
Int J Soc Robot (2012) 4:357–368
DOI 10.1007/s12369-012-0155-x

Learning and Recognition of Hybrid Manipulation Motions
in Variable Environments Using Probabilistic Flow Tubes

Shuonan Dong · Brian Williams

Accepted: 31 May 2012 / Published online: 26 June 2012
© Springer Science & Business Media BV 2012

Abstract For robots to work effectively with humans, they
must learn and recognize activities that humans perform.
We enable a robot to learn a library of activities from user
demonstrations and use it to recognize an action performed
by an operator in real time. Our contributions are threefold:
(1) a novel probabilistic flow tube representation that can
intuitively capture a wide range of motions and can be used
to support compliant execution; (2) a method to identify the
relevant features of a motion, and ensure that the learned
representation preserves these features in new and unfore-
seen situations; (3) a fast incremental algorithm for rec-
ognizing user-performed motions using this representation.
Our approach provides several capabilities beyond those of
existing algorithms. First, we leverage temporal information
to model motions that may exhibit non-Markovian charac-
teristics. Second, our approach can identify parameters of a
motion not explicitly specified by the user. Third, we model
hybrid continuous and discrete motions in a unified repre-
sentation that avoids abstracting out the continuous details
of the data. Experimental results show a 49 % improve-
ment over prior art in recognition rate for varying environ-
ments, and a 24 % improvement for a static environment,
while maintaining average computing times for incremental
recognition of less than half of human reaction time. We also

This research was supported by a National Defense Science and
Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
Additional support was provided by a NASA JPL Strategic University
Research Partnership.

S. Dong (�)
362 Memorial Dr. #203, Cambridge, MA 02139, USA
e-mail: dongs@mit.edu

B. Williams
32 Vassar St. Room 32-227, Cambridge, MA 02139, USA
e-mail: williams@mit.edu

demonstrate motion learning and recognition capabilities on
real-world robot platforms.

Keywords Learning from demonstration · Motion
learning · Real-time recognition · Flow tubes

1 Introduction

Continuous direct teleoperation of a complex robot can be
tiring and difficult for an operator. Operator fatigue can lead
to reduced precision during task execution [34]. We envi-
sion a robot that can recognize a teleoperator’s intended mo-
tion and autonomously continue the execution of recognized
routine tasks. To do this, the robot learns offline a library
of generalized activities from a training set of user demon-
strations. During online operations, the robot can recognize
common teleoperated motions in real time, and if requested,
autonomously execute the remainder of an activity. This in-
volves determining the most likely motion in the learned
activity library that the operator may be currently execut-
ing.

In many real-world motions, local state information is
not sufficient to identify the motion. For example, correctly
untying an anchor loop (Fig. 1) requires knowing whether
the loop passes first around the left or right anchor. Locally,
the motion looks the same in both cases: thus models with
a Markovian assumption have difficulty distinguishing be-
tween the two possibilities. We instead choose a represen-
tation that reflects the temporal history of the entire mo-
tion.

Our approach provides three important features. First,
since physical manipulation tasks are often non-Markovian,
in that later parts of a motion may depend on past states,
we use a model that can describe non-Markovian motions.

mailto:dongs@mit.edu
mailto:williams@mit.edu

358 Int J Soc Robot (2012) 4:357–368

Fig. 1 Knowing only the previous state at the highlighted position will
not distinguish the two motions

Second, our approach achieves real-time performance by ef-
ficiently sharing information across consecutive time steps.
Third, our model of learned behaviors is robust to variations
in initial environment states.

We model learned motions using probabilistic flow tubes
(PFTs) [11, 12]. Constraint-based flow tubes have been
used in planning and execution to represent sets of trajec-
tories with common characteristics [16, 19]. In this con-
text, a flow tube defines a state region where valid tra-
jectories of a motion can be feasibly achieved given con-
straints on system dynamics. In motion learning, a proba-
bilistic flow tube is computed by inferring the desired Gaus-
sian state distribution at each time step from human demon-
strations.

Geometrically, the width of a probabilistic flow tube rep-
resents flexibility in the robot’s desired movement (Fig. 2,
middle), enabling it to optimize additional performance cri-
teria or recover from disturbances. The PFT representation
produces humanlike trajectories because it directly models
user demonstrations with minimal abstraction. In contrast,
motions generated by planners may be unintuitive for hu-
man collaborators, even though they may be valid. Further-
more, the PFT representation is easily applied to situations
with different initial conditions because it is parameterized
by the relevant variables of the motion.

Using these learned motion models, we perform recog-
nition of a new partial motion by computing its likelihood
of being described by each model, after temporally align-
ing relevant time steps. Real-time performance is achieved
by storing parts of the computation in memory and using an
incremental version of dynamic time warping [24] for tem-
poral matching.

In the remainder of this paper, we review related work,
describe the input data used in our approach, formalize the
problem, present our algorithms for offline learning and on-
line recognition, and compare our results to prior art.

2 Related Work

Learning and recognizing human motions have long been
an interest for human-robot interaction [4, 22, 30]. For ex-
ample, learning human-taught policies has proven useful
in the domains of underactuated pendulum control [5], au-

tonomous helicopters [9], and vehicle navigation [1]. We are
interested in manipulation tasks, where interaction with ob-
jects in the environment becomes important. Our approach
is inspired by existing work in learning manipulation tasks
from demonstration.

Peters and Campbell [28] taught the humanoid Robonaut
to grasp a tool by time-normalizing and averaging demon-
strated motions. Their work showed that learning from tele-
operated demonstrations is an attractive approach to control-
ling complex robots. With a more robust motion representa-
tion and better adaptability to new situations, this type of
approach will become compelling for a wider range of ap-
plications.

Researchers at USC [15, 27] modeled learned motions
as a spring system described by differential equations with
parameterized start and goal locations. In contrast, Mühlig
et al. [21] chose to abstract the demonstrated time-series data
in task space with Gaussian Mixture Models. Calinon et al.
[7] modeled motions as a mixture of Gaussian Mixture Mod-
els and Bernoulli distributions that captures both spatial and
temporal aspects of a motion. Inspired by these approaches,
our work uses a representation that can faithfully capture im-
portant features of a human’s demonstrated motion, without
prior knowledge of the motion’s distinguishing characteris-
tics.

Several researchers have considered different models of
motion characteristics while approaching different prob-
lems. Cederborg et al. [8] considers three reference frames
in which a motion can be performed: relative to the start-
ing position, relative to the robot frame, and relative to an
object position. Alissandrakis et al. [3] considers a set of
five motion characteristics: relative displacement, absolute
position, relative position, rotation, and orientation. Our ap-
proach uses a similar set of motion characteristic candidates.

Motion recognition applications have ranged from vi-
sual gesture recognition [23, 35] to understanding domes-
tic activities [14] to gait analysis [13], among others. We
are mainly interested in learning and recognizing teleoper-
ated manipulation tasks, though our approach is extensible
to other applications.

Motion learning or recognition have commonly been
explored using Hidden Markov Models (HMMs) [6, 20,
33, 36]. For example, recent work by Calinon et al. [6]
learn HMM models of the motions using the Expectation
Maximization algorithm, and employ Gaussian Mixture Re-
gression to compute desired velocities for autonomous mo-
tion generation. Similarly, Martin et al. [20] model motions
learned from training data as sequences of HMM states,
where each state refers to a mixture of Gaussians, and recog-
nition is performed using either the Viterbi algorithm or pos-
terior probabilities during model learning. Their approach
proved promising in recognizing grasping tasks and pro-
vides a good basis of comparison.

Int J Soc Robot (2012) 4:357–368 359

Lee and Ott [18] introduce a “refinement tube” gen-
erated from a sequence of GMMs drawn from a learned
HMM, which they use to limit accidental disturbances
when augmenting whole-body imitation learning with lo-
cal kinesthetic teaching. By contrast, we use a distinctly
different probabilistic flow tube representation to directly
model user-demonstrated motions for learning and recogni-
tion.

Regression using Gaussian processes [29] differs from
our approach in that it treats all demonstration data points
independently in time. In contrast, we are interested in main-
taining temporal ordering of the data points in the motion
while using Gaussian distributions to describe spatial vari-
ability.

3 Problem Statement

Figure 2 illustrates an example learning and recognition
problem. This 2D world contains three movable objects:
“box”, “ball”, and “bin”. The user gives several demonstra-
tions each of three different motion types: “move box to
bin”, “move box left”, and “move box home”, where “home”
refers to the center of the environment. Given a new environ-
ment with different object locations, the offline learning al-
gorithm computes a probabilistic flow tube for each motion
type. As the user begins a motion in this environment, the
recognition algorithm determines in real time the likelihood
that the user is executing each type of motion.

In later experiments, we collect human motion data di-
rectly using a teleoperated or kinesthetic teaching inter-
face, where human-driven motion is recorded through robot

Fig. 2 Illustrated example of a learning and recognition problem. Ini-
tially, a user demonstrates a set of motions a few times. The learning
problem consists of generalizing the demonstrations into a probabilis-
tic flow tube representation. Given a new user motion, the recognition
problem consists of determining which motion the user is performing

poses. The input data can have a hybrid mix of continu-
ous and discrete variables. Each observed user demonstrated
training sequence is recorded as T = 〈C,D,P,Q〉, where:

– C is a set of c single dimensional continuous variables
at time steps t = 0, . . . ,N . Examples of such continu-
ous variables include execution time, temperature, volt-
age, etc.

– D is a set of d discrete variables at time steps t =
0, . . . ,N . Examples of such discrete variables include
gripper open/close, power on/off, etc.

– P is the set of Cartesian position variables x, y, z for
each of b = 1, . . . ,B points of interest at time steps
t = 0, . . . ,N . Peff denotes the position variables of the
specific point of interest where b = eff , the robot end ef-
fector. The index eff is typically equal to 1.

– Q is the set of quaternion orientation variables q1, q2,
q3, q4 for each of B points of interests at time steps
t = 0, . . . ,N . Similarly, Qeff refers to the orientation vari-
ables of the robot end effector.

Points of interest in the environment can be the robot end
effector, objects or parts of objects that can be sensed, or
other known markers in the environment. Future extensions
of the learning algorithm may also utilize velocities V and
accelerations A for each point of interest over time. The ma-
nipulation motions studied here are generally slow enough
that position information alone is sufficient for good motion
learning performance.

We use S = {Tk}k=1..K to represent a set of K training
sequences for a particular motion, and T = {S�}�∈L to rep-
resent the combined set of training sequences for all M mo-
tions with labels L = {�1, . . . , �M}. The lengths of training
sequences Nk may vary among different sequences.

The input to the real-time motion learning and recogni-
tion problem is a tuple 〈T ,L,T curr〉, where:

– T = {S�}�∈L, where each S� = {Tk}k=1..K is a set of K

training sequences capturing the environment states of B

points of interest over time t = 0, . . . ,N for motion � ∈ L.
The initial states Tk(0) and lengths Nk of the training se-
quences can be different across the different demonstra-
tion trials.

– L = {�1, . . . , �M} is the set of labels of all M learned mo-
tions.

– T curr is a user’s current unlabeled partial execution of a
motion from t = 0 to t = curr.

To learn a generalization of a particular motion �, the mo-
tion learning problem uses the inputs S� and T curr(0), a set
of training sequences for motion � and the current state of
the environment, respectively, and generates a probabilistic
flow tube pft = 〈T eff ,Σeff 〉, where T eff = 〈C,D,Peff ,Qeff 〉
refers to a nominal desired robot end effector trajectory and
Σeff = 〈σ C,σ D,Σ

eff
P ,Σ

eff
Q 〉 refers to the corresponding co-

variances throughout the trajectory.

360 Int J Soc Robot (2012) 4:357–368

After a probabilistic flow tube generalization is learned
for each motion offline, the online motion recognition prob-
lem observes a user’s current partial execution T curr , and
generates in real time a set of log probabilities LL =
{LL1, . . . ,LLM} over the set of known labels L =
{�1, . . . , �M} that reflect the likelihood that the label of the
user’s current motion is one of L.

We approach the recognition problem in two parts: learn-
ing models offline for each motion given a new environment,
and recognizing the most likely motion an operator is per-
forming in real time as the movement progresses.

4 Offline Motion Learning Approach

Algorithm 1 generates PFTs describing learned motions
in a new environment. First, for each labeled motion, the al-
gorithm determines the important features or relations in the
demonstrations, which we call motion variables F (line 2).
Then it uses the training sequences S to create a probabilis-
tic flow tube defined as 〈T eff ,Σeff 〉 obeying the same rela-
tions F in the new environment T (0) (line 3). In lines 4–5,
we augment the PFTs with additional values used during
recognition (Sect. 5).

4.1 Motion Variable Identification

A key feature of our learning system is the ability to au-
tonomously determine what features or relations, if any, are
characteristic of a particular demonstrated motion. We use
the general term motion variables to describe the class of

Algorithm 1 OFFLINEMODELLEARNING(T ,L,T (0))

Input:
T = {S�}�∈L; S� is training set for motion � ∈ L

L, set of labels of all learned motions
T (0), a new environment state

Output:
PFT, set of augmented probabilistic flow tubes

Notable local variables:
F , set of relevant motion variables
T eff = 〈C,D,Peff ,Qeff 〉, PFT end effector trajectory
Σeff = 〈σ C,σ D,Σ

eff
P ,Σ

eff
Q 〉, PFT covariance trajectory

1: for � ∈ L do
2: F ← IDENTIFYMOTIONVARIABLES(S�)

3: 〈T eff ,Σeff 〉 ← MAKEPFT(S�, F , T (0))

4: I = {
Σeff (n)−1}

n=1..N�

5: G = {− log
(
(2π)

dim(Teff)
2

∣∣Σeff (n)
∣∣

1
2
)}

n=1..N�

6: PFT� = 〈
T eff ,Σeff , I,G

〉

potentially important features of a motion. Of these, the rel-
evant motion variables are those preserved over different
demonstrated trials of that motion, while other motion vari-
ables may vary due to changes in the environment or the
user’s movement.

For example, in the motion “move box to bin”, the robot
end effector starts at the box and ends at the bin. The system
will learn that the displacement between the robot effector
and the box is a relevant motion variable at the beginning
of the motion, and that the displacement between the robot
effector and the bin is a relevant motion variable at the end of
the motion. The system will also learn that the positions of
any other objects known in the environment are not relevant
to this motion.

For each of the input variables C,D,P,Q, we consider
the following modes for candidate motion variables (Fig. 3)
that are preserved across all demonstrations: (1) absStart:
value at start; (2) absEnd: value at end; (3) relInit: off-
set from start to end; (4) relEffStart: offset from robot end
effector at start; (5) relEffEnd: offset from robot end ef-
fort at end. Since the continuous and discrete variables C
and D (such as time and power on/off) are independent of
the points of interest (such as objects) in an environment,
they are not considered in the relEffStart and relEffEnd
modes.

We chose this particular set of candidate motion vari-
ables based on commonalities observed among many prac-
tical robot manipulation tasks. A more thorough study of
other possible modes may be warranted for other task do-
mains. The learning approach described here remains appli-
cable for additional types of motion variables.

In our implementation, motion variables are determined
using endpoints of motions; however, our approach gener-
alizes trivially to additional motion variables. For instance,

Fig. 3 Example illustrations of five possible ways that motion vari-
ables can be relevant. Arrows refer to the robot end effector trajectories

Int J Soc Robot (2012) 4:357–368 361

Algorithm 2 IDENTIFYMOTIONVARS(S)

Input:
S , set of K demonstrated sequences {Tk}k=1..K ,

where T = 〈C,D,P,Q〉
Output:

F , tuple of features 〈FC,FD,FP,FQ〉
Notable local variables:

M = {absStart, absEnd, relInit, relEffStart, relEffEnd}
q
−→
b1
k = TOQUATERNION(Pb

k − Peff
k), orientation of ray

from object b to robot end effector for trial k

ε, small ratio to determine relevant motion variables

1: for X ∈ {C,D,Peff ,Qeff } do

2: 〈μ,Σ〉X

⎧
⎪⎨

⎪⎩

absStart

absEnd

relInit

⎫
⎪⎬

⎪⎭

← FITGAUSS

⎧
⎪⎨

⎪⎩

{Xk(0)}k=1..K

{Xk(Nk)}k=1..K

{Xk(Nk) − Xk(0)}k=1..K

⎫
⎪⎬

⎪⎭

3: 〈μ,Σ〉P

{
relEffStart

relEffEnd

}

← FITGAUSS

{
{Pb

k(0) − Peff
k (0)}b=2..B

k=1..K

{Pb
k(Nk) − Peff

k (Nk)}b=2..B
k=1..K

}

4: 〈μ,Σ〉Q

{
relEffStart

relEffEnd

}

← FITGAUSS

⎧
⎨

⎩
{(Qb

k(0))−1 · q
−→
b1
k (0)}b=2..B

k=1..K

{(Qb
k(Nk))

−1 · q
−→
b1
k (Nk)}b=2..B

k=1..K

⎫
⎬

⎭

5: for X ∈ {C,D,P,Q} and mode ∈ M do

6: relevantmode
X = 0

7: if max (eig(Σmode
X)) < ε · max (range(Xmode)) then

8: relevantmode
X = 1

9: FX = 〈μ,Σ, relevant〉mode∈M
X

users can indicate additional time points during compound
motions using keyframes [2], which can be accommodated
in our implementation by segmenting the motions at these
points. In the future, we plan to automate such segmentation
based on qualitative changes in the motion. In this paper, we
consider demonstrated motions consisting of a single seg-
ment.

To determine relevant motion variables, we cluster the
training samples for each candidate variable X ∈ {C,D,P,Q}
for each mode (Algorithm 2). We fit a Gaussian 〈μ,Σ〉 on
each sample set (lines 1 to 4), and consider relevant those
variables with a narrow spread compared to the range of the
motion (lines 5 to 9).

Algorithm 3 MAKEPFT(S, F , T (0))

Input:
S , set of K demonstrated sequences {Tk}k=1..K ,

where T = 〈C,D,P,Q〉
F , tuple of features 〈FC,FD,FP,FQ〉
T (0), a new environment state

Output:
T eff = 〈C,D,Peff ,Qeff 〉, robot trajectory
Σeff , covariances at each corresponding time step

Notable local variables:
w, temporal matching indexes for two trajectories

1: T ′(0) ← EXTRACTRELEVANTOBJECTS(T (0), F)

2: S ′ ⊆ S ← SIMILARINITCONDSEQS(S, T ′(0))

3: S norm ← NORMALIZESCALEROTATE(S ′, F , T ′(0))

4: T eff = T norm
1 , where T norm

k ∈ S norm

5: for k = 2 to K do
6: w ← FASTDTW([P,Q]eff , [P,Q]norm

k)

7: T eff ← 1
k
[(k − 1)Teff (w:,1) + T norm

k (w:,2)]
8: for k = 1 to K do
9: w ← FASTDTW([P,Q]eff , [P,Q]norm

k)

10: T
interp
k ← INTERPOLATE(T norm

k (w:,2), |T eff |)
11: for n = 1 to |T eff | do
12: Σeff (n) ← COVARIANCE{T interp

k (n) : k = 1..K}

4.2 Flow Tube Generation

Algorithm 3 generates the PFT for a motion in a new en-
vironment based on training demonstrations, using the rele-
vant motion variables determined in Sect. 2. The major steps
are illustrated in Fig. 4.

We first determine the values in the new environment of
initial states that are components of relevant motion vari-
ables (line 1), and a subset of demonstrations for which
these relevant initial states are most similar to those of the
new environment (line 2). The similarity measure will de-
pend on the problem domain. These selected demonstration
sequences are transformed by scaling, translation, and rota-
tion so that the values of relevant motion variables involving
the start and end poses of the robot end effector match those
required in the new environment (line 3).

The spatially transformed sequences are temporally
aligned by dynamic time warping (DTW) [24, 32]. We use
a fast multiresolution DTW algorithm [31] to achieve lin-
ear time and space complexity. We compute a representative
mean sequence using an iterative procedure (lines 4–7) since
DTW only handles two trajectories at a time. This is the out-
put trajectory sequence of the robot end effector T eff .

The demonstrated sequences may have different num-
bers of data points, so we use DTW again to temporally
match each of the normalized demonstrated sequences in
S norm to the mean sequence T eff , and interpolate so that all

362 Int J Soc Robot (2012) 4:357–368

Fig. 4 Steps of flow tube generation from three demonstrations of
“move box to bin” in our 2D simulation environment

have the same number of data entries (lines 8–10). Last, we
compute covariances at each corresponding time step across
the temporally matched normalized demonstrated sequences
(lines 11–12).

4.3 Application to Autonomous Execution

We demonstrated our learning algorithm on the PR2 robot
developed by Willow Garage, as part of the Learning from
Demonstration (LfD) Challenge at the 2011 AAAI confer-
ence. Prior to the conference, we performed user teaching
and preliminary testing through the Bosch remote lab facil-
ity [25]. We used the PR2’s onboard sensing and the Robot
Operating System (ROS)’s object recognition software to
record the environment states throughout the demonstra-
tions.

The PR2 faced a table holding certain objects. Motions
were taught kinesthetically by manually moving the right
arm of the robot. During execution, learned objects could be
optionally replaced by user-specified objects. Users could
also optionally instruct the robot to use its left arm to com-
plete the task, which was accomplished by inverting the sign
of the y position and qw,qy quaternion values during exe-
cution.

We tested several different motions, including: “move
left”, “move up and over”, “go home”, “pour into”, “pour
done”, “reach”, “put on table”, “shake”, and “stir”. Five

demonstrations of each motion were provided. Some addi-
tional helper commands for object detection and gripping
were handled independently through ROS. Fig. 5 compares
the learned motions with the original user demonstrations.
During autonomous execution, the environment contained
one object (an odwalla bottle). For each demonstration, the
object and robot end effector (measured at the PR2 wrist roll
link) were set to begin with the same arbitrary poses.

The motion learning algorithm successfully generated
motions reflecting the character of the training motions,
given just a few demonstrations. The computation time for
offline PFT learning for each motion ranged between 0.9
seconds and 1.3 seconds for user inputs sampled at about
100 data points each.

A few points deserve particular note. The “move left”
motion was intended to have PrelInit as a relevant motion
variable, but the algorithm determined there was too much
variation in the difference of beginning and end positions.
Nonetheless, the resulting learned motion still closely re-
sembled the user inputs. The motion “go home” moved the
robot end effector to a raised arm tucked position. The algo-
rithm correctly identified that the end position and orienta-
tion were the same across all demonstrations.

The “pour into”, “pour done”, and “reach” motions were
demonstrated with an object in the environment. The algo-
rithm recognized that the robot end effector was placed sim-
ilarly over the object at the end of each “pour into” motion,
and likewise at the beginning of each “pour done” motion.
In the “pour done” example in Fig. 5, although the effector’s
initial pose is not over the object, it is immediately moved
there before executing the motion.

The “shake” motion was a quick up-down-up-down ac-
tivity inspired by the movement used to shake an orange
juice bottle. The “stir” motion involved making five com-
plete circular movements. Interestingly, the algorithm de-
tected an unintended relation between the beginning and end
positions of the “stir” motion as a relevant motion variable
in the demonstrations; however, because the demonstrated
motions lay in slighly different planes, this relation overcon-
strained the generated motion to a small vibration around
a point. This example illustrates that more demonstrations
may be necessary to fully capture the variability in a desired
motion.

5 Online Motion Recognition Approach

Algorithm 4 performs real-time recognition based on a set
of PFTs generated by Algorithm 1. The auxiliary parameters
W are initially empty and continuously updated along with
the current trajectory T curr as execution proceeds.

The three main components of the recognition approach
are: determine the point in each PFT to which the current
partial motion corresponds, temporally align the identified

Int J Soc Robot (2012) 4:357–368 363

Fig. 5 Results of learning from 5 demonstrations of each motion (Color figure online)

portion of the PFT with the current partial motion, and com-
pute the log likelihood that the current partial motion is rec-
ognized as each PFT.

To determine the location in a PFT that best corresponds
to the current executed state (lines 2 to 6 in Algorithm 4),
we consider both the distance between the current executed
state and the PFT, and how much time has passed in the exe-
cution as compared with the trained models. Intuitively, the
point in the PFT that best corresponds to the current exe-
cuted state should be spatially close to it while having been
executed at around the same time, as illustrated in Fig. 6.

In Algorithm 4, we first compute the distances d from the
current position and orientation in T curr(Ncurr) to those in
the nominal trajectory T eff for motion � through all the time
steps in the PFT in line 2. Small values in d will help indi-
cate which time steps in the PFT correspond to the current
executed state.

Next, we represent how temporally different the current
execution time tcurr is from the points in the temporal com-
ponent of the PFT, or 〈Ctime,σ time

C 〉, by evaluating the prob-

ability density p of the current time at each point in the tube
in line 3. We weight the distances by the temporal similarity
measure to obtain d′ = {dn

pn
}n=1,...,N�

. The time step in the

PFT that corresponds to the current executed state occurs
when the weighted distance is smallest.

We chose to use the actual distances between the cur-
rent state and the points in the nominal PFT trajectory (i.e.,
‖T curr(Ncurr) − T eff (n)‖) to represent spatial consistency
instead of computing the spatial probability densities of the
current state evaluated through all the Gaussians in the PFT
(i.e., N (T eff (n)Σeff (n))|T curr(Ncurr)) because the distance is
much faster to compute than probability density. While spa-
tial probability densities give a more accurate estimate of a
point’s deviation from the flow tube and are more appropri-
ate to combine with the temporal similarity measures, they
take longer to compute due to the higher dimensionality of
spatial states. We have found direct distances to be good es-
timates of spatial consistency for motions with flow tube
widths that do not vary greatly with high frequency, as is
true in most robotic tasks.

364 Int J Soc Robot (2012) 4:357–368

The next step in our recognition approach is to tempo-
rally align the identified portion of each PFT to the current
execution trajectory in order to compute likelihoods. While

Algorithm 4 ONLINERECOGN(PFT,L,T curr, W)

Input:
PFT = 〈T eff ,Σeff , I,G〉, where

T eff = 〈C,D,Peff ,Qeff 〉
Σeff = 〈σ C,σ D,Σ

eff
P ,Σ

eff
Q 〉

L, set of labels of all learned motions
T curr , current observed trajectory
W , cost matrices for dynamic time warping

Output:
LL, set of log likelihoods for each motion in L

W , updated cost matrices for DTW
Notable local variables:

Ctime,σ time
C , temporal component of C,σC in PFT

d, spatial distance between a PFT and current state
p, probability densities evaluated at time steps in PFT
N�, length of flow tube �

Ncurr , length of current trajectory T curr

tcurr , time at current position T curr(Ncurr)

w, temporal matching indexes for two trajectories
π�, prior log likelihood of flow tube �

1: for � ∈ L do
2: d = {‖[P,Q]curr(Ncurr) − [P,Q]eff

� (n)‖}n=1,...,N�

3: p = {N (Ctime
� (n),σ time

C�
(n))|tcurr }n=1,...,N�

4: p ← p
max(p)

5: d′ = {dn

pn
}n=1,...,N�

6: n∗ = arg minn(d
′)

7: PFT∗
� = PFT�(1, . . . , n∗)

8: 〈w, W�〉 ← INCREMENTDTW(T
eff ∗
� , T curr, W�)

9: LL� = π� + 1
|w|

|w|∑

j=1

(G�(wj,1) − 1

2
δT I�(wj,1)δ)

where π� = log(pL(�))

and δ = T curr(wj,2) − T
eff
� (wj,1)

we could use basic dynamic time warping to perform tem-
poral matching in the recognition problem, we note that the
algorithm would recompute similar cost matrices each time
the test motion progresses. To leverage as much informa-
tion as possible from one time step to the next, we perform
incremental dynamic time warping [10] by keeping previ-
ously computed cost and back pointer matrices in memory
and updating as necessary.

The INCREMENTALDTW algorithm used in line 8 of
ONLINERECOGN accepts two input trajectories of lengths
M and N , respectively, and an input parameter W =
〈c,C,b〉, where c, C, and b are the m × n cost matrix,
cumulative cost matrix, and back pointer matrix, respec-
tively, computed at the previous time step. Incremental
DTW reuses these matrices when temporally aligning the
two trajectories by computing new values only for rows
m + 1 to M , and columns n + 1 to N . A new temporal
matching is found by tracing the updated back pointer ma-
trix from the end to the beginning. The temporal alignment
is represented as a two column matrix w of corresponding
indexes of the two input trajectories.

Finally, after temporally matching the current partial tra-
jectory with the corresponding portions of each probabilistic
flow tube, we can proceed to compute the likelihood that the
current trajectory belongs to a particular modeled motion.
Formally, we define random variables L and O to represent
motion labels and observations, respectively. The probabil-
ity that the motion is � given the current observation se-
quence T curr is pL|O(� | T curr), and applying Bayes Rule
gives pL|O(� | T curr) ∝ pO|L(T curr | �)pL(�). We obtain
the prior probability of each motion label pL(�) by record-
ing the number of times the motion was used during train-
ing weighted by how far along the current motion is in the

flow tube, i.e. pL(�) = #�

#all

n∗
�

N�
. The problem that remains is

computing the likelihood of observing the current trajectory
given a particular flow tube.

We model the observation likelihood pO|L(T curr | �) as
the product of the probability densities of each spatial distri-

Fig. 6 An example partial test motion (black) is compared to each
learned PFT (blue) in a 2D environment initially with a red box, green
bin, and stationary locations x and o as shown. The magenta marking
on each PFT indicates the spot on the PFT that best matches the current
execution (rightmost end of black motion) as determined by lines 2 to 6

in Algorithm 4. The “anchor x, o” motion moves first around x, then
around o, while “anchor o, x” does the opposite. Note the identified
position in the “circle clockwise (CW)” PFT is not spatially near the
current test position, but rather in a more reasonable position that is
temporally consistent with the current execution (Color figure online)

Int J Soc Robot (2012) 4:357–368 365

bution in the flow tube evaluated at the temporally aligned
points in the current trajectory, i.e.,

|w|∏

j=1

[
N

(
T

eff
� (wj,1),Σ

eff
� (wj,1)

)∣∣
tcurr(wj,2)

] 1
|w| .

Since the length of the temporal matching matrix |w| can
vary between max(M,N) and M +N − 1, we use the expo-
nent (1

|w|) to perform a multiplicative renormalization over
the resampled points to ensure that the overall contribution
of the probability values for the trajectory is not inflated by
the resampling process.

Taking the log of the observation probability gives

1

|w|
|w|∑

j=1

[
− log

(
(2π)

d
2
∣∣Σeff

�(wj,1)

∣∣
1
2
) − 1

2
δTΣ

eff
�(wj,1)

−1
δ

]

where d = dim(T eff) and δ = T curr(wj,2) − T
eff
� (wj,1).

Finally, we use the pre-computed inverse covariances I
and probability density coefficients G obtained from model
learning to efficiently compute the posterior log likelihood
as shown in line 9 of Algorithm 4.

6 Experimental Results

We first test our approach using a two-dimensional simu-
lated environment, and later demonstrate the system work-
ing on a Barrett Technologies Whole Arm Manipulator
(WAM) robot.

6.1 Two-dimensional Variable Environment

In our simulated environment, there are four entities: a red
box, a green bin, and two stationary locations marked x and
o. The box and bin are positioned at varying random loca-
tions in the environment, while the x and o always mark the
fixed locations (5,5) and (5,3), respectively.

In our first experiment, we taught the system three differ-
ent motions: “move the box to the bin”, “move the box left
one unit”, and “move the box to x”. During each trial, the
box and bin locations were randomly generated. Two users
demonstrated 150 trials across the three motions. Thirty ran-
domly chosen trials of each motion were used for training,
and the remaining 60 trials were used for testing.

Figure 7 shows some examples of what the learned PFT
models look like in the environment states of three randomly
chosen test cases. One can see that distinguishing among
different motions is easier in some environments than others
due to the relative positions of objects. For example, if the
bin were located at x and the box straight above, then it is
impossible to distinguish between “move to bin” and “move
to x”.

Fig. 7 Example learned flow tubes given different initial environment
states. Blue PFTs represent “move box to bin”, red PFTs represent
“move box left 1 unit”, and green PFTs represent “move box to x”
(Color figure online)

Table 1 Comparison of recognition approaches using PFTs (P) and
HMMs (H) in variable environments. N is the number tests out of 20
that was correctly recognized by the end of each motion. % is the mean
percent of real-time execution that the correct motion was recognized.
t is the average computation time at each real-time instance (in sec-
onds)

NP NH %P %H tP tH

To bin 20 12 81.1 55.3 0.008 0.047

Left 13 6 56.0 28.0 0.004 0.004

To x 16 15 74.4 36.3 0.005 0.006

We compare our approach to that of Martin et al. [20],
which represents learned motions as tied-mixture hidden
Markov models, and uses a buffered Viterbi algorithm for
fast recognition. For comparison, we implemented their ap-
proach using 3 states and 6 Gaussian mixtures, which we
found to perform reasonably well.

Table 1 compares the results of the first experiment. We
first compare the number of test cases correctly recognized
by the end of each motion using the PFT approach (NP)
versus the HMM approach (NH). Our algorithm recognized
49 of the 60 test motions (82 %), while the HMM-based
algorithm recognized 33 (55 %).

The second comparison is how long throughout a test
motion did the algorithm maintain the correct classification
(%P versus %H). On average, our algorithm recognized the
motion correctly 71 % of the time spent during a test motion,
while the HMM approach spent on average 40 %. This sec-
ond comparison metric reflects how frequent the real-time
estimates are correct throughout a test case, since as a test
motion progresses, the estimated most likely motion label
may change given new information at each time step.

An example of how estimation likelihoods may change
for the two approaches throughout the same test cases is
shown in Fig. 8. The PFT approach starts each motion with
low likelihood, while the HMM approach starts each motion
with equally high likelihood. Throughout the motion, the
HMM approach updates the log likelihoods smoothly, but is
often unable to distinguish among the motions. The PFT ap-
proach often produces higher frequency likelihood changes
as a result of the spatio-temporal relationships among the
motions, but it is often able to appropriately distinguish

366 Int J Soc Robot (2012) 4:357–368

Fig. 8 Example log likelihoods over time for the same test cases us-
ing the PFT approach (top row) and the HMM approach (bottom row)
(Color figure online)

among them through time. For example, comparing the
“move to x” test case in Fig. 8, the HMM approach has
difficulty distinguishing it from the “move to bin” motion.
The PFT approach, however, quickly concludes that the la-
bel “move to x” is most likely, but “move to bin” also has a
small log likelihood throughout. During the first part of ex-
ecution, “move left 1” is also a low probability contender,
but after the user moves beyond 1 unit, the likelihood of the
motion being “move left 1” quickly drops to zero, which is
a behavior that makes sense intuitively.

Finally, the third metric comparison in Table 1 is how
long, on average, the algorithm takes to compute new likeli-
hoods at each time step in a test motion (tP versus tH). As
expected, the HMM approach gives very fast online compu-
tation times, considering human reaction time is generally
longer than 0.1 second. Because our PFT approach stores all
computation-intensive steps a priori offline and simply ap-
plies a few arithmetic operations during online recognition,
it is able to achieve comparable online computation times.

We can see that our approach is able to perform real-time
recognition even when the environment state varies among
the different training and test trials. This is an important ad-
vantage in learning and recognizing manipulation tasks be-
cause the state of the environment often changes with ma-
nipulation, and we want to reduce the number of redundant
training demonstrations an operator must perform in any
given environment setup.

6.2 Two-dimensional Static Environment

Since the HMM-based technique is not designed to handle
variations in the environment state, we chose the particular
environment state shown in Fig. 6 and generated 25 trials for
each of the depicted 7 motions in order to make a more fair
comparison. We used 5-fold cross-validation using 5 trials

Table 2 Comparison of recognition approaches using PFTs (P) and
HMMs (H). There were 100 cross-validation test cases for each motion

NP NH %P %H tP tH

To bin 95 94 65.6 67.9 0.020 0.064

Left 94 100 81.6 95.6 0.007 0.009

To x 96 98 79.3 85.1 0.009 0.010

CW 100 72 83.2 65.2 0.023 0.038

CCW 99 72 94.3 80.7 0.022 0.031

x, o 96 56 79.0 52.8 0.034 0.370

o, x 99 57 86.7 45.4 0.035 0.386

for training and 20 for testing on each motion. Only 5 trials
are needed for training because the motions are fairly similar
in the static environment.

Table 2 summarizes the comparative results. The HMM-
based approach performed slightly more favorably for the
goal directed motions “move to bin”, “move left 1”, and
“move to x”. It had more trouble with motions where di-
rectionality plays an important role, and it performed poorly
on motions that are not Markov in nature, such as the an-
chor loops. To the Markovian model, the loop, say around x,
looks the same locally in the “anchor around x then o” mo-
tion as it does in the “anchor around o then x” motion. Over-
all, the HMM approach achieved a 78 % recognition rate.
Our algorithm achieved an overall 97 % recognition rate
while using less computation time on all of these motions.

Of the 35 total learning trials, the PFT reported an aver-
age offline learning time of 0.707 seconds with a standard
deviation of 0.606, and the HMM reported an average learn-
ing time of 1.498 seconds with a standard deviation of 0.286.
We suspect that learning a PFT on average takes less time
than learning an HMM (though with more deviation) be-
cause a learning a PFT does not involve learning a mixture
of Gaussians, but rather a single Gaussian at each time step,
which is a fairly trivial computation compared with the EM
algorithm required for GMMs. Furthermore, the HMM also
requires autonomously determining the optimal number of
states, using the BIC criterion, which can also be computa-
tionally intensive.

6.3 Hardware Demonstration

We also demonstrated our motion recognition capability on
a Barrett Whole Arm Manipulator (WAM) robot, as shown
in Fig. 9. We trained the robot by physically moving it
through each of 5 motions in gravity compensation mode 10
times. Each trial for a motion started with the same environ-
ment state and was recentered in post-processing to all have
the same starting location. Five of the 10 trials for each mo-
tion were used for testing for each of two cross-validations.

Table 3 shows that our algorithm successfully recognized
all 50 cross-validation test trials correctly by the end of each

Int J Soc Robot (2012) 4:357–368 367

Fig. 9 Left: WAM robot setups for the five motions: “move ball to
bin” (A), “wind cable” (B), “unwind cable” (B), “anchor rope left
then right” (C), and “anchor rope right then left” (C). Right: WAM

end effector trajectories. Bottom: Results on WAM robot using PFT
approach. There were 10 cross-validation test cases for each motion
(Color figure online)

Table 3 Results on WAM robot using PFT approach. There were 10
cross-validation test cases for each motion

NP %P tP

To bin 10 93.5 0.024

Wind 10 92.7 0.013

Unwind 10 96.4 0.011

Anchor LR 10 84.1 0.032

Anchor RL 10 86.2 0.033

motion, and spent on average 91 % of each test trial classify-
ing the motion correctly. We observe that the higher dimen-
sionality of the state space is quite favorable for recognition
as it allows motions to diverge more.

In this demonstration, the environment state did not
change for the different demonstrations, so we only needed a
few number of user demonstrations to be able to learn gen-
eralized PFTs of each motion. An interesting future study
could determine the optimal number of user demonstrations
needed for a certain degree of variation in the environment
state.

7 Conclusion

We have presented an approach to learning complex phys-
ical motions from human demonstration that (1) provides
flexibility during execution while robustly encoding a hu-
man’s intended motions, and (2) automatically determines
the relevant features of a motion so that they can be pre-
served during autonomous execution in new situations.

We have also introduced an approach to real-time mo-
tion recognition that (1) leverages temporal information to
model motions that may be non-Markovian, (2) provides fast
real-time recognition of motions in progress by using an in-
cremental dynamic time warping approach, and (3) employs
the probabilistic flow tube representation that enables our

method to recognize learned motions despite varying envi-
ronment states.

We envision several extensions of this approach: (1) the
covariance sequence of a probabilistic flow tube can serve as
a cost function for compliant execution; (2) overlaying prob-
abilistic flow tubes on potential fields [17, 26] can provide a
cost map for obstacle avoidance; (3) longer user demonstra-
tions can be represented as PFT plans consisting of multi-
ple motions, automatically segmented based on qualitative
changes in discrete variables; (4) robots can indicate confi-
dence levels for recognized motions based on absolute and
relative likelihoods of the most likely learned motions, prob-
ing the user for more guidance when confidence is low.

Acknowledgements The authors thank David Mittman, Sarah Os-
entoski, and Shuo Wang for their help in operating the different robots
used in our demonstrations and experiments.

References

1. Abbeel P, Dolgov D, Ng AY, Thrun S (2008) Apprenticeship learn-
ing for motion planning with application to parking lot navigation.
In: IROS

2. Akgun B, Cakmak M, Yoo JW, Thomaz AL (2012) Trajectories
and keyframes for kinesthetic teaching: a human-robot interaction
perspective. In: HRI

3. Alissandrakis A, Nehaniv CL, Dautenhahn K, Saunders J (2005)
An approach for programming robots by demonstration: general-
ization across different initial configurations of manipulated ob-
jects. In: IEEE international symposium on computational intelli-
gence in robotics and automation

4. Argall B, Chernova S, Veloso M, Browning B (2009) A survey of
robot learning from demonstration. Robot Auton Syst 57(3):469–
483

5. Atkeson CG, Schaal S (1997) Robot learning from demonstration.
In: ICML, pp 12–20

6. Calinon S, D’halluin F, Sauser E, Caldwell D, Billard A (2010)
Learning and reproduction of gestures by imitation: an approach
based on hidden Markov model and Gaussian mixture regression.
IEEE Robot Autom Mag 17(2):44–54

7. Calinon S, Guenter F, Billard A (2007) On learning, representing
and generalizing a task in a humanoid robot. IEEE Trans Syst Man
Cybern, Part B, Cybern 37:286–298

368 Int J Soc Robot (2012) 4:357–368

8. Cederborg T, Li M, Baranes A, Oudeyer PY (2010) Incremental
local online Gaussian mixture regression for imitation learning of
multiple tasks. In: IROS

9. Coates A, Abbeel P, Ng A (2009) Apprenticeship learning for he-
licopter control. Commun ACM 52(7):97–105

10. Dixon S (2005) An on-line time warping algorithm for tracking
musical performances. In: IJCAI

11. Dong S, Conrad PR, Shah JA, Williams BC, Mittman DS, Ingham
MD, Verma V (2011) Compliant task execution and learning for
safe mixed-initiative human-robot operations. In: AIAA Infotech

12. Dong S, Williams B (2011) Motion learning in variable environ-
ments using probabilistic flow tubes. In: ICRA

13. Frank J, Mannor S, Precup D (2010) Activity and gait recognition
with time-delay embeddings. In: AAAI

14. Hamid R, Maddi S, Johnson A, Bobick A, Essa I, Isbell C (2009)
A novel sequence representation for unsupervised analysis of hu-
man activities. Artif Intell 173(14):1221–1244

15. Hoffmann H, Pastor P, Park DH, Schaal S (2009) Biologically-
inspired dynamical systems for movement generation: automatic
real-time goal adaptation and obstacle avoidance. In: ICRA

16. Hofmann A, Williams B (2006) Exploiting spatial and temporal
flexibility for plan execution of hybrid, under-actuated systems.
In: AAAI

17. Krogh BH (1984) A generalized potential field approach to obsta-
cle avoidance control. In: International robotics research confer-
ence, Bethlehem, PA

18. Lee D, Ott C (2011) Incremental kinesthetic teaching of mo-
tion primitives using the motion refinement tube. Auton Robots
31(2–3):115–131

19. Li H, Williams B (2008) Generative planning for hybrid systems
based on flow tubes. In: ICAPS

20. Martin RA, Wheeler KR, Allan MB, SunSpiral V (2010) Opti-
mized algorithms for prediction within robotic tele-operative in-
terfaces. Technical report, NASA/TM-2010-216417

21. Mühlig M, Giengerand M, Hellbachand S, Steil J, Goerick C
(2009) Task-level imitation learning using variance-based move-
ment optimization. In: ICRA

22. Mitra S, Acharya T (2007) Gesture recognition: a survey. IEEE
Trans Syst Man Cybern 37(3):311–324

23. Moni MA, Ali ABMS (2009) HMM based hand gesture recogni-
tion: a review on techniques and approaches. In: IEEE ICCSIT

24. Myers CS, Rabiner LR, Rosenberg AE (1979) Performance trade-
offs in dynamic time warping algorithms for isolated word recog-
nition. J Acoust Soc Am 66(S1):S34–S35

25. Osentoski S, Manfredi V, Mahadevan S (2004) Learning hierar-
chical models of activity. In: IROS, Sendai, Japan

26. Park DH, Hoffmann H, Pastor P, Schaal S (2008) Movement re-
production and obstacle avoidance with dynamic movement prim-
itives and potential fields. In: IEEE-RAS international conference
on humanoid robots

27. Pastor P, Hoffmann H, Asfour T, Schaal S (2009) Learning and
generalization of motor skills by learning from demonstration. In:
ICRA

28. Peters RA, Campbell CL (2003) Robonaut task learning through
teleoperation. In: ICRA

29. Rasmussen CE, Williams CKI (2006) Gaussian processes for ma-
chine learning. MIT Press, Cambridge

30. Riley M, Cheng G (2011) Extracting and generalizing primitive
actions from sparse demonstration. In: IEEE-RAS international
conference on humanoid robots

31. Salvador S, Chan P (2007) FastDTW: Toward accurate dynamic
time warping in linear time and space. Intell Data Anal 11(5):561–
580

32. Senin P (2008) Dynamic time warping algorithm review. Techni-
cal report, University of Hawaii at Manoa

33. SunSpiral V, Wheeler KR, Allan MB, Martin R (2006) Modeling
and classifying Six-dimensional trajectories for teleoperation un-
der a time delay. In AAAI spring symposium

34. Wakabayashi S, Margruder DF, Bluethmann W (2003) Test of op-
erator endurance in the teleoperation of an anthropomorphic hand.
In: SAIRAS

35. Wang Z, Li B (2009) Human activity encoding and recognition
using low-level visual features. In: IJCAI

36. Yang J, Xu Y, Chen CS (1997) Human action learning via hidden
Markov model. IEEE Trans Syst Man Cybern, Part A, Syst Hum
27(1):34–44

	Learning and Recognition of Hybrid Manipulation Motions in Variable Environments Using Probabilistic Flow Tubes
	Abstract
	Introduction
	Related Work
	Problem Statement
	Offline Motion Learning Approach
	Motion Variable Identification
	Flow Tube Generation
	Application to Autonomous Execution

	Online Motion Recognition Approach
	Experimental Results
	Two-dimensional Variable Environment
	Two-dimensional Static Environment
	Hardware Demonstration

	Conclusion
	Acknowledgements
	References

