the algorithm again selects b actions to 
simulate. After two steps, the algorithm will reach b2 new 
states. This process proceeds to a predetermined planning 
horizon h. Collectively, the algorithm simulates bh paths. 
The algorithm’s task is to re-estimate how much each scout 
collection path will improve our knowledge about the risks 
to the mission vehicle. We think of this increase in 
knowledge as a reward in accordance with the MDP 
framework. Thus, the algorithm adds up the cumulative 
reward garnered from each path. If the planning horizon is 
long enough to reach the end of the mission, then the 
simulated accumulated reward is used as the value of the 
initial action. If the planning horizon is not long enough to 
reach the end of the mission, then the remaining value is 
estimated using the offline state-action value function. 

The above algorithm uses branching factor b and horizon h. 
We select b and h such that we have enough time to re-
evaluate bh paths. To do this, we first determine how many 
computations can be performed in the allotted time between 
decisions. We then select a planning horizon and calculate a 
branching factor which will result in that number of 
calculations.   

A central question in this process is how to choose the 
actions to reevaluate. As stated above, we generate the tree 
of paths with the help of the offline generated state-action 
value function and we select b and h such that we have 
enough time to re-evaluate bh paths. One assumption in this 
process is that we do not have enough time to reevaluate 
every action over the planning horizon. Therefore, we elect 
to evaluate actions that have a promising outcome, with 
consideration for how sure we are about our estimates of 
those outcomes.  

At each step in the algorithm described above, we select b 
actions to simulate. This selection uses the offline state-
action value function. The function provides an estimate of 
the value (future cumulative reward) of each action, if taken 
from the current state. The estimate actually includes a 
distribution described by a mean and variance. The 
distribution captures how well we know a given value. A 
high variance distribution means that we do not know that 
value very well. Likewise, a low variance distribution 
means that we know that value rather precisely.  

We select a sample from these distributions, one for each 
action, and then choose the action with the highest sample 
value. If one of the action distributions consistently 
produces a high sample value, this tells us that we have little 
reason to evaluate other options.  

However, if there is a state-action value distribution with an 
especially high variance, it will sometimes produce a sample 

 
 

Figure 5 - Process of online reevaluation involves generating a tree of candidate scout vehicle paths to test. 
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with the highest value even though its’ mean is lower. This 
phenomenon exactly mirrors the probability that said action 
is the best, given what we know. In other words, we explore 
the actions in proportion to how good they are and how 
certain we are about that. In summary, we determine which 
actions to re-evaluate by representing the uncertainty about 
their true value. This distribution is used to select actions 
(Figure 5) for re-evaluation which appear to be good but the 
truth is uncertain. We may also evaluate poorer looking 
plans which do not look very good, yet the true value has 
such high variance that it warrants a second look. 

To summarize, our method allows us to use offline 
knowledge and processing to guide our scouts online. The 
way we construct the offline policy informs the additional 
online processing. In this way, we can exploit both on and 
offline control processing in a complimentary way. We can 
compare this to how people deal with a planning task. 
Suppose you are navigating home from work. You have a 
policy based on experience, which tells you which road to 
take from a given intersection. However, given the time of 
day you may wish to consider alternatives. For example, 
given the traffic, you may be unsure if your standard policy 
is optimal. Therefore, you can simulate in your head the 
consequences of some alternative routes. The result of the 
simulation tells you which way to go (what action to take) 
right now. Your mental simulations will surely be biased 
toward perceived viable alternatives. In other words, you 
will consider some alternatives and others you will not. In 
this way, your offline knowledge informs your online 
situational reevaluation.  

The above process actual describes a family of algorithms 
because changing our search horizon and branching factor 
fundamentally changes the algorithm. For example, if we 
use a very small branching factor with a long horizon, the 
algorithm closely resembles the rollout algorithm. Rollout is 
a longstanding method of evaluating moves in the game of 
backgammon [5]. On the other hand using a short horizon 
with a large branching factor closely resembles model 
predictive control. Different configurations will work better 
for different applications as well as at different points in the 
mission. For example, toward the end of a mission, it could 
be helpful to use a wider search (larger branching factor) to 
make sure that we rightfully consider the end goal. Further 
extensions to our algorithm may include using different 
branching factors at different levels of the search tree. For 
example, it is easier for a function to capture long term 
objectives then short term details. Therefore, this small 
extension would allow the algorithm to rely more on offline 
knowledge in the middle of the mission and rely more on 
simulation for starting and ending the mission. All in all, our 
method describes a broad family of algorithms via a set of 
configuration parameters. Describing the algorithm in this 
way enables us to tune it, making it broadly applicable to 
many applications. 

 
5. ALGORITHM DEMONSTRATION RESULTS 

At this stage, we are currently designing and implementing 
the Logistics Executive and Adjustable Autonomy 
components. We have implemented the scout path planning 
algorithm and run preliminary tests on it, with results 
discussed in this section. Section 4.2 above describes the 
theory underlying the scout path-planning problem, the 
offline value iteration procedure, and the online search for 
decision-making. In this section, we visualize the latter two 
to demonstrate the effectiveness of this theory. 

To show how our scout finds efficient sensing paths, we 
center our discussion on four example scenarios. Each 
scenario tasks the scout to reduce variance within a 10-by-
10 area, but the areas of high variance differ across 
scenarios. Scenario A has high variance in the southwest 
quarter patch and zero variance (i.e. perfect knowledge) 
everywhere else. This corresponds to a very large feature in 
one corner of the map which we have no information about, 
and everywhere else we have perfect information already. In 
scenario B, we split the uncertain feature into two smaller 
features, one in the southwest corner and the other in the 
northeast. Scenario C involves a feature in the middle that 
we know a great deal about (i.e. low variance) but we grow 
more uncertain the farther we go toward the edges. Finally, 
scenario D randomly smears high variance across the entire 
map, simulating a realistic setting where we may have poor 
prior information of a certain region. 

Each scenario was run with a mission length of 25 time 
steps. Within each scenario’s context, we first illustrate the 
evolution and convergence of the approximate value 
function during value iteration. We use 100 samples to 
represent the state subset. Note that there are 100 unique 
grid cells the scout can be in, four possible orientations in 
each, and an infinite number of map beliefs possible. Thus, 
our value function representation is extremely sparse 
relative to the actual state space. Then, we display the paths 
constructed during online execution to show how the scout 
chooses to survey areas with higher uncertainty within the 
time allotted. The tree search algorithm is limited to 20 node 
traversals of computation, but searches down to a depth of 
seven nodes. 

 
5.1 Scenario A 

Figure 6 below depicts the state-action value table  
evolving over ten sets of value iteration. The x-axis 
represents different sample states in our lookup table, and 
the y-axis shows the value associated with that state. When 
querying the value of a state, we are not querying , but 
rather  representing the estimation architecture which 
interpolates over the sample states in the  table. However, 
to aid conceptual convenience and transparency, we will  
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Figure 6 - Value Function Representation for Scenario A 
 

 
 
 

Figure 7 - Belief Variance and Scout Path for Scenario A 
 
refer to the  plots as the value function plots. The sample 
states were constructed by initializing a simulated scenario 
four times and letting the scout fly a pre-determined 
lawnmower pattern which sweeps across the area for the 
length of the mission, 25 time steps. To avoid gathering the 
exact same data each time, stochasticity was introduced into 
the path, more with each subsequent pass. 

The resulting representation of  on the even iterations are 
shown in sequence on value plots in Figure 6. At first, the 
values for each sample state are initialized with low random 

noise, which is not visible at the scale shown. In subsequent 
iterations, the values accrue at each step, since each state 
“looks ahead” to the next best state and adds that state’s 
value to its own reward (i.e. variance reduction) for taking 
the action leading into that state. The values gradually 
converge (i.e. the increase at each step gets smaller) since 
the accruement is increasingly discounted over later 
iterations. This is consistent with equation (1.8) in the Scout 
Planner section. However, the most interesting parts of these 
plots are the four peaks, corresponding to when the scout 
passes over the patch of high variance and hence gathers the 



 
 

 
 

13 

most reward. Afterward, the reward tapers off since the 
scout’s sensor coverage is overlapping areas just previously 
seen. This illustrates how the value function effectively 
encodes and exploits the structure of belief variance in the 
scenario. 

We have shown the construction of the path at time-steps 1, 
4, 16, and 25 of the algorithm’s run in Figure 7. The top plot 
in each frame shows the belief variance with a color scale 
on the side, and the bottom plot the scout’s path so far. As 
can been seen, the scout takes the reasonable action to 
plunge south into the area of highest uncertainty and then 
loops through it until the end of the mission. Note how the 
scout “carves away” at the belief variance in the top plots. 
We rescale the colors so that areas with the highest 
remaining variance always appear yellow, and hence one 
can see how they guide and attract the scout. However, one 
should note how much the scale has changed by the end of 
the mission, thus showing the extent of variance reduction.  

  
5.2 Scenario B 

Figure 8 shows the value function for two uncertain features 
in this scenario. For each of the four runs, the value function 
peaks in two places, corresponding to the two features. 
However, the first peak in each of the first three runs is 
slightly taller than the second peak. This is due to the width 
of the sensor footprint. When it is primarily sensing the first 
feature, it also captures a little bit of the second, given their 
proximity. Thus, when it actually flies over the second, it 
will not generate as much variance reduction as the first. 

Since there are only these two features, the effects of 
stochasticity in generating the sample states are not very 
pronounced. However, as the stochasticity is turned up with 
each pass, we notice the peaks for the last pass look 
substantially different than the first three. This indicates we 
have allowed ourselves to learn about the features from a 
slightly different perspective, which gives us a richer 
representation. 

Now we turn to the scout’s path shown in Figure 9. The 
scout begins by heading to the feature in the southwest 
corner. Not only is it slightly closer to the scout’s initial 
position, but the value function also suggests it is of higher 
value than the other features. This is an artifact of our 
approximation architecture, but it is a small price to pay and 
easily mitigated on average with stochasticity introduced 
during the online algorithm. Yet, the scout does not go all 
the way to the bottom feature because as it approaches, its 
sensor footprint already provides good coverage of the 
feature. Thus, two steps away, it turns toward the northeast 
feature.  

Similarly, it does not need to head all the way east. About 
halfway through the mission, it turns back again to better 
understand the first feature, rather than spend all its 
remaining time around the second feature and not reducing 
overall variance as much. This kind of behavior illustrates 
the value of the online search algorithm, for knowing when 
to turn back cannot be encoded in the value function itself. 
The look-ahead feature of search allows the scout to plan 
based on how far ahead its mission end is. Here we used a 
search depth of seven. Had we searched even deeper, we 

  

 
 

Figure 8 – Value Function Representation for Scenario B 
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Figure 9 – Belief Variance and Scout Path for Scenario B 
 
may have arrived at the more efficient solution of spending 
half the time at each feature and not have to turn back. 
However, searching deeper costs time. If we are to maintain 
the same online computational time, then searching too deep 
would prune the branching factor and thus degrade the 
quality of search. 

 
5.3 Scenario C 

In this scenario, we have the highest variance on the 
boundaries, and it decreases as we approach the center. 
Since we are flying a lawnmower pattern over the area, we 
notice periodic peaks as we approach the edges in the value 
function plots shown in Figure 10. As we make sweeps over 
the central area where variance is lower, we notice a 
decreasing trend in the values, but it picks back up as we 
start to swing closer to the opposite edge. The high initial 
peak at each run is due to the scout sensing completely new 
terrain; it corresponds to states where the scout is in the top-
left corner and the belief map variance is high throughout 
the region covered by the sensor footprint. Since there is 
much more total variance spread across the region in this 
scenario than in A and B, the effects of stochasticity are 
much more clearly seen. While the general trend for the 
values across each run is similar, the details are quite 
different. This captures a much richer and more informative 
representation of the value function. 

The reasonable thing for the scout in this scenario is to hug 
the edges where the variance is highest. This is exactly what 
Figure 11 shows. However, it does not just hug the edges 
statically, but it dynamically tries to go inside a bit, too, 
where valuable information also exists. Given the time it 
has, the scout tries to balance how much time it spends 

closer to the outside and inside. In 25 time-steps, it is 
infeasible for the scout to make a full circuit around the 
perimeter, which is 36 grid cells. With an online look-head 
depth of seven, the scout realizes in the south leg of its path 
that it is more valuable to maintain a distance of one cell 
away from the south edge rather than travel right on the 
edge. Also, in this path, we can notice stochasticity in the 
online process. On the third step of its path, the scout turns 
north toward the edge rather than continue on its present 
path east. This is clearly suboptimal, and it could only have 
arisen by “mistake.” The “mistake” arises from the 
representational uncertainty in the value function 
approximation architecture . We encode uncertainty into 
the value function because we know it is not perfect. 
However, this means each query to the value function is a 
probabilistic draw from a distribution characterized by this 
uncertainty. Thus, we have to submit to the possibility of a 
clearly suboptimal decision every once in a while. As the 
path shows, though, these mistakes are uncommon and 
quickly recovered from. 

 
5.4 Scenario D 

When we have random high variance everywhere in the 
graph, the corresponding value function shown in Figure 12 
is messy and difficult to interpret by hand. It bears some 
resemblance to Scenario C’s value function, since there is 
value everywhere in the region. However, it is substantially 
less structured. Nevertheless, the value function still 
encodes the random variations in this map as well as the 
larger structure, and this will be apparent in the path the 
scout chooses. 

Similar to the plots for Scenario C, Figure 13 shows that the 
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Figure 10 – Value Function Representation for Scenario C 
 
 

 

 
 
 

Figure 11 - Belief Variance and Scout Path for Scenario C 
 
scout chooses to fly a circuit around the region to provide 
greatest coverage. As before, the scout does not have 
enough time to fly cover every piece of high uncertainty, 
and thus the scale at the end is much larger than the scale for 
Scenarios A and B. However, the path leaves less 
uncertainty uncovered than in Scenario C because the scout 
can afford to hug the outer edges less and thus has less 
distance to travel to make a circuit. Note that the scout does 
not even have to complete the circuit or else it would 
overlap with its initial sensor footprint. It is worth noting 
that in running multiple trials for each of these scenarios, 

Scenario D showed the greatest variation in the planned 
path. That is, while the paths for the other scenarios 
followed predictable and expected patterns, sans the 
occasional “mistake,” the paths for Scenario D may choose 
to wander in toward the center or wander out at any given 
point. This suggests there is larger representational 
uncertainty in the value function, which is to be expected in 
a less structured environment. It means multiple good 
solutions may exist, and since our representation models 
this aspect, we do not limit ourselves to a single 
deterministic path in any scenario. 
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Figure 12 - Value Function Representation for Scenario D 

 
 

 
 
 

Figure 13 - Belief Variance and Scout Path for Scenario D 
 

5.5 Algorithm Summary 

These examples show that our scout planning algorithm is 
capable of finding a path through an area which 
purposefully surveys the most uncertain features, thus 
generating the most valuable data for the logistics planner. 
This is accomplished through a combination of the offline 
value iteration and online search procedures discussed in 
Section 4.2. The flexibility of our algorithm arises from the 
Markov Decision Process framework, which easily adapts to 
any given scenario. An important detail of our approach is 
that since we cannot exactly represent the value function, 

we acknowledge it by introducing stochasticity into our 
decision-making. Thus, our non-deterministic solutions, 
while rarely optimal, are more robust to this uncertainty. 
When integrated with the entire ARCAL system, the scouts 
shall be valuable additions to the logistics vehicle. 

 
6. SUMMARY 

In the future, unmanned platforms will gain high-order 
decision-making intelligence, form teams, and perform 
collaborative tasks. However, for successful field 
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deployment, operators will need confidence that 
autonomous decision-making leads to proper behaviors, 
especially in uncertain environments. 

To address this issue, the ARCAL project proposes two 
complimentary areas of research which when combined can 
increase operator confidence in future autonomous system 
behaviors. The first incorporates concepts of risk-based 
adjustable autonomy with risk verification within system 
functions and task-directed adaptive search techniques. An 
operator can adjust the autonomy level,  employ autonomy 
functions in which he has confidence in success, or can 
revert to fully manual control at any time. The second 
involves new methods to effectively test and evaluate 
collaborative autonomous team behaviors prior to field 
deployment. 

In this paper we presented simulation results. However, we 
plan to implement the entire scenario on a test bed 
consisting of a radio controlled ground vehicle and two 
Parrot ARDrone quadrotors (Figure 14). Building the 
framework for the test bed commenced last summer (2011) 
and is ongoing. 

To develop and validate the concepts and technologies used 
in this project a natural disaster recovery scenario has been 
employed as an example. A team of UASs is dispatched to 
determine the safest and fastest path for a disaster recovery 
convoy to deliver relief supplies. Although a natural disaster 
recovery scenario is used as an example, the autonomous 
algorithms, concepts and technologies being developed can 
certainly be used for other scenarios with the UAS 
Simulation Environment as well. 

The theoretical basis for adjustable autonomy used during 
control and supervision of a team of UASs performing a 
collaborative task with innovations of applying risk to 
mission goals is introduced. Task-directed search algorithms 
for UAS scout path-planning, used to improve knowledge of 
the risks to the mission, are developed and implemented. An 
algorithm test battery was developed and used to run tests 
on the scout path-planning algorithms. Test results from a 
number of runs with the algorithm applied to terrain 
examples with various belief uncertainty concentrations are 
shown and described. An ARCAL systems architecture is 
developed incorporating these autonomy algorithms as 
applied to the natural disaster recovery scenario example. 
Initial results are encouraging showing that the algorithm 
performs quite effectively. 

Although considerable autonomous systems research has 
been performed and progress made over the past decade, 
current unmanned systems are still for the most part tele-
operated and manpower intensive relying on human 
operators and their decision-making capabilities to perform 
platform and mission tasks. However as unmanned systems 
become more complex and costs continue to rise for 
specialized training and deployment of operators, 
incorporation of autonomous capabilities is designated to 
assist operators and lighten their task load. Autonomous 
functions will need to be robust, reliable, exhibit the correct 
behaviors for the situation and operators will need 
confidence that the mission can be performed effectively. 

 

 

 
 

Figure 14 – Heterogeneous Robotics Test Bed 
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