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Abstract—Vehicle trajectory prediction is crucial for
autonomous driving and advanced driver assistant systems.
While existing approaches may sample from a predicted
distribution of vehicle trajectories, they lack the ability
to explore it – a key ability for evaluating safety from
a planning and verification perspective. In this work,
we devise a novel approach for generating realistic and
diverse vehicle trajectories. We first extend the genera-
tive adversarial network (GAN) framework with a low-
dimensional approximate semantic space, and shape that
space to capture semantics such as merging and turning.
We then sample from this space in a way that mimics the
predicted distribution, but allows us to control coverage of
semantically distinct outcomes. We validate our approach
on a publicly available dataset and show results that achieve
state-of-the-art prediction performance, while providing
improved coverage of the space of predicted trajectory
semantics.

Index Terms—Intelligent Transportation Systems, Rep-
resentation Learning, Computer Vision for Transportation

I. INTRODUCTION

VEHICLE trajectory prediction is crucial for au-
tonomous driving and advanced driver assistant

systems. For planning and verification, an ideal predictor
must both accurately mimic the distribution of future
trajectories and efficiently cover possible outcomes with
little computational cost. While many recent efforts cater
to accuracy [1]–[6], and some work addresses diversity
and coverage [7]–[10], sampling efficiency still remains
a challenge. This is important for vehicle trajectory
prediction, since reasoning about the implications of
predictions (e.g. with planning and collision checking) is
expensive [11], [12] and becomes a limiting factor when
seeking edge cases or extending the planning horizon.
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Direct sampling

Latent semantic sampling

Fig. 1: When performing direct sampling, samples are
taken uniformly from the distribution (middle), which
fails to cover diverse behaviors. In latent semantic sam-
pling, representative samples are taken, with weights as-
sociated with the distribution. In this way, a few samples
can capture relevant semantic aspects, while ensuring
consistency with the true prediction distribution.

This work is motivated by such a need to produce both
accurate and diverse predictions using fewer samples.

Hybrid and discrete semantics have been crucial when
reasoning about agent behavior. They manifest both in
representations for planners [13] and in the design of
tests for driving systems [14]. Semantic-level reasoning
is crucial for attaining sample coverage across a diverse
set of behaviors, as well as improving explainability. It is,
however, not fully utilized in prediction and verification,
in part because a discrete representation may limit the ex-
pressive power of the predictor, and defining a complete
taxonomy for driver trajectories is difficult, especially
when reasoning about multiple agents.

In this paper, we propose a model that is both accurate
and diverse by incorporating a latent semantic layer into
the trajectory generation. This layer represents high-level
vehicle behaviors, matching discrete semantic outcomes
where they are defined. Our construction of this layer
does not require a complete taxonomy of maneuvers,
and can extend easily to multiple definitions of semantics
such as interaction types. We expect driving semantics
to have a low effective dimensionality at every instance,
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since a driver can perform only a few distinct maneuvers
at any given moment. We illustrate our approach in
Figure 1, where the goal is to produce diverse trajectory
predictions and cover distinct outcomes. The top row
shows traditional sampling, which fails to sample diverse
behaviors efficiently. The bottom row demonstrates our
latent semantic sampling technique, which captures both
maneuvers that can be performed in the intersection.

We avoid the need for a taxonomy by shaping the
intermediate layer via metric learning [15]. We train the
latent semantic layer activations to match annotations
of high-level labels when they exist. Distances in the
semantic layer between two trajectories should be large
if they represent different semantic labels, and should be
small otherwise.

Finally, our proposed latent state affords some in-
terpretation of the network, which is crucial in safety-
critical tasks, such as autonomous driving. By tuning
the high-level latent vector, our samples better cover the
human intuition about diverse outcomes.

Our work has three main contributions: i) We extend
a generative adversarial network to produce diverse and
realistic future vehicle trajectories. We do so using a
latent layer, which is shaped via metric learning to
capture semantic context, as well as trajectory geometry.
ii) We describe an efficient sampling method to cover
the possible future actions and their likelihoods, which is
important for safe motion planning and realistic behavior
modeling in simulation. iii) We validate our approach
on a publicly available dataset with vehicle trajectories
collected in urban driving. Quantitative and qualitative
results show our method successfully learns a semanti-
cally meaningful latent space that allows for generating
diversified trajectories efficiently, while achieving state-
of-the-art accuracies.
A. Related Work

Our work relates to several topics in probabilistic
trajectory prediction. Unlike deterministic alternatives
[1], it allows us to reason about the uncertainty of
driver’s behavior. There are several representations that
underlie reasoning about trajectories. [2], [4], [16]–[19]
predict future vehicle trajectories as Gaussian mixture
models, whereas [20] utilizes a grid-based map. Different
from [17] that consolidates a large number of GMM
outputs into succinct representations, we generate trajec-
tory samples directly from an approximated distribution
space, while improving the coverage of rare events.

For longer-term prediction horizons, additional con-
text cues are needed from the driving environment.
Spatial context, such as mapped lanes and scene infor-
mation, not only indicates the possible options a vehicle
may take (especially at intersections), but also improves
the prediction accuracy, as vehicles usually follow lane
centers closely [5], [21] or follow common movements

in similar scene layouts [22]. Another important cue
is social context, which allows for reasoning about
interaction among agents [3], [6], [16]. Our method takes
advantage of these two cues by feeding map data and
nearby agent positions into our model, improving the
accuracy of predictions over a few seconds.

Recently proposed generative adversarial networks
(GANs) can sample trajectories by utilizing a vehicle tra-
jectory generator and a discriminator that distinguishes
real trajectories and generated trajectories [3], [23]. De-
spite their success, efficiently producing unlikely events,
such as lane changes and turns, remains a challenge.
These events are important to consider, as they can pose
a significant risk and affect driving decisions.

Hybrid models [5], [24] are effective at producing
distinct vehicle behaviors. They classify modes (or ma-
neuvers) first before predicting the future positions. As
such, they are restricted to cases where a fixed taxonomy
of modes is well defined. In many cases, especially
with multiple agents, a complete taxonomy of driving
scenarios is hard to obtain. In [10], a set of trajectory
modes are proposed to cover all possible motions, given
vehicle dynamics. This provides sufficient coverage but
suffers from the large number of samples predicted,
as further reasoning about their implications (e.g., with
collision checking) is expensive. In contrast, our method
allows more sufficient coverage with fewer samples and
handles more general cases involving with undefined
semantics, including multi-vehicle interactions.

Many recent models use an intermediate representa-
tion [25], to improve performance and sample efficiency
[26]. [18] utilizes a set of discrete latent variables
to represent different driver intentions and behaviors.
[27] explores the semantic features in the latent space
of GANs, while InfoGAN in [28] successfully distills
important features in the latent space based on an
information bottleneck approach. In [23], a network
based on InfoGAN is proposed to produce predictions
that preserve multi-modality. In addition to GANs, [29]
learns a disentangled latent representation in a variational
autoencoder (VAE) framework to ground spatial relations
between objects, while [30], [31] propose a conditional
VAE latent variable framework to handle multi-modality
in trajectory predictions. Unlike [23], [28], we use metric
learning [15] to explicitly capture high-level notions,
such as maneuvers and interactions, by training the
latent space to match human similarity measures. It
allows us to sample from the learned geometry to obtain
distinct vehicle behaviors efficiently, without assuming
the dissimilarity in trajectory space captures the semantic
meaning, as in [17], [30]. In other domains, [32] diver-
sifies samples via a potential field motivation for image
generation GANs; [33] regularizes the generator by
introducing multiple noise sources, to encourage multi-
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Fig. 2: Architecture diagram of prediction model. We shape the space of the intermediate vector zH to resemble
a human’s concept of semantic distances and then use it to select the samples that are fed to the decoder. Inputs
include past vehicle trajectories and map information represented as arclength-parameterized curves (cf. Sec. II-C2).

modal behaviors in computer vision tasks; [9] explores
diversity in policy through conjugated policies with a
few samples in reinforcement learning.

Finally, our work has applications to sampling and
estimation of rare events in support of verification tasks,
which is its own active field, see [11], [34]–[36] and
references therein. Efficient sampling is crucial for safety
reasoning, as verification of safety properties for a given
driving strategy requires numerous simulations over a
large number of scene conditions and agent behaviors.
The closest work to ours is [36], [37], which also
propose sample-based estimation of probabilities. Our
work focuses explicitly on sampling from diverse modes
of behaviors, and effectively improves both search ef-
ficiency and representational power, allowing sufficient
coverage with fewer simulations.

II. MODEL

Here, we present the problem formulation and de-
scribe the model underlying our work, including loss
functions and our proposed sampling procedure.

A. Problem Formulation
The input to the trajectory prediction problem in-

cludes a sequence of observed vehicle trajectories X =
X1, X2, . . . , Xtobs , as well as the surrounding lanes
denoted as M . Our goal is to predict a set of possible
future trajectories Ŷ = Ŷtobs+1, Ŷtobs+2, . . . , Ŷtobs+tpred ,
where the observed future trajectories are denoted as
Y = Ytobs+1, Ytobs+2, . . . , Ytobs+tpred .

In the probabilistic setting, since many future trajec-
tories are possible, the goal is to estimate the predicted
probability distribution P (Y|X,M). As P (Y|X,M)
often lacks a closed-form expression, many approaches
use some form of sample generation techniques, includ-
ing traditional ones such as MCMC and particle filters
[38], planning-based approaches such as RRTs [39], and
probabilistic generative networks.

B. Model Overview
We now describe the network structure and sampling

approach, as illustrated in Figure 2. The trajectory gen-
erator takes the past trajectory of target vehicles, a map

of lane centerlines, and a noise sample, to produce sam-
ples of future trajectories. The discriminator identifies
whether the generated trajectory is realistic.

Semantic training cues - In addition to the generator
and discriminator networks, our model assumes a super-
visory source for trajectory semantics. Both similarity
votes [40] and discrete label vectors [41] have been
used for metric learning of semantically meaningful
spaces, from human annotations or from computational
surrogates, such as classifiers. In driving, labels can in-
clude maneuvers, such as merging, turning, or interaction
patterns such as giving right of way or turning at a four-
way stop junction. For the purpose of our experiments,
we hand-coded detectors for specific maneuvers, yielding
three-logic (True/False/“undefined”) values. These are
coded as vectors c with elements cl ∈ {−1, 1, φ}. We
chose three-valued logic since in some instances no
Boolean choice makes sense – e.g., “lane keep” defined
in [24] is ambiguous if the vehicle is approaching a
Y-junction. This motivates a representation that avoids
a single taxonomy of all road situations with definite
semantic values. The values are used to compute the
embedding loss in training time, indicated by the orange
line in Fig. 2, with details discussed in Sec. II-E4.
C. Trajectory Generator

The trajectory generator predicts realistic future vehi-
cle trajectories, given inputs of the past trajectories and
the map information. It embeds the inputs before sending
them into a long short-term memory (LSTM) network
encoder. The encoder output is combined with a noise
vector generated from a standard normal distribution, and
fed into a latent network that separates the combined
information into a high-level vector and a low-level
vector. The decoder, taking these two vectors, produces
the trajectory samples.

1) Trajectory Network: A series of fully connected
layers that embed spatial coordinates into a trajectory
embedding vector [6].

2) Map Network: We represent nearby lanes via their
polynomial coefficients, taken from the road point that is
closest to the vehicle. We use arclength parameterization
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[42] to resample the road and project it onto a second-
order polynomial. The map network consists of a series
fully connected layers that take the nearby lane coeffi-
cients as inputs and output a map embedding vector. In
our experiments, this improves training efficiency while
maintaining accuracy, compared to rasterizing the road
network (e.g., in [5], [43]).

3) Encoder: An LSTM network that encodes the
spatial and map embedding vectors from time steps 1
to tobs into an encoder hidden state vector.

4) Latent Network: Through a nonlinear fully con-
nected network, the encoder hidden state is transformed,
along with a standard Gaussian noise sample, into a
latent state vector, (zH , zL): zH ∈ RdH represents high-
level information, such as maneuvers, whereas zL ∈ RdL

represents fine trajectory information. We set dH � dL
so that zH can be sampled efficiently. As described in
Section II-E, we encourage zH , zL to be uncorrelated,
and zH to separate semantically different trajectories.
This representation disentangles semantic concepts from
low-level trajectory information, similar to information
bottlenecks [28], but is shaped by human notions of
semantic similarity, as learned from the labels.

5) RNN-based decoder: An LSTM network takes
zH , zL, and a map embedding vector, and generates a
sequence of future vehicle positions.

D. Trajectory Discriminator

An encoder converts the past trajectory, future pre-
dictions, and map information into a label L = {fake,
real}, where fake means a trajectory is generated by our
predictor, while real means the trajectory is from data.
The structure of the discriminator mirrors that of the
trajectory encoder, except in its output dimensionality.

E. Losses

Similar to [3], we assess the performance of our model
using the average displacement error (ADE) and the final
displacement error (FDE):

LADE(Ŷ ) =
1

tpred

tobs+tpred∑
t=tobs+1

||Yt − Ŷt||2 (1)

LFDE(Ŷ ) = ||Ytobs+tpred − Ŷtobs+tpred ||2 (2)

1) Best prediction displacement loss: Also as in [3],
we compute the Minimum over N (MoN) losses to
encourage the model to cover groundtruth options, while
maintaining diversity in its predictions:

LMoN = min
n

(
LADE

(
Ŷ (n)

))
, (3)

where Ŷ (1), . . . , Ŷ (N) are samples generated by our
model. The loss, over N samples from the generator,
is computed as the average distance between the best
predicted trajectories and observed future trajectories.

Although minimizing MoN loss leads to a diluted proba-
bility density function compared to the groundtruth [44],
we use it to show that our method can estimate an
approximate distribution efficiently. We defer a different,
more accurate, supervisory cue to future work.

2) Adversarial loss: We use standard binary cross
entropy losses, LGAN,G,LGAN,D, to compute the loss
between outputs from the discriminator and the labels.
These losses are used to encourage diversity in predic-
tions.

3) Latent space regularization loss: We encourage the
two latent space components zL, zH to be independent
and normally distributed with a unit variance for each
vector element. We do so by adding the two regulariza-
tion terms,

Lind =

dH∑
i=1

dL∑
j=1

ziHz
j
L

2

, Llat =
‖ΣzH − I‖2F + ‖µzH ‖2F +
‖ΣzL − I‖2F + ‖µzL‖2F

,

(4)
where ‖ · ‖2F denotes the Frobenius norm, I denotes the
identity operator with appropriate dimensions, and the
means and variances are computed as empirical estimates
at each batch.

4) Embedding loss: After enforcing zH and zL are
independent vectors, we introduce an embedding loss to
enforce the correlation between high-level latent vector
zH and prediction coding c. Similar to [45], if two data
samples have the same answer element for label l, we
expect the differences in their high-level latent vectors
to be small. On the other hand, if two predictions have
different codings, we want to encourage the difference
to be large. Note that it would be ideal to take human
votes on the similarity between trajectories, and in this
work, we use c as a surrogate to approximate their votes
in order to mimic human notions of semantic similarity.
The loss can be written as

Lemb =

B∑
m=1,n=1

s∑
l=1

sign
(
c
(m)
l c

(n)
l

)
||z(m)

H − z
(n)
H ||2,

(5)
where B is batch size, s is the number of defined labels,
c
(m)
l , c

(n)
l denote the label l answers on examples m,n

respectively, and sign(·) = 0 if either label is φ.
5) Total loss: In total, we combine the losses listed

above together with appropriate coefficients.

L,D = LGAN,D (6)
L,G = λ1LMoN + λ2LGAN,G + λ3Lind + λ4Llat + λ5Lemb (7)

F. Sampling Approach

We now describe how we sample from the space
of zH in Alg. 1. We generate an oversampled set of
Nall latent samples, and reduce them to a subset of N
representatives using the Farthest Point Sampling (FPS)
algorithm [46], [47]. We store the nearest representative
identity as we compute the distances, to augment the
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FPS representatives with a weight proportional to their
Voronoi cell weight, computed as the ratio of the number
of cell samples to total sample size. This gives us a
weighted set of samples that converges to the original
distribution, but favors samples from distinct regions of
space. FPS allows us to emphasize samples that represent
distinct high-level maneuvers encoded in zH .

Algorithm 1 Semantic Sampling

1: for all i = 1 . . . Nall do
2: Sample from z(i) ∼ Z.
3: Generate latent sample (zH,(i), zL,(i)).
4: end for
5: Perform Farthest Point Sampling on {zH,(i)} to ob-

tain N representative samples, {(zH,(j), zL,(j))}Nj=1

6: Compute Voronoi weights wj for each FPS sample.
7: Decode from (zH,(j), zL,(j)) a full prediction Y(j).
8: Return {(Y(j), wj)}Nj=1

The samples cover (in the ε-covering sense) the space
of possible high-level choices. The high-level latent
space is shaped according to human notions of semantic
similarity. With this similarity metric shaping, FPS can
leverage its 2-optimal distance coverage property [46],
[47] in order to capture the majority of semantically
different prediction roll-outs in just a few samples.1

III. RESULTS

In this section, we describe the details of our model
and dataset, followed by a set of quantitative results
against state-of-the-art baselines and qualitative results
on accurate and diverse predictions.

A. Model Details

The Trajectory Network utilizes two stacked linear
layers with (32, 32) neurons. The Map Network uses
four stacked linear layers with (64, 32, 16, 32) neurons.
An LSTM with one layer and a hidden dimension of 64
forms both the Encoder and Decoder in the Trajectory
Generator. The Latent Network fuses the Encoder output
and a 10-dimensional noise vector. This network is
composed of two individual linear layers with output
dimensions of 2 and 72 for the high-level and low-level
layers, respectively. The Discriminator is an LSTM with
the same structure as the Generator’s Encoder, followed
by a series of stacked linear layers with dimensions of
(64, 16, 1), activated by a sigmoid layer at the end. All
linear layers in the Generator are followed by a batch
norm, ReLU, and dropout layers. The linear layers in
the Discriminator use a leakyReLU activation instead.
The number of overall latent samples Nall is 200, and
the number of samples N we use for the MoN loss is

1We note that a modified FPS [48] can trade off mode-seeking with
coverage-seeking when generating samples.

5. The loss coefficients in Eq. (7) are selected to be 4,
1, 100, 2, 50, respectively.

The model is implemented in Pytorch and trained on a
single NVIDIA Tesla V100 GPU. It takes approximately
45 milli-seconds (ms) to generate 200 latent samples,
and approximately 0.1 ms and 1 ms to perform FPS
and produce 5 prediction samples, respectively, which
makes our model practical in real-time systems2. We use
the Argoverse forecasting dataset [21] for training and
validation, and select the trained model with the smallest
MoN ADE loss on the validation set.

B. Semantic Annotations

In order to test our embedding over a large scale
dataset, we devised a set of classifiers for the data as
surrogates to human annotations. They check for specific
high-level trajectory features, and each of them outputs a
ternary bit representing whether the feature exists, does
not exist, or is unknown. The list of feature filters used
in this paper includes: accelerate, decelerate, turn left,
turn right, lane follow, and lane change.

C. Prediction Accuracy

Over 1 and 3 second prediction horizons, with N = 5
samples, we compute the MoN ADE (1) and FDE (2)
losses, respectively. Compared to weighted losses, MoN
is more suitable to downstream planning tasks as it
identifies the worst case scenario when there exists risk.
In addition, we introduce a few baseline models to
demonstrate the prediction accuracy of our method. The
first two baselines include a linear Kalman filter with
a constant velocity (CV) model and with a constant
acceleration (CA) model, respectively. We sample multi-
ple trajectories given smoothing uncertainties. The third
baseline is an LSTM-based encoder-decoder model [21],
which produces deterministic predictions. The fourth
baseline is SocialGAN [3], based on its open-source
model. In order to show the efficacy of our approach
in separating and shaping the latent space, we also
introduce a vanilla GAN-based model that is similar to
our network, but does not regularize the latent space
using the embedding loss. The vanilla model has a few
variants that take different input features, where social
contains the positions of nearby agents and map contains
the nearby lane information as described in II-C2.

The results are summarized in Table I. The first two
rows indicate that physics-based models can produce
predictions with reasonable accuracy. Using five sam-
ples, constant velocity (CV) Kalman Filter outperforms a
deterministic deep model with results shown on the third
row. While [49] shows that a physics-based model can
outperform SocialGAN in pedestrian prediction, Table I

2The computational costs can be further optimized through paral-
lelization and better memory transfers.
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(a) (b)
Fig. 3: Accuracy and coverage comparisons between FPS sampling (blue) and direct sampling (orange) over 3
seconds with N from 1 to 8. (a) Accuracy comparison using MoN as the metrics, where the gap between two
curves indicates the improvement using FPS, especially when N is from 2 to 6. (b) Coverage comparison, where
y-axis measures the number of distinct discrete label codings extracted from the predicted trajectories. The gap
indicates that FPS achieves better coverage of prediction options with smaller numbers of samples.

1 Second 3 Seconds
Model Name ADE FDE ADE FDE
Kalman Filter, CV 0.51 0.79 1.63 3.62
Kalman Filter, CA 0.69 1.22 2.87 7.08
LSTM Encoder-Decoder 0.57 0.94 1.81 4.13
SocialGAN 0.47 0.69 1.72 3.49
vanillaGAN 0.42 0.62 1.55 3.09
vanillaGAN+social 0.44 0.66 1.68 3.04
vanillaGAN+social+map 0.44 0.63 1.34 2.75
vanillaGAN(FPS)+social+map 0.44 0.64 1.35 2.75
DiversityGAN+social+map 0.41 0.65 1.35 2.74
DiversityGAN(FPS)+social+map 0.44 0.62 1.33 2.72

TABLE I: MoN average displacement errors (ADE)
and final displacement errors (FDE) of our method and
baseline models with N = 5 samples.
demonstrates the performance gain of GANs in vehicle
prediction, due to effectively longer and more complex
maneuvers over the prediction horizon. From the ablation
study, it is observed that the map features contribute
more to long-horizon predictions than the social features.
Additionally, our method is competitive compared to
standard ones (e.g., vanillaGANs) and outperforms an
off-the-shelf SocialGAN model trained on Argoverse,
after regularizing the latent space using loss functions
defined in Section II-E, while adding sample diversifica-
tion, as shown in the rest of the section. Our results on
the Argoverse test set ranked 5th in the Argoverse com-
petition and earned Honorable Mention in the Machine
Learning for Autonomous Driving (ML4AD) workshop
at Neurips 2019.

D. Latent Space Learning

To demonstrate the latent space is learned to be seman-
tically meaningful, we measure the k-nearest neighbor
(kNN) entropy [50] of the label distribution in the latent
space, using both our method and a vanilla GAN model
without an embedding loss.

The kNN entropy is computed as follows: First, we
generate a large number of S latent space samples
and obtain S′ local neighborhoods by sub-sampling S′

points, and k-nearest-neighbors sets. We then generate

the trajectories and their labels for each neighborhood,
and compute the entropy of the labels, which measures
how well we decouple distinct labels (low entropy in-
dicates decoupled labels). We select S = 1000, S′ =
30, k = 40 to provide ample coverage in the low-
dimensional latent space.

In the validation dataset, our learned latent space has
an average entropy of 0.55, with a standard deviation of
0.33. In contrast, the latent space from a vanilla GAN
has an average entropy of 1.45, with a standard deviation
of 0.29. The percentage of the majority vote label within
each neighborhood is 71.53% using our method and
50.94% using a vanilla GAN. This suggests that our
method successfully shapes the latent space, so as to
locally disentangle semantic space. In the remainder of
this section, we complete our claim that the learned space
is semantically meaningful by showing that far away
samples are generating trajectories with distinct labels
through FPS.
E. Latent Space Sampling

To show the effectiveness of our latent sampling
approach, we measure the MoN loss with and without
the FPS method. We test using a challenging subset of
the Argoverse validation dataset that filters out straight
driving with constant velocity scenarios, resulting in a
trajectory distribution that emphasizes rare events in the
data. As indicated in Figure 3(a), when the number of
samples increases, the prediction loss using FPS drops
faster compared to direct sampling. We note the im-
provement is larger in the regime of 2-6 samples, where
reasoning about a full roll-out of multiple hypotheses
is still practical in real-time systems, and we obtain an
improvement of 8%. Beyond the improved accuracy, the
proposed method is able to sample the additional modes
of the distribution of trajectories, which is validated in
Figure 3(b), where we compare the coverage of distinct
maneuver codes by sampled predictions and show that
FPS has better coverage with smaller numbers of sam-
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FPS Direct Sampling
(a) FPS provides accurate coverage of observed future

trajectory by generating rare turning samples.

FPS Direct Sampling
(b) FPS covers a low-likely lane change event that

matters for decision making for the ego car.
Fig. 4: Latent space samples (numbered dots) are shown
above their predicted trajectory representations. Blue:
observed past and future trajectories. Red: predicted
trajectory samples. Black: lane centers. Left column:
samples selected by FPS and their associated predic-
tions (numbers indicate sampling order). Right column:
samples using direct sampling, which only cover high
likelihood events.

ples. We further demonstrate this advantage with a small
number of samples in Section III-F.

F. Qualitative Examples

We show how FPS can be used to improve both pre-
diction accuracy and diversity coverage, by illustrating
two examples in Figure 4.

In the first example, as illustrated in Figure 4(a), our
method, as described in Algorithm 1, first generates
Nall = 200 samples in grey, and selects N = 5
samples using FPS (highlighted on the left column). By
selecting samples that are farther away, FPS is able to
produce rare events, such as a right turn, as labeled in
2, which matches with the observed future trajectory
and thus improves the prediction accuracy. On the other
hand, direct sampling (highlighted on the right column)
tends to sample points from more dense regions, which
lead to high likelihood events. We show two additional
challenging examples in Figure 5(a), where FPS is able
to reduce the prediction error, by covering turning events

when the vehicle is approaching an off-ramp and a full
intersection, respectively.

In the second example in Figure 4(b), although our
method predicts rare events that do not improve displace-
ment losses compared to direct sampling, they are still
important for decision making and risk estimation. Al-
though the target vehicle is most likely to go forward, it
is useful for our predictor to cover lane change behavior,
as labeled in 1, even with a low likelihood, since such
prediction could help avoid a possible collision if our ego
car is driving in the right lane. Similarly, in other two
examples, as shown in Figure 5(b), our method produces
events, such as merging and turning, which are unlikely
to happen, but are important to consider for robust and
safe decision making by the ego car.

IV. CONCLUSION

We propose a vehicle motion prediction method that
caters to both prediction accuracy and diversity. We
divide a latent variable into a learned semantic-level part,
which embeds discrete options, and a low-level part,
which encodes fine trajectory information. The learned
geometry in the semantic part allows efficient sampling
of diverse trajectories. The method is demonstrated to
achieve state-of-the-art prediction accuracy, while effi-
ciently obtaining trajectory coverage. Future work in-
cludes adding more complicated semantic labels such as
interactions, and exploring other sampling methods.
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