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Abstract— Human activity recognition is a crucial ingredient
in safe and efficient human–robot collaboration. In this paper,
we present a new model-based human activity recognition
system called logical activity recognition system (LCARS).
LCARS requires much less training data compared to learning-
based works. Compared to other model-based works, LCARS
requires minimal domain-specific modeling effort from users.
The minimal modeling is for two reasons: i) we provide a
systematic and intuitive way to encode domain knowledge for
LCARS and ii) LCARS automatically constructs a probabilistic
estimation model from the domain knowledge. Requiring min-
imal training data and modeling effort allows LCARS to be
easily applicable to various scenarios. We verify this through
simulations and experiments.

I. INTRODUCTION

Human activity recognition (HAR) is crucial for successful
human–robot collaboration. Consider a scenario in which a
human and a robot are collaborating to make a wooden chair.
A hammer and a drill are in drawer A, and a box of nails is in
drawer B. If the robot recognizes that the human is picking
up the hammer from drawer A, it can avoid a collision and
be helpful by getting the nails from drawer B.

Today, learning-based (or model-free) approaches, such
as convolutional neural networks, are popular in HAR.
However, learning-based approaches have a major limitation.
They require a large amount of training data, but data
aquisition is difficult in HAR. For instance, the Opportunity
Activity Recognition dataset used for training CNNs in
[1], [2] was comprised of 25 hours of data collected from
12 subjects, each of whom personally performed activities
repetitively [3]. This is a tedious and exhausting process.
Moreover, datasets must be collected all over again if there
are changes to the environment or activities.

Thus, we propose a new model-based HAR system called
logical activity recognition system (LCARS). As we use a
model-based approach, we rely more on domain knowledge,
rather than training data. One limitation of previous model-
based works is that they require much domain-specific mod-
eling effort from users [4]–[6]. Thus, their applicability to
various scenarios is an issue. On the other hand, LCARS
requires minimal modeling effort for the following two
reasons. First, we provide a systematic and intuitive way to
encode domain knowledge for LCARS. Users can encode the
domain knowledge using region connection calculus (RCC)
and planning domain definition language (PDDL), both of
which have been successful modeling tools in classical
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(or symbolic) artificial intelligence (AI) research. Second,
LCARS automatically constructs a probabilistic estimation
model from the domain knowledge. The probabilistic estima-
tion model is designed as probabilistic concurrent constraint
automata (PCCA).

Thus, LCARS has the following strengths. First, it requires
much less training data compared to learning-based works.
Second, it requires much less modeling effort compared
to other model-based works. These two strengths allows
LCARS to be easily applicable to various scenarios.

This paper is organized as follows. Section II provides the
formal problem statement and an overview of LCARS. A
background is provided in Section III. Section IV illustrates
LCARS in detail. Evaluations are provided in Section V.
Finally, the paper is concluded in Section VI.

II. PROBLEM STATEMENT AND SOLUTION OVERVIEW

Figure 1 visualizes the HAR process in general [7]. We
first construct the HAR estimation model offline. Note that, in
offline construction, a learning-based approach relies mostly
on training data and a model-based approach relies mostly on
domain-specific modeling. After the construction, the HAR
estimation model estimates (or recognizes) high-level and
symbolic human activity (e.g., “a human is picking up a
hammer”) online using low-level observations. We assume
the low-level observations to be pose observations of objects
relevant to human activities (e.g., a hammer, a drill, a human
hand and so on). The pose observations can be acquired from
robot’s camera vision inputs by using any one of the many
pose estimation works [8]–[11].

Fig. 1: General process of HAR

In this paper, we emphasize that learning-based ap-
proaches rquire a lot of training data; thus, we apply a model-
based approach. In Figure 1, the HAR estimation model is a
direct map from the low-level pose observations to the high-
level human activity. This is a common approach in many
previous model-based works [4]–[6]. However, this makes
offline domain-specific modeling too complex, limiting the
previous works from being applicable to various scenarios.

It might be better if we decompose the HAR estimation
model to be a two-step map as LCARS (see Figure 2).



LCARS has two components. The first component, indicated
as the predicate estimator, computes high-level predicates
(e.g., “a hand is holding a hammer”) from the pose obser-
vations. The second component, indicated as the activity es-
timator, uses the predicates to recognize the human activity.

Fig. 2: Graphical representation of LCARS.

Each of the two components of LCARS (i.e., the pred-
icate estimator and the activity estimator) requires domain
knowledge as follows. For the predicate estimator, users need
to provide the definitions over the predicates (i.e., predicate
definitions in Figure 2). We use RCC, a representation tool in
qualitative spatial reasoning (QSR), for the definitions. Users
can define the predicates with qualitative RCC primitives,
rather than quantitative values (e.g., poses). For the activity
estimator, users need to provide a human activity model
written in PDDL (i.e., PDDL activity model in Figure 2).
PDDL has been very successful for activity modeling, thanks
to its simple and intuitive structure. Using RCC and PDDL
allows users to encode domain knowledge systematically and
intuitively with qualitative and high-level reasoning.

LCARS constructs the activity estimator automatically
from the PDDL activity model as specified in Figure 2. To
be more specific, a probabilistic estimation model designed
as PCCA is automatically constructed from a deterministic
high-level human activity model written in PDDL. Thus,
users only have to encode the human activity model in a
deterministic and high-level domain, which is very intuitive.
In previous HAR works, constructing estimation models re-
quired extra user effort, other than providing domain knowl-
edge. The automatic construction minimizes user effort for
LCARS. To the authors’ knowledge, this is the first paper to
discuss the automatic construction of probabilistic estimation
models from deterministic high-level PDDL activity models.

III. BACKGROUND

A. PDDL and Pick-and-Place Example

PDDL is a deterministic and high-level modeling language
widely used for activity planning. [12] suggested that PDDL
is good for modeling human activities for HAR as well.
Table I shows an example PDDL activity model used in this
paper (called pick-and-place example). The example has four
types of activities. A human can pick or place a tool. A
human can open or close a drawer. Table I shows the pick
activity only.

PDDL represents activities with predicates (e.g., (empty
hand), (holding hammer hand)). In PDDL, every activity has

TABLE I: Pick-and-Place Example PDDL Model

(define (domain pick-and-place)
(:requirements :strips :typing)
(:types manipulator object drawer)
(:predicates

(in ?o - object ?d - drawer) // ?o is in ?d
(clear ?o - object) // no manipulator is holding ?o
(empty ?m - manipulator) // ?m is empty
(holding ?o - object ?m - manipulator)) // ?m holding ?o

(:action pick // ?m picks up ?o
:parameters (?o - object ?m - manipulator)
:precondition (and (clear ?o) (empty ?m))
:effect (and (not (clear ?o)) (not (empty ?m)) (holding ?o ?m))))

a precondition (i.e, a requirement for the activity to happen)
and an effect (i.e., the result of the activity).

Predicates and activities with unspecified parameters (?o,
?d, and ?m), such as (holding ?o ?m) predicate and (pick ?o
?m) activity, are called “lifted”. They are referred to as being
“grounded” if the parameters are specified, such as (holding
hammer hand) and (pick hammer hand). LCARS estimates
over grounded activities to distinguish which object a human
is picking. A detailed explanation of PDDL is in [13].

B. RCC

RCC represents the spatial relations between objects with
a finite number of qualitative relations [14]. We use RCC-
5, a variant of RCC, which has five possible qualitative
relations between two objects (or regions) A and B. The
five qualitative relations are as follows: A is disconnected
from B (DC(A,B)) (i); A and B are partially occluding each
other (PO(A,B)) (ii); A is identical to B (EQ(A,B)) (iii);
and A is a proper part of B or the inverse (PP (A,B) or
PPi(A,B)) (iv and v). Figure 3 visualizes the five relations.

Fig. 3: RCC-5 relations.

TABLE II: Predicate Definitions Using RCC-5

Predicates Definitions Using RCC-5
(in A B) PP (A,B)

(holding hand A) ¬(DC hand A)
(empty hand) ∀obj, (DC A obj)

(right A B)
¬DC(A,B) ∧ (in A regionright(B))

where regionright(B) is shown in Figure 4
(left A B) ¬DC(A,B) ∧ (in A regionleft(B))
(up A B) ¬DC(A,B) ∧ (in A regionup(B))

(down A B) ¬DC(A,B) ∧ (in A regiondown(B))

We can define the predicates with the RCC-5 relations. For
instance, if we want to say that “a hand is empty”, we can say
that “the hand is DC from all the objects”. Table II shows
examples of the predicate definitions in Figure 2. As we
use the qualitative relations, the definitions are much more



Fig. 4: Regions around B. It can be modified to user’s taste.

intuitive than they would be if using the pose data directly.
[15] provides more defitions of frequently used predicates.

In this paper, we use RCC because we assumed the pose
measurements for the low-level observations (see Figure 1).
However, using qualitative representations for the predicate
definitions can be extended to any measurements [16].

C. PCCA

PCCA is a probabilistic modeling framework for discrete-
time stochastic processes [17], [18]. PCCA is a collection of
probabilistic constraint automata operating concurrently. We
first define a probabilistic constraint automaton (PCA).

• A PCA is a tuple 〈χi, Ti, Oi〉:
– χi = {xi} ∪χr

i is a set of variables for component
i, and xi is a state variable. χr

i is a set of attribute
variables, including variables used to define the
PCA (e.g., observation and guard variables).

– Ti represents the state transition model for xi. That
is, Ti represents P (xi(t+ 1) | xi(t), χr

i (t)). Here,
xi(t) represents the state of the variable at time t.

– Oi represents the observation model. Oi represents
observation matrix P (oi|xi), where oi ∈ χr

i .
• Then, PCCA, A, is a set of PCAs.
The state transition model of an ith PCA specifies how the

state variable, xi, changes over discrete time steps. Figure 5
shows an example of a state transition model. In Figure 5,
xi has three possible states: s1i , s2i , and s3i . The directed
edges represent the possible state transitions. G1

i , G2
i , and

G3
i along the edges represent guard variables, which are

Boolean functions (True or False) whose arguments are state
variables from other PCAs. The guard variable must be True
in order for the state transition following the corresponding
edge to occur. For example, G1

i=(xj = s1j )∨(xj = s2j )
states that the state transition from s1i to s2i is possible if,
and only if, the state variable xj from the jth PCA is in
state s1j or s2j . In fact, one of the strengths of PCCA is that
the interconnection between concurrently operating PCAs
can be modeled easily with the guard variables. We only
need to define when each guard variable can be True. p1i ,
p2i , and p3i represent the transition probabilities when the
corresponding guard variables are True. Self transitions are
omitted in Figure 5.

We can perform online filtering inference on PCCA. That
is, we can compute the probability P (x̂(t)|ô(1 : t)). x̂(t) is
the set of all the state variables in the PCCA at time t, and
ô is the set of all the observation variables from time 1 to
t. An optimal constraint satisfaction problem (OCSP)-based

Fig. 5: The state transition model of an example PCA.

algorithm for PCCA online filtering can be found in [18].
The details on PCCA and its online filtering is available in
[18].

IV. LOGICAL ACTIVITY RECOGNITION SYSTEM
(LCARS)

LCARS has two components: i) predicate estimator and
ii) activity estimator. We explain each component.

A. Predicate Estimator

The predicate estimator computes predicates online from
the pose observations. It requires the predicate definitions in
terms of RCC-5 primitives as domain knowledge.

Figure 6 visualizes how the predicate estimator works with
an example. First, from the pose observations, we determine
which of the five RCC-5 relations a pair of objects (A and
B) satisfy. We can compute the RCC-5 relations for any
pair of objects. This can be done quickly online using a
collision detection algorithm [19]. After we obtain the RCC-
5 primitives, we get the predicates online using the predicate
definitions (e.g., Table II). We determine whether the logical
statements in Table II are True or False using the computed
RCC-5 relations.

Fig. 6: Predicate estimator operation diagram

We make several remarks. First, the predicates obtained
from the predicate estimator are often incorrect because pose
observations are noisy. For example, if a hammer is observed
to be at the wrong position, the predicate estimator might say
that (holding hammer hand) is False even if a hand is holding
the hammer. Thus, we call the predicates obtained from the
predicate estimator “noisy predicates” (see Figure 6). The
activity estimator handles the noise in the predicates. Second,
we do not discuss the offline automatic construction of the
predicate estimator from the predicate definitions because we
use the definitions directly to compute predicates from the
RCC-5 primitives. On the other hand, this is not the case for



TABLE III: The Variables for Aact and Apred

Automaton Variables Implications Possible
States

Aact
xact State variable {Nil, Triggered}

G1
act, G2

act Guard variables {True, False}

Apred

xpred State variable {True, False}
opred Observation variables {True, False}

G1
pred, G2

pred Guard variables {True, False}

the activity estimator, where we need to convert the PDDL
model into a PCCA estimation model (see Figure 2).

B. Activity Estimator

We design the activity estimator as PCCA. We chose
PCCA over other modeling frameworks because it is suitable
for modeling concurrently changing predicates and activities
which heavily affect each other (using gaurd variables). In
LCARS, the PCCA is first automatically constructed from
the PDDL human activity model (i.e., the domain knowledge
for the acticity estimator) offline. Then, we perform online
filtering over the PCCA to estimate the current human
activity using the noisy predicates as the online observations.

In this subsection, we first explain the structure of the
LCARS’ PCCA using the example PDDL model in Table I.
Next, we explain how the automatic construction is done
for any general PDDL models. Finally, we discuss about the
online filtering over the PCCA.

1) LCARS’ PCCA Design: Our PCCA design has two
classes of PCAs: i) activity automata class (Cact) and ii)
predicate automata class (Cpred). For each class, we describe
how to get a set of variables, χi, the state transition model,
Ti, and the observation model, Oi, from the PDDL model.

An activity automaton, Aact ∈ Cact, indicates whether
an activity has happened (or has been triggered) or not.
Every grounded activity in the PDDL model has one activity
automaton. Every activity automaton has three variables:
xact, G1

act, and G2
act. Table III summarizes the variables.

xact is the state variable with two possible states: Nil and
Triggered. Nil indicates the activity has not happened yet.
Triggered indicates the activity has happened. G1

act and G2
act

are the guard variables for the state transition model, Tact.
Figure 7(a) shows Tact. An activity automaton does not have
the observation variable and the observation model, Oact.

Every activity automaton has two guard variables: G1
act

and G2
act. G

1
act represents the condition required for the

activity to occur (i.e., the precondition of the activity in
the PDDL model). For example, according to Table I, the
predicates (clear hammer) and (empty hand) must be true
for the (pick hammer hand) activity to occur. G2

act represents
the reset of the automaton (i.e., transition from Triggered
to Nil) after n time steps have passed after the activity
was Triggered. This is to reuse the automaton. Table IV
summarizes G1

act and G2
act.

A predicate automaton, Apred ∈ Cpred indicates whether
a predicate is True or False. Every grounded predicate in the
PDDL model has one predicate automaton. Every predicate

(a) The activity automaton state
transition model.

(b) The predicate automaton
state transition model.

Fig. 7: State transition models.

TABLE IV: Definitions on Guard Variables

Automaton Variables Definitions (Conditions to be True)

Aact
G1

act precondition satisfied

G2
act

n time steps have passed
after in Triggered state

Apred
G1

pred

∨
a∈Aneg

(a in Triggered state)

G2
pred

∨
a∈Asup

(a in Triggered state)

automaton has four variables, which are summarized in
Table III: xpred, opred, G1

pred, and G2
pred. xpred is the

state variable with two possible states, indicating whether
the predicate is True or False. opred is the observation
variable that can also be either True or False. xpred represents
the hidden predicate of the ground truth (e.g., a hand is
actually holding a hammer), whereas opred represents the
noisy predicate computed from the predicate estimator (e.g.,
a hand is observed to be not holding a hammer due to noisy
pose measurements). G1

pred and G2
pred are the guard vari-

ables for the state transition model, Tpred (see Figure 7(b)).
The observation model for a predicate automaton, written
as Opred, is a two-by-two observation matrix representing
P (opred|xpred).

Fig. 8: Graphical representation of how predicates change as
the effect of an action.

Every predicate automaton has two guard variables: G1
pred

and G2
pred. They represent the conditions required for the

predicate to change between being True and False. Based
on the PDDL model, the predicate changes from True to
False if it is negated by the effect of an activity (e.g., (not
(empty hand)) in the effect of (pick hammer hand) action
in Table I). Likewise, the predicate changes from False to
True if it is supported by the effect of an activity (e.g.,
(holding hammer hand) in the effect of (pick hammer hand)).
Figure 8 visualizes how two example predicates ((holding
hammer hand) and (empty hand)) change as the effect of



Algorithm 1: Automatic construction of the PCCA
Data: PDDL model
Result: PCCA= A

1 initialization: A = {} ;
2 for acti ∈ {all PDDL activities} do
3 Aact(acti) = Gen Act Automaton(PDDL model, acti);
4 A←A∪{Aact(acti)};
5 for predi ∈ {all PDDL predicates} do
6 Apred(predi) = Gen Pred Automaton(PDDL model, predi);
7 A←A∪{Apred(predi)};

Algorithm 2: Gen Act Automaton
Data: PDDL model, acti
Result: PCA= Aact(acti)

1 initialization: Aact(acti)=〈χi, Ti, Oi〉;
2 χi← Use Table III and Table IV;
3 Ti← Use Figure 7(a);
4 Oi← null;

the action (pick hammer hand) happening ((clear hammer)
is omitted). Thus, G1

pred of a predicate automaton should be
True when an activity automaton that negates the predicate
in the effect has been Triggered. G2

pred should be True when
an activity automaton that supports the predicate in the effect
has been Triggered. There can be multiple actions whose
effects negate or support the predicate. In this case, the gaurd
variables should be True when any one of the activities have
been Triggered. Table IV summarizes G1

pred and G2
pred. In

Table IV, Aneg and Asup are the sets of activity automata that
negate and support the predicate in the effect, respectively.

2) Automatic Construction: A PCCA estimation model
can be constructed from a PDDL model automatically. The
process is summarized in Algorithm 1. Algorithm 1 takes
a PDDL model as the input. Line 1 initializes the PCCA,
A. In lines 2–4, one activity automaton, Aact(acti), is
added to A for each grounded activity, acti. In line 3,
Gen Act Automaton function (Algorithm 2) generates the
activity automaton. In lines 5–7, one predicate automaton,
Apred(predi), is added to A for each grounded predi-
cate, predi. In line 6, Gen Pred Automaton function (Al-
gorithm 3) generates the predicate automaton.

Each automaton is defined as a tuple 〈χi, Ti, Oi〉 as
described in Section III. Thus, in Algorithm 2 and 3, we
formulate χi, Ti and Oi for every automaton. We use
Table III, Table IV, and Figure 7 in formulating χi, Ti and
Oi.

We have not discussed how to obtain the transition and ob-
servation probabilities for the state transition and observation
models, respectively. The probabilities can be learned from a
training dataset by applying parameter learning algorithms.
To be more specific, as PCCA can be viewed as a special
class of dynamic Bayesian networks (DBNs), we can apply
DBN parameter learning algorithms such as expectation-
maximization (EM) algorithm. We refer to [20] for parameter
learning algorithms because our focus is on the structural
design of the PCCA rather than the paramter learning. We
emphasize that the amount of training dataset required for
LCARS is significantly less than that for CNNs, as shown

Algorithm 3: Gen Pred Automaton
Data: PDDL model, predi
Result: PCA= Apred(predi)

1 initialization: Apred(predi)=〈χi, Ti, Oi〉;
2 χi← Use Table III and Table IV;
3 Ti← Use Figure 7(b);
4 Oi← two-by-two observation matrix (P (opredi |xpredi ));

in Section V.
3) Online Estimation: We perform online filtering on

the automatically constructed PCCA model. We use the
noisy predicates computed from the predicate estimator as
the online observations for the filtering. That is, the noisy
predicates become the online observations for the predi-
cate automata’s observation variables, opred. We perform
the online filtering to estimate the current human activity.
This corresponds to estimating the activity automata’s state
variables, xact. We use the OCSP-based PCCA filtering
algorithm in [18]. We omit the details on the online filtering
using the OCSP-based algorithm, as our main focus is in the
modeling of LCARS.

V. EVALUATIONS

In the evaluation, we attempt to prove two hypotheses.
First, LCARS requires much less training data compared
to learning-based approaches. We compare LCARS with a
CNN-based work in [1]. Second, LCARS requires minimal
domain-specific modeling compared to other model-based
works. We evaluate this by applying LCARS to four different
scenarios (two experimental and two simulated scenarios).
This is something other model-based works have not done,
because each scenario would require a considerable amount
of domain-specific modeling effort.

A. Evaluation Scenarios

1) Pick-and-Place Example: We performed an experi-
ment using the pick-and-place example in Table I. The
experiment was performed in the lab environment shown in
Figure 9(a). In the pick-and-place example, there are four
types of activities; pick, place, open, and close. A human
picks up (places down) an object in pick (place) activity. A
human opens (closes) a drawer in open (close) activity. The
four types of activities are not yet grounded (i.e., the four
activities are lifted), as we have not specified a particular
object or drawer to pick, place, open, or close yet.

In the experiment, a subject (a human using a hand)
could pick or place three objects (hammer, drill, and nails)
and open or close two drawers (drawerA and drawerB).
Thus, there were ten grounded activities to estimate (e.g.,
(pick hammer hand), (pick drill hand), (place hammer hand),
(open drawerA hand) and so on). To be more specific, there
were three grounded activities for picking up one of the three
objects, three grounded activities for placing down one of the
three objects, two grounded activities for opening one of the
two drawers, and two grounded activities for closing one of
the two drawers. Table V summarizes the four lifted actions



TABLE V: Lifted Actions and Domains of the Parameters
for the Pick-and-Place Example

Lifted Actions

(pick ?o ?m) - ?m picks up ?o
(place ?o ?m) - ?m places down ?o

(open ?d ?m) - ?m opens ?d
(close ?d ?m) - ?m closes ?d

Parameters
and Domains

?m (manipulator) Domain: {hand}
?o (object) Domain: {hammer, drill, nails}
?d (drawer) Domain: {drawerA, drawerB}

(a) Pick-and-place example environment (b) Three-by-three tile envi-
ronment

Fig. 9: Experimental environments

and the domains of three parameters (?o, ?d, and ?m) in the
lifted actions.

In the experiment, non-expert human subjects performed
the grounded activities in a random sequence. Meanwhile, we
measured the poses of the objects, drawers, and human hand
using a vision-based pose estimator [8]. LCARS estimated
the human activities using the measured poses.

The four types of activities (or lifted activities)—pick,
place, open, and close—are fundamental activities in many
HAR works. For example, [1] used the Opportunity Activity
Recognition dataset to estimate 18 grounded activities, 14 of
which involved opening and closing 7 different drawers and
doors.

2) Floor Tile Domain: We performed an experiment using
the Floor Tile domain from the international planning compe-
tition (IPC). In the Floor Tile domain, a human needs to paint
a three-by-three tile environment (see Figure 9(b)). Initially,
the human stands on one of the tiles (e.g., tile(1, 1)). He/she
can move from one tile to another. The human can paint a tile
upper or lower from where he/she is standing. There are two
paint colors (orange and green). The human can perform
seven types of activities (i.e., seven lifted activities): i) move-
right (i.e., move to the right tile), ii) move-left, iii) move-up,
iv) move-down, v) paint upper cell, vi) paint lower cell, and
vii) change paint color. There are 50 grounded activities to
estimate in total. There are six grounded activities each for
moving right, left, up, and down (6 × 4). There are twelve
grounded activities each for painting an upper cell and a
lower cell (12 × 2). There are two grounded activities for
changing paint colors (2 × 1). The human can perform these
activities sequentially until he/she finishes painting all the
tiles. We refer to [21] for the PDDL model of the Floor
Tile domain. We measured the poses of the human, human

hands, and the two colors of paint. We used Table II for the
predicate definitions.

This domain is similar to the experimental scenario used
in [4]. [4] estimated the human activity by tracking human
trajectory in a grid cell environment.

3) Simulation Scenarios: We performed simulations on
two scenarios from the IPC with some modifications: i) Stor-
age domain and ii) Transport domain [21]. The simulations
were performed in a virtual environment where we could
generate simulated pose observations. The Storage domain
is about a human storing items in containers in a large
storage. Some containers are located high and the human
needs a ladder to access the container. We used five items
and five containers for the simulation. We recognized over
four types of activities: i) store an item in a container, ii)
climb up the ladder, iii) climb down the ladder, and iv) move
between the containers. We simulated the human performing
these activities in a sequence. We generated the poses of
the human, human hand, the items, and the ladder. The
Transport domain is about a human delivering packages from
one cell to another. We used five packages and five cells. We
recognized over five types of activities: i) pick up an item
from a cell, ii) drop an item in a cell, iii) get into a cell, iv)
get out of a cell, v) move between cells. We generated the
poses of the human, human hand, and the packages.

B. Evaluation Results

We compare LCARS with the CNN in [1]. The CNN
is composed of five sections. The first two sections have
convolution layers and subsamplig layers. The third section
is designed as a convolution layer. The fourth section is
designed to unify all sensor measurements. The fifth sec-
tion is designed as a fully-connected network for the final
classification. We refer to [1] for details on the CNN.

For each scenario, we ran LCARS and the CNN online
using the pose measurements as online observations (or input
features). Table VI summarizes the results.

TABLE VI: Evaluation Results on the Four Scenarios

- Experiments Simulations

Pick and
place

Floor
Tile Storage Transport

AC
LCARS 90.93% 90.87% 92.21% 93.12%

CNN 91.38% 90.16% 92.89% 91.68%
HMM 90.05% - - -

AF
LCARS 58.26 52.29 86.13 85.39

CNN 60.87 51.48 89.52 78.95
HMM 56.21 - - -

NF
LCARS 73.94 67.84 97.72 92.65

CNN 78.47 63.20 99.32 86.83
HMM 72.80 - - -

TD
LCARS 4000 4000 3000 2000

CNN 28000 21000 13000 8000
HMM 3000 - - -

Following [22], the accuracy (AC), average F-measure
(AF), and normalized F-measure (NF) are used to evaluate
the preformance of LCARS and the CNN. The accuracy is



calculated as a ratio between the total number of correct
recognitions and the total number of samples (i.e., total
number of online time steps). For example, if we got
correct recognition for 8,000 out of 10,000 samples (i.e.,
time steps), the accuracy would be 8,000/10,000×100 =
80%. The labels over the correct activities were collected
by a human supervisor. We refer to [22] for details on the
AF and the NF. Table VI also compares the amount of
training data (TD) used to train LCARS and the CNN. The
unit of training data used is the number of samples. The
training samples were collected in a stream while humans
were performing activities sequentially. The samples were
collected in a constant rate (10 Hz), thus the number of
samples indicates how long it took to collect the training
data. The best performance for each evaluation metric is
highlighted in bold.

As shown in Table VI, LCARS have comparable accuracy
to the CNN. The CNN have higher accuracy (AF and NF
as well) in the pick-and-place example and the Storage
domain, while LCARS have higher accuracy in the Floor
Tile domain and the Transport domain. On the other hand,
LCARS requires much less training data. Figure 10 shows
how the online estimation accuracies (ACs) change when
varying the amount of training data used. We trained both
LCARS and the CNN with varying amount of training
data. Then, we performed online activity estimation with
(partly-trained) LCARS and CNN. Note, LCARS reaches its
maximum accuracy with much less training data.

In Table VI, we included the result with another model-
based work [12] for the pick-and-place example. This work
used a hidden Markov model (HMM) to model human
activities (thus we refer to this work as “HMM work”).
The experimental scenario in [12] is similar to the pick-and-
place example. LCARS maintains good accuracy compared
to the HMM work. For the HMM work, we only include
the results for the pick-and-place example because much
domain-specific modeling effort is required for it to be
applied to other scenarios. This is because the HMM work
requires complex integration step using Gaussian assumption
for sensor measurements. We refer to [12] for the details on
the HMM work.

On average, LCARS performed online filtering within 0.1
seconds for a single sample (or time step). Thus, LCARS is
computationally efficient enough for online operation. Hav-
ing more grounded predicates and activities would increase
the computational burden, but the additional burden would
not grow fast. This is because the automata in the LCARS
PCCA model are sparsely connected. For instance, in the
pick-and-place example in Section V-A-1), the automaton for
(pick hammer hand) activity is only connected to three au-
tomata for the following predicates: (clear hammer), (empty
hand), and (holding hammer hand).

VI. CONCLUSIONS

This paper presents LCARS, a model-based HAR system.
As we use a model-based approach, LCARS requires much
less training data compared to learning-based works. LCARS

(a) Pick-and-place example

(b) Floor tile domain

Fig. 10: Training data used vs. accuracy

has two components: i) predicate estimator and ii) activity
estimator. Each requires domain knowledge that is intuitive
to encode using RCC and PDDL. The activity estimator de-
signed as PCCA is constructed automatically from the PDDL
human activity model. Compared to other model-based
works, LCARS requires minimal domain-specific modeling
effort, thanks to the intuitive domain knowledge and the
automatic construction. Requiring minimal training data and
modeling effort allows LCARS to be easily applicable to
various scenarios.

LCARS uses RCC to capture the qualitative spatial rela-
tions between objects effectively. However, RCC is insuffi-
cient at capturing the qualitative relations between moving
objects. For example, a qualitative relation such as “a hand
is moving toward a hammer” is not captured with RCC.
This information can be valuable for HAR and even further
for human intent recognition. Future efforts could focus on
applying other qualitative representations such as qualitative
trajectory calculus, which is designed to capture the qualita-
tive movements between objects.
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[21] M. Vallati, L. Chrpa, M. Grześ, T. L. McCluskey, M. Roberts, S. San-
ner et al., “The 2014 International Planning Competition: Progress and
Trends,” Ai Magazine, vol. 36, no. 3, pp. 90–98, 2015.

[22] H. Cao, M. N. Nguyen, C. Phua, S. Krishnaswamy, and X. Li,
“An Integrated Framework for Human Activity Classification,” in
UbiComp, 2012, pp. 331–340.


