
Journal Pre-proof

An Anytime Algorithm For Constrained Stochastic Shortest Path Problems With
Deterministic Policies

Sungkweon Hong and Brian C. Williams

PII: S0004-3702(22)00186-2

DOI: https://doi.org/10.1016/j.artint.2022.103846

Reference: ARTINT 103846

To appear in: Artificial Intelligence

Received date: 14 October 2021

Revised date: 9 December 2022

Accepted date: 23 December 2022

Please cite this article as: S. Hong and B.C. Williams, An Anytime Algorithm For Constrained Stochastic Shortest Path Problems With
Deterministic Policies, Artificial Intelligence, 103846, doi: https://doi.org/10.1016/j.artint.2022.103846.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2022 Published by Elsevier.

https://doi.org/10.1016/j.artint.2022.103846
https://doi.org/10.1016/j.artint.2022.103846

An Anytime Algorithm For Constrained Stochastic
Shortest Path Problems With Deterministic Policies

Sungkweon Honga,∗, Brian C. Williamsa

aMassachusetts Institute of Technology, Cambridge, MA, USA

Abstract

Sequential decision-making problems arise in every arena of daily life and pose

unique challenges for research in decision-theoretic planning. Although there

has been a wide variety of research in this field, most of the studies have largely

focused on single objective problem without constraints. In many real-world ap-

plications, however, it is often desirable to bound certain costs or resources under

some predefined level. Constrained stochastic shortest path problem (C-SSP),

one of the most well-known mathematical frameworks for stochastic decision-

making problems with constraints, can formally model such problems, by in-

corporating constraints in the model formulation. However, it remains an open

challenge to produce a deterministic optimal policy with desirable computation

time due to its intrinsic complexity.

In this paper, we propose a method that produces an optimal and deter-

ministic policy for a C-SSP based on the Lagrangian duality theory and the

heuristic forward search method. To address the intrinsic complexity of C-SSP,

the proposed method is designed to have an anytime property. In other words,

the proposed algorithm tries to find a feasible but decent solution quickly, then

improves the solution incrementally until it converges to a true optimal solu-

tion. An extensive experimental evaluation on three problem domains shows

that the proposed method outperforms the state-of-the-art methods in terms of

∗Corresponding author
Email addresses: sk5050@mit.edu (Sungkweon Hong), williams@mit.edu (Brian C.

Williams)

Preprint submitted to Artificial Intelligence Journal December 29, 2022

the near-optimal solution with an optimality gap of less than 0.1%.

Keywords: Constrained stochastic shortest path problem, risk-bounded

planning, heuristic search

1. Introduction

Stochastic shortest path problem (SSP) is one of the most popular math-

ematical modeling frameworks for sequential decision-making problems under

uncertain environments [1]. The solution of an SSP problem is a policy that

minimizes the expected cost. In many of the real-world applications, however,5

naively minimizing the expected cost might not be desirable. For example,

when we want an unmanned aerial vehicle (UAV) to navigate to the goal as

fast as possible, it is also important to ensure the vehicle can complete the mis-

sion safely by staying outside of the unsafe regions. Moreover, many planning

problems have not single but multiple constraints. In the previous UAV exam-10

ple, avoiding unsafe region is not enough and the UAV also should be able to

complete the mission with the available battery for safety.

Constrained SSP (C-SSP), an extension of SSP, models such problems by

having constraints on the secondary cost functions. Due to its generality, C-

SSP has been widely studied and used in many practical applications, including15

telecommunication networks and resource management [2]. However, one of

the major differences between SSP and C-SSP is that every optimal policy for

C-SSP might be stochastic [2]. Although stochastic policies could be mathe-

matically optimal, they are often undesirable in many real-world applications

due to lack of reliability [3, 4, 5]. Executing a stochastic policy requires the20

system to decide an action based on a dice roll. This can raise questions about

not only accountability but also explainability, especially in the safety-critical

applications such as autonomous driving. In addition, Paruchuri et al. [6] de-

scribed the difficulty of using stochastic policies in multi-agent settings without

additional communications. Commercial aircraft operation is a representative25

example where multiple aircraft are operated by different stakeholders, such

2

as flight crews, airline ground center and air traffic control agents. Since a

predictable and harmonized plan is crucial in this coordinated setting, it is im-

practical to use stochastic policies for aircraft routing [4, 5]. Therefore, it is

appealing to produce deterministic policies; however, this significantly increases30

the complexity of the problem. Feinberg showed that finding an optimal deter-

ministic policy for a C-SSP is NP-complete [7].

In this paper, our main contribution is an anytime algorithm that guaran-

tees to produce a deterministic optimal policy for a C-SSP. Given the fact that

solving the problem exactly is highly difficult, we focus on developing an algo-35

rithm that produces suboptimal but feasible solutions quickly, and is able to

obtain an optimal solution eventually given enough time. Such anytime prop-

erty is extremely important in the time-critical applications where constraints

are safety-related. In those applications, it is highly desirable to have a feasible

but decent solution quickly and we can improve the solution if time allows.40

To accomplish such property, we propose a two-stage approach. In the first

stage, we solve the Lagrangian dual of the original C-SSP. Then, if there is a

duality gap, we obtain an optimal solution by closing the gap in the second stage.

The crucial idea that makes our algorithm efficient is, throughout the process,

using a heuristic forward search to avoid exploring the entire search space. In45

addition, we provide a provable approximation scheme that can further improve

the performance of the algorithm at the cost of small efficiency loss.

Finally, we demonstrate our proposed algorithm in three different domains

including widely used benchmark problems and a risk-bounded aircraft routing

problem under uncertain weather conditions. For the evaluation, we compare50

our proposed anytime algorithm with MILP-based algorithm [3] and a variant

of i-dual [8, 9].

1.1. Related work

The most widely used approach to a C-SSP is reducing it as a linear pro-

gramming problem based on occupation measure [2, 10], similar to the LP-based55

approach for unconstrained SSP, which can be solved in polynomial time. Re-

3

cently, Trevizan et al. [8, 9] proposed a more efficient algorithm for C-SSP called

i-dual which exploits a heuristic search. Instead of encoding and solving the en-

tire search space of a C-SSP, as in [2] and [10], i-dual incrementally enlarges

search spaces based on heuristics and solves sequence of LPs on those restricted60

search spaces, until the solution is found. They proved that the algorithm is

optimal if the heuristics used in the algorithm are admissible. They also showed

that i-dual dominates the LP-based method in most of their test cases, and the

scalability could be even more improved with non-admissible heuristics at the

cost of completeness and optimality.65

Since the performance of i-dual is highly dependent on the quality of heuris-

tics, Trevizan et al. [11] and Baumgartner et al. [12] introduced occupation

measure heuristics for probabilistic planning problem when there is knowledge

of its factored representation based on probabilistic SAS+ [13]. In addition, they

introduced i2-dual, that couples i-dual and occupation measure heuristics, and70

showed it performed better than i-dual with well-known domain-independent

heuristics such as determinization-based heuristics.

As mentioned before, however, every optimal policy for C-SSP might be

stochastic [2], which is not desirable in many real-world applications due to

practical reasons such as lack of reliability and difficulty in coordination [3, 4,75

5, 6]. As an attempt to produce an optimal deterministic policy for a C-SSP,

Dolgov and Durfee [3] proposed a mixed integer linear programming (MILP)

based approach. Although theoretical complexity remains the same as proved

in [7], the MILP-based approach can be solved by highly optimized commercial

solvers and showed reasonable performance in their empirical results. However,80

it still suffers from high computational complexity, making it difficult to use in

online planning, as we show in our experiments.

Taking another approach, there have been attempts to solve stochastic deci-

sion making problems with constraints using heuristic forward search methods.

Pedro et al. [14] introduced an algorithm called RAO* to solve finite-horizon85

risk-bounded partially observable Markov decision process (POMDP) with de-

terministic policies. RAO* is basically based on AO* [15], but it keeps evalu-

4

ating a remaining risk budget that has not been used so far and an admissible

risk that appears in the future so that it can prune overly risky parts of the

tree. Although the pruning enables RAO* to find a risk-bounded policy fast, it90

is also possible to overly prune the search tree which results in suboptimality.

In addition, the algorithm cannot deal with multiple constraints or a loop in

the search graph which makes it limited to be applied to general C-SSP.

Motivated by RAO*, another heuristic forward search-based algorithm has

been developed for finite-horizon risk-bounded SSP with deterministic policies95

[5]. Their work is a predecessor of this work in the sense that both algorithms

share the same structure: the first stage solves the Lagrangian dual and the

second stage closes the duality gap, if it exists, where heuristic forward search

is used for both stages. However, the algorithm proposed in [5] is limited to

finite-horizon without a loop in the search graph and also to a single constraint100

case, whereas this work extends it to general C-SSP.

To summarize, our approach differs from the LP-based methods, including

i-dual and i2-dual, in that it guarantees to produce a deterministic optimal

policy for a C-SSP where the solutions produced by LP-based methods might

be stochastic. Our approach also differs from MILP-based method in several105

different points. First, instead of solving C-SSP directly, the proposed method

firstly solves an approximated problem of C-SSP based on Lagrangian dual

and incrementally closes the gap, if it exists, which naturally gives an anytime

property. In addition, the proposed approach uses a heuristic forward search

to avoid exploring the entire search space. The latter point relates this work110

to recent works on risk-bounded probabilistic planning algorithms. However,

this work generalizes the previous works by allowing the method to consider

multiple constraints and loops in the solution graph. Finally, we provide an

approximation scheme to scale the algorithm at the cost of optimality.

1.2. Organization115

The remainder of this paper is organized as follows. Section 2 summarizes

the definitions and formalism. Section 3 elaborates our proposed algorithm for

5

overview and explanation of two stages of the algorithm, respectively. Section 4

shows an approximation scheme that can be applied to our algorithm. Evalu-

ation results are reported and analyzed in Section 5. Finally, we conclude and120

present future works in Section 6.

6

2. Background

2.1. Stochastic shortest path problem

A stochastic shortest path problem (SSP) is a tuple P = 〈S, s̄,G,A, T, C〉 in

which S is a set of finite states; s̄ ∈ S is the initial state; G ⊂ S is a set of goal125

states; A is a set of finite actions; T : S ×A× S → [0, 1] is the state transition

function, where T (s, a, s′) = Pr(s′|s, a) is the probability of being in state s′

after executing action a in the state s; C : S × A → R+ is the cost function,

where C(s, a) is the cost of executing action a in state s [1]. Note that each goal

state is absorbing and cost-free, i.e., T (s, a, s) = 1 and C(s, a) = 0 for every130

s ∈ G and a ∈ A(s).

A solution to an SSP is a policy π : S × A → [0, 1] which maps states to a

probability distribution over actions. If a policy maps every state to a proba-

bility distribution with a single outcome, the policy is called deterministic, and

is called stochastic otherwise. In the former case, we denote π(s) as the action135

selected by the policy π for the state s. In addition, a policy is called proper if

it reaches a goal state with probability 1, and is called improper otherwise.

For a policy π, let

V π(s) = E

[∞∑
t=0

C(st, at)

∣∣∣∣s0 = s, π

]
(1)

denote the value function of π that provides the total expected cost from s until

one of the goals G is reached. Note that we assume that there is at least one

proper policy. In addition, we assume that every improper policy yields infinite

cost, i.e., V π(s̄) = ∞ for any improper policy π. Then, an optimal solution

to an SSP is a policy π∗ which minimizes the value function evaluated at the

initial state s̄, i.e.,

π∗ = argmin
π∈Π

V π(s̄)

where Π is a set of policies. Note that we denote V ∗ as an optimal value function

7

V π
∗

which is given by the well-known Bellman equation:

V ∗(s) =

0 if s ∈ G,

mina∈A(s)

[
C(s, a) +

∑
s′∈S T (s, a, s′) · V ∗(s′)

]
otherwise.

2.2. Constrained stochastic shortest path problem

A constrained stochastic shortest path problem (C-SSP) is a tuple H =

〈S, s̄,G,A, T, ~C, ~∆〉 in which S is a set of finite states; s̄ ∈ S is the initial state;140

G ⊂ S is a set of goal states; A is a set of finite actions; T : S ×A×S → [0, 1] is

the state transition function, where T (s, a, s′) = Pr(s′|s, a) is the probability of

being in state s′ after executing action a in state s; ~C is the indexed set of cost

functions {C0, ..., CN}, where each Ci : S × A → R+ is the cost function and

Ci(s, a) is the i-th cost of executing action a in the state s; and ~∆ is the indexed145

set of bounds {∆1, . . . ,∆N}, where ∆i is the bound for i-th cost function for

i = 1, . . . , N [2, 8]. Note that each goal state is absorbing and cost-free, i.e.,

T (s, a, s) = 1 and Ci(s, a) = 0 for every s ∈ G, a ∈ A(s) and i = 0, . . . , N .

Also note that we refer to C0 as the primary cost function and the rest as the

secondary cost functions.150

The UAV operation we introduced earlier is one of the examples of C-SSP,

where we want the UAV to navigate to the goal as fast as possible while main-

taining safety by avoiding unsafe regions. Suppose the set of states are joint

positions of UAV and unsafe regions. Then each action takes the UAV from one

waypoint to one of its adjacent waypoints while each unsafe region, such as a155

convective weather cell, stochastically moves based on the transition function.

Then, since we want to minimize the flight time, the primary cost function can

be defined as the flight time associated with each navigation action. Finally,

the secondary cost function maps the state and action to the impact of en-

countering an unsafe region, which is upper bounded by the user-defined safety160

threshold ∆. Note that it is usually not trivial to define the secondary cost

function that measures the impact of a safety violation, which will be discussed

in Section 5.2.3 more in detail.

8

Similar to SSP, we assume that there exists a proper policy and every im-

proper policy yields infinite primary cost. Then, an optimal solution to a C-SSP

is a policy π∗ which minimizes the total expected primary cost, but in addition,

the expected cost of the secondary cost function Ci should be upper bounded

by ∆i for i = 1, . . . , N . In other words, an optimal policy π∗ for a C-SSP is

defined as follows:

π∗ = argmin
π∈Π

E

[∞∑
t=0

C0(st, at)

∣∣∣∣s0 = s̄, π

]

subject to

E

[∞∑
t=0

Ci(st, at)

∣∣∣∣s0 = s̄, π

]
≤ ∆i,

for every i = 1, . . . , N , where Π is the set of all policies. Note that every optimal165

policy for a C-SSP might be stochastic [2]. In this paper, however, we limit the

policy space to deterministic ones as discussed in Section 1.

2.3. (L)AO*

An SSP can be represented as an AND/OR graph as illustrated in Fig. 1a

[15, 16] where the root node is the initial state s̄. Each state, represented as a170

square in Fig. 1a, is an OR-node that can choose from different actions. On the

other hand, each AND-node, represented as a circle in Fig. 1a, is an intermediate

node that splits to different states reachable based on transition function. Note

that each edge from an AND-node is a weighted edge where the weight is a

probability associated with the transition. A policy of an SSP is a sub-graph175

with s̄ as the root node, in which each OR-node activates one of its children

and each activated AND-node activates all of its children, recursively, until all

tip nodes are goal states. An equivalent representation using hyperedges is

illustrated in Fig. 1b.

AO* is a heuristic search algorithm that finds an optimal solution to a prob-

lem that can be represented as an AND/OR graph [15]. AO* is one of the

dynamic programming algorithms and it estimates value function V ∗ by incre-

mentally expanding the graph guided by heuristics. AO* starts at the root node

9

(a) AND/OR graph representation. (b) Hyperedges representation.

Figure 1: Graph representations of an SSP.

and alternates between two main steps: expansion and backup. In the expan-

sion step, it expands one of the tip nodes in the current best solution graph.

In the backup step, it updates values for the expanded node and its ancestors,

by evaluating different actions, marking the best actions for the OR-nodes (or

hyperedges) with the minimal expected cost, and updating the cost values based

on the marked actions. The current best solution graph is then updated by fol-

lowing the marked actions from the root node. Finally, the algorithm terminates

when all the tip nodes in the current best solution graph are terminal nodes.

Similar to A* algorithm, AO* estimates the values of non-terminal tip states

based on heuristic function h. Then, AO* is optimal, given that the heuristic

function is admissible, i.e.,

h(s) ≤ V ∗(s)

for every s ∈ S, similar to the A* algorithm [16].180

However, AO* can only be applied to an acyclic AND/OR graph, which is

a very strong assumption on the SSP. LAO*, a variant of AO*, is a heuristic

algorithm that generalizes AO* to cyclic AND/OR graphs and has been widely

used to solve SSPs [16]. To deal with a cycle, LAO* combines AO* with dynamic

programming algorithms, such as the value iteration (VI) or policy iteration.185

In other words, LAO* expands nodes in the same manner as AO*, but instead

of update values and best solution graph by backward induction, it performs a

dynamic programming algorithm such as the VI on the set of states that might

10

Algorithm 1: LAO*

Input: SSP instance P, VI error tolerance η

1 initialize AND/OR graph G with initial state s̄

2 repeat

3 perform postorder traversal for G and for each visited state s,

4 if s has not been expanded then

5 expand s and for each new state s′ added to G,

6 if s′ ∈ G then

7 V (s′) = 0

8 else

9 V (s′) = h(s)

10 else

11 a∗ ← argmina∈A(s)

[
C(s, a) +

∑
s′ T (s, a, s′) · V (s′)

]
12 mark a∗ as the best action of s

13 V (s)← C(s, a∗) +
∑
s′ T (s, a∗, s′) · V (s′)

14 until LAO*-Convergence-Test(P, G, η)

be affected by the recently expanded node.

In fact, LAO* is a class of algorithms, and has several different variations.190

One of the most efficient and widely used versions of the LAO* is the one

introduced in its original paper [16]. This version of LAO* reduces the number

of dynamic programming algorithm runs by combining LAO* and depth-first

search. Throughout this paper, LAO* refers to this version of the algorithm

together with the VI as a dynamic programming algorithm, which is shown in195

Algorithm 1 and 2. Please refer to [16] for more details and grounded examples

of LAO*.

2.4. Lagrangian Dual

In this section, we briefly review Lagrangian duality theory that is used for

our proposed method. Although Lagrangian dual is general, we particularly

11

Algorithm 2: LAO*-Convergence-Test

Input: SSP instance P, AND/OR graph G, VI error tolerance η

1 repeat

2 if best solution graph of G has unexpanded tip state then

3 return false

4 E ← 0

5 for s in best solution graph do

6 v ← V (s)

7 a∗ ← argmina∈A(s)

[
C(s, a) +

∑
s′ T (s, a, s′) · V (s′)

]
8 mark a∗ as the best action of s

9 V (s)← C(s, a∗) +
∑
s′ T (s, a∗, s′) · V (s′)

10 E ← max(E, |v − V (s)|)

11 update best solution graph of G

12 until E < η

13 return true

focus on Lagrangian dual for an optimization problem with a finite domain

which is defined as follows:

(P) min
x∈X

f(x)

s.t. gi(x) ≤ 0 for i = 1, . . . ,m,

where X is a finite set, f : X → R, gi : X → R for i = 1, . . . ,m.

First, we define the Lagrangian function as follows.200

Definition 2.1. (Lagrangian function) Consider the optimization problem (P).

For λ ∈ Rm+ and x ∈ X , the Lagrangian function is defined as follows:

L(λ, x) = f(x) + λ> · g(x),

where g = [g1, . . . , gm]> and λ = [λ1, . . . , λm]> ∈ Rm+ , and λ is said to be the

Lagrangian multiplier.

12

Note that a Lagrangian function for any x ∈ X is linear in Lagrangian

multiplier. Next, we define a relaxed problem of (P) with given Lagrangian

multiplier as follows.205

Definition 2.2. (Lagrangian relaxation) Consider an optimization problem

(P). For some λ ∈ Rm+ , consider another optimization problem that is defined

as follows:

L(λ) = min
x∈X

L(λ, x)

where L(λ, x) is the Lagrangian function. Then, L(λ) is said to be the La-

grangian relaxation of (P) with Lagrangian multiplier λ.

The Lagrangian relaxation can be thought of as a penalty version of the orig-

inal problem where the second term of the Lagrangian function acts as a penalty

for constraint violation with non-negative Lagrangian multiplier. In addition,210

L(λ) is the pointwise minimum of finite linear functions, hence it is a piecewise

linear concave function [17], which is shown in the following proposition.

Proposition 2.1. Consider an optimization problem (P) and its Lagrangian

functions L(λ, x). Suppose L(λ) = min
x∈X

L(λ, x). Then L(λ) is a piecewise linear

concave function of λ.215

Proof. The concavity of L(λ) can be shown as follows with any α ∈ [0, 1] and

λ1, λ2 ∈ Rm+ :

L(αλ1 + (1− α)λ2) = L(αλ1 + (1− α)λ2, x) for some x ∈ X

= αL(λ1, x) + (1− α)L(λ2, x)

≥ α min
x′∈X

L(λ1, x
′) + (1− α) min

x′∈X
L(λ2, x

′)

= αL(λ1) + (1− α)L(λ2).

To show that L(λ) is piecewise linear, we need to show that there is a finite

family Q of closed domains such that Rm+ =
⋃
Q and L(λ) is linear on every

domain in Q [18]. Let Qx for x ∈ X be a subset of Rm+ such that L(λ) = L(λ, x),

i.e., Qx = {λ ∈ Rm+ | L(λ) = L(λ, x)}. Let Q = {Qx}x∈X . Then Q is finite

13

and Rm+ =
⋃
Q, where the former is due to the finiteness of X and the latter

is due to the definition of L(λ). Now, we show that each Qx ∈ Q is a convex

region by contradiction. For this, let q1, q2 ∈ Qx and suppose there exists

q3 = αq1 + (1 − α)q2 for some α ∈ [0, 1] such that q3 6∈ Qx and q3 ∈ Qy for

Qy ∈ Q that is different from Qx. Then,

L(q3, y) = min
x′∈X

L(q3, x
′)

< L(q3, x)

= L(αq1 + (1− α)q2, x)

= αL(q1, x) + (1− α)L(q2, x)

= αmin
x′∈X

L(q1, x
′) + (1− α)min

x′∈X
L(q2, x

′)

≤ αL(q1, y) + (1− α)L(q2, y)

= L(q3, y),

which is a contradiction.

Finally, a boundary point p of a set Qx either has 0 on some coordinate or at

the intersection of L(λ, x) and L(λ, y) for some y ∈ X . First, note that L(λ, x)

is well-defined for λ with 0 component. In addition, if p is at the intersection of

L(λ, x) and L(λ, y) then p ∈ Qx and p ∈ Qy since L(λ) is continuous. Therefore,220

Qx is a closed convex region which completes the proof.

Finally, the Lagrangian dual is defined as follows.

Definition 2.3. (Lagrangian dual) Consider an optimization problem (P).

Then

L∗ = L(λ∗) = max
λ∈Rm+

L(λ) (2)

is said to be the Lagrangian dual of (P).

Note that, due to Proposition 2.1, the Lagrangian dual problem is a piecewise

linear concave optimization, which also can be interpreted as finding the tightest

14

possible lower bound on the optimal cost f∗. In addition, the Lagrangian dual

has the following property:

L∗ ≤ f∗, (3)

which is known as weak duality [17]. Note that it is called strong duality if the225

equality holds, which does not generally hold for discrete optimization such as

(P).

Fig. 2 illustrates Lagrangian dual for an example of (P) with single constraint

(m = 1), where x and y−axes represent Lagrangian multiplier and Lagrangian

function value, respectively. In addition, each line shows Lagrangian function230

for x ∈ X , where y−intercept and gradient are f(x) and g(x), respectively, so

that green solid and red dotted lines are Lagrangian functions with feasible and

infeasible solutions, respectively. Finally, bold lines show L(λ), which is piece-

wise linear concave, with dual optimum L∗ and associated Lagrangian multiplier

λ∗.235

By noting that any feasible solution has negative gradient, the weak duality

can be visually proved. Given dual optimum L∗, none of the feasible solutions

can have f(x) (y−intercept) lower than L∗ without intercepting piecewise linear

concave function, in which case the assumption of dual optimum L∗ is violated.

The example also shows a counter-example of strong duality since L∗ < f∗. In240

addition, the feasible solution associated with the dual optimum (denoted as x′

in the figure) has larger cost than the optimal solution x∗.

15

Figure 2: (λ,L) space representing solutions for an optimization problem (P) with a single

constraint. Each line represents Lagrangian function of a solution x where green solid lines and

red dotted lines show feasible and infeasible solutions, respectively. In addition, y−intercept

and gradient of a line are f(x) and g(x), respectively, and L(λ) is shown as bold lines.

16

3. Anytime Algorithm for C-SSP

In this section, we introduce an anytime algorithm that finds an optimal

deterministic policy for a C-SSP. The algorithm leverages two main theories,245

which are Lagrangian duality theory and heuristic forward search. In the pro-

posed method, we assume that admissible heuristics for costs are available. Note

that the method is still valid even though there is no available heuristics because

the “zero heuristic” can always be an admissible heuristic.

The proposed algorithm has two stages. In the first stage, we Lagrangian-250

ize the constraints on the secondary costs of a C-SSP, then obtain an optimal

solution to the Lagrangian dual. Then in the second stage, we reduce a duality

gap from the dual optimum, if the gap exists, by incrementally enumerating

k-best policies in terms of a Lagrangian function, until it converges to a primal

optimal solution. We begin this section with an overview of the proposed algo-255

rithm, then present technical details of the algorithm in the later sections more

in detail.

3.1. Overview of the algorithm

A C-SSP is an optimization problem that can be formulated as follows:

min
π∈Π

f(π)

s.t. gi(π) ≤ 0 for i = 1, . . . , N,

where Π is the set of all deterministic policies and

f(π) = E

[∞∑
t=0

C0(st, at)

∣∣∣∣s0 = s̄, π

]

gi(π) = E

[∞∑
t=0

Ci(st, at)

∣∣∣∣s0 = s̄, π

]
−∆i.

Now, we can define the Lagrangian function as follows:

L(λ, π) = f(π) + λ> · g(π), (4)

where λ = [λ1, . . . , λN]> ∈ RN+ and g = [g1, . . . , gN]>.

17

In addition, we can define the Lagrangian relaxation as follows:

L(λ) = min
π∈Π

L(λ, π). (5)

Note that the number of policies (|Π|) is finite since there are finite number260

of states and actions in a C-SSP. Therefore, the optimization problem for C-

SSP has the form of (P) introduced in Section 2.4, and L(λ) is piecewise linear

concave (Proposition 2.1).

Finally, the best lower bound, or dual optimum, for f∗ can be found by

solving the Lagrangian dual problem, defined as follows:

L∗ = L(λ∗) = max
λ∈RN+

L(λ). (6)

Algorithm 3 summarizes our dual-based anytime algorithm. In line 1, we first

solve the Lagrangian dual problem in Eq. (6) and compute a dual optimal policy265

πd. According to the weak duality, the Lagrangian function value L(λ∗, πd)

is a lower bound (LB) of the primal optimal cost (f∗). Also, the cost of the

incumbent policy πinc is an upper bound (UB) of the primal optimal cost. Lines

2–4 correspond to the case when the dual optimal solution coincides with the

primal optimal solution (i.e., the strong duality holds) in which case we found270

an optimal solution to C-SSP. Lines 5–11 correspond to the case when there

might be a duality gap (i.e., only the weak duality holds), in which case we

close the gap until the primal optimal solution is obtained (lines 9–11) or we

prove the infeasibility (lines 7–8).

In the rest of this section, we begin by showing an algorithm to solve a275

Lagrangian relaxation of a C-SSP with fixed λ (Eq. (5)), which is used as a

subroutine throughout the proposed method. Then we continue to introduce

two main pieces of Algorithm 3 which are 1) how to solve the Lagrangian dual

problem in line 1 (Lagrangian-Dual) and 2) how to close the gap in line 6

(Closing-Gap), in the following subsections.280

3.2. Solving Lagrangian relaxation of C-SSP with fixed λ

One of the best advantages of the Lagrangian relaxation of the C-SSP in

Eq. (5) is that, given a fixed λ, it is now simply an unconstrained SSP with a

18

Algorithm 3: Anytime Algorithm for C-SSP

Input: C-SSP instance H, upper bound of Lagrangian multiplier λUB,

VI error tolerance η, approximation parameters M and ρ

1 πd, πinc,LB,UB, λ∗, G← Lagrangian-Dual(H, λUB, η,M, ρ)

2 if LB = UB then

3 π∗ ← πd

4 return π∗

5 else

6 πinc,UB← Closing-Gap(πd, πinc,LB,UB, λ∗,H, G, η)

7 if UB =∞ then

8 return infeasible

9 else

10 π∗ ← πinc

11 return π∗

cost function f(π) + λ> · g(π) instead of f(π). Accordingly, the value function

of a policy π for the Lagrangian relaxation is defined as follows:

V π(s) = λ̄> · ~V π(s) (7)

where λ̄ = [1, λ1, . . . , λN]>, ~V π(s) = [V π0 (s), . . . , V πN (s)]>,

V π0 (s) = E

[∞∑
t=0

C0(st, at)

∣∣∣∣∣s0 = s, π

]
and

V πi (s) = E

[∞∑
t=0

Ci(st, at)

∣∣∣∣s0 = s, π

]
−∆i

for i = 1, . . . , N . Note that the proper policy assumptions that we made for

SSP in Section 2.1 hold for the Lagrangian relaxation since a proper policy for

a C-SSP is simply still proper and any improper policy yields infinite cost given

λ ∈ RN+ .285

19

Algorithm 4: Lagrangian-Relaxation

Input: C-SSP instance H, AND/OR graph G, Lagrangian multiplier λ,

VI error tolerance η

1 if G is not empty then

2 perform VI on G

3 update best solution graph of G

4 else

5 initialize graph G with the initial state s̄

6 f, g, π ← WLAO*(H, G, λ, η)

7 L(λ)← f + λ> · g

8 return L(λ), f, g, π

Then, an optimal solution to the Lagrangian relaxation with fixed λ is a

policy π∗ which minimizes the modified value function in Eq. (7) evaluated at

the initial state s̄, i.e.,

π∗ = argmin
π∈Π

V π(s̄)

where Π is a set of policies. Therefore, the Lagrangian relaxation of the C-SSP

can be solved by a modified LAO* which estimates the value function V ∗ based

on Eq. (7) instead of Eq. (1), with a set of admissible heuristic functions hi for

every i = 0, . . . , N . Note that defining individual value functions is not necessary

for solving Lagrangian relaxation of a C-SSP, and we could use original LAO* by290

using weighted cost function C ′ = C0 +
∑N
i=1 λ

> ·Ci. However, individual value

functions for each secondary cost functions are needed to check the feasibility

of a policy in terms of the original C-SSP.

Algorithm 4 shows the Lagrangian relaxation algorithm of a C-SSP with

fixed λ, and Algorithm 5 and 6 show modified LAO* (WLAO*). The only295

notable difference between WLAO* and LAO* is that WLAO* chooses a best

action based on the weighted cost with λ and updates values for each cost

separately (lines 10–13 of Algorithm 5). This difference is also applied to the

20

Algorithm 5: WLAO*

Input: C-SSP instance H, AND/OR graph G, Lagrangian multiplier λ,

VI error tolerance η

1 repeat

2 perform postorder traversal for G and for each visited state s,

3 if s has not been expanded then

4 expand s and for each new state s′ added to G,

5 if s′ ∈ G then

6 V0(s′) = 0, Vi(s
′) = −∆i for every i = 1, . . . , N

7 else

8 V0(s′) = h0(s), Vi(s
′) = hi(s) for every i = 1, . . . , N

9 else

10 a∗ ← argmina∈A(s) λ̄
> ·
[
~C(s, a) +

∑
s′ T (s, a, s′) · ~V (s′)

]
11 mark a∗ as the best action of s

12 for i = 0, . . . , N do

13 Vi(s)← Ci(s, a
∗) +

∑
s′ T (s, a∗, s′) · Vi(s′)

14 until WLAO*-Convergence-Test(H, G, λ, η)

15 f ← V0(s̄), g ← [V1(s̄), . . . , VN (s̄)], π ← best solution graph of G

16 return f, g, π

convergence test (Algorithm 6) as well. In addition, as will be clear later,

we need to solve Lagrangian relaxation several times with different λ’s in the300

proposed algorithm. However, it is usually better to use already generated, and

partially expanded graph, instead of starting with new graph from scratch for

solving a Lagrangian relaxation with changed λ value. Therefore, if an existing

AND/OR graph G is provided, Algorithm 4 initially performs value iteration

with changed λ to ensure all the states’ values are computed correctly (lines305

1–3 of Algorithm 4), and then proceed to run WLAO* to solve the Lagrangian

relaxation.

21

Algorithm 6: WLAO*-Convergence-Test

Input: C-SSP instance H, AND/OR graph G, Lagrangian multiplier λ,

VI error tolerance η

1 repeat

2 if best solution graph of G has unexpanded tip state then

3 return false

4 E ← 0

5 for s in best solution graph do

6 v ← λ̄> · ~V (s)

7 a∗ ← argmina∈A(s) λ̄
> ·
[
~C(s, a) +

∑
s′ T (s, a, s′) · ~V (s′)

]
8 mark a∗ as the best action of s

9 for i = 0, . . . , N do

10 Vi(s)← Ci(s, a
∗) +

∑
s′ T (s, a∗, s′) · Vi(s′)

11 E ← max(E, |v − λ̄> · ~V (s)|)

12 update best solution graph

13 until E < η

14 return true

3.3. Stage 1: Solving Lagrangian dual of C-SSP

We now introduce an algorithm for solving the Lagrangian dual of a C-

SSP shown in Eq. (6). Equipped with Lagrangian-Relaxation algorithm (Algo-310

rithm 4) that is able to compute a Lagrangian function value L(λ) and gradients

g at λ, we can use general optimization methods such as the subgradient method

[19]. However, it has been shown that a piecewise linear concave optimization

can be efficiently solved with an exact line search, especially when there are

only a few side constraints [20, 21, 22, 23, 24]. We follow one of the simple and315

popular choices with the coordinate search, where the exact line search is per-

formed for each coordinate direction sequentially [22, 23, 24]. In the following,

we first illustrate the algorithm based on an example with two secondary costs

22

Figure 3: Graphical representation of a Lagrangian function L(λ) of an example C-SSP with

two secondary cost functions. The graph shows (λ,L) space on the left where Lagrangian

functions of each policy are represented as planes, and one of the associated policies that is

represented with the dark plane is shown on the right.

without details. Then we proceed to show detailed algorithm with Algorithm 7

in the later of this section.320

For the illustration, consider an example Lagrangian function L(λ) of a C-

SSP with two secondary cost functions shown in Fig. 3. The x, y−axes rep-

resent each coordinate of Lagrangian multiplier λ, and the z−axis represents

Lagrangian function value L(λ, π). Note that Lagrangian functions for each de-

terministic policy π can be represented as planes in the graph. Also note that325

z−intercept is f(π) and the gradient of a plane in each λi direction is gi(π),

which implies that a plane with non-positive gradients for every λi direction is

a feasible policy. Finally, Fig. 3 shows a lower envelope of Lagrangian functions

for all the deterministic policies (i.e., L(λ)), which can be theoretically found

by solving Lagrangian relaxations of C-SSP (Eq. (5)) for every λ.330

The goal of the first stage is finding the dual optimum λ∗ from some initial

λ. In the initial iteration, we perform an exact line search on the direction of the

first coordinate, i.e., λ1 (Fig. 4a). The exact line search is an one-dimensional

piecewise linear concave optimization (Fig. 4b), which will be explained later.

Then, given an updated λ, we perform an exact line search on the direction335

of the second coordinate (Fig. 4c and Fig. 4d). After performing exact line

23

(a) In the first iteration of the algorithm, we

optimize the first coordinate of λ given the

initial λ.

(b) Optimizing a single coordinate of λ in (a)

results in a piecewise linear concave optimiza-

tion.

(c) Given updated λ from the first iteration,

we optimize the second coordinate of λ.

(d) Optimizing a single coordinate of λ in (c)

results in a piecewise linear concave optimiza-

tion.

Figure 4: Illustration of the Lagrangian-Dual algorithm (Algorithm 7).

search(es) for every coordinate(s), if any of the line searches for a coordinate

has improved the Lagrangian function value, then we keep iterating the process,

and terminate otherwise.

Although a coordinate search works well in many cases, it has some patho-340

logical cases where the search gets stuck at the edge of the hyperplanes which

might be a non-optimal point [25]. When those pathological cases happen,

Algorithm 7 may not be able to find a dual optimal solution for the C-SSP.

24

However, this does not affect the optimality of the proposed algorithm, and a

true optimal solution can still be obtained in the second stage of the algorithm,345

which will be shown in the subsequent section. In fact, the proposed algorithm

remains optimal if a solution returned by Algorithm 7 is based on a Lagrangian

relaxation with any λ. Therefore, we can optionally terminate Algorithm 7 be-

fore it converges to the dual optimum, when the successive Lagrangian function

value change is small enough, or when the number of iterations is large enough,350

compared to the given approximation parameters.

Algorithm 7 shows the Lagrangian dual algorithm illustrated above. The

inputs of the algorithm are a C-SSP problem instance H, upper bound of La-

grangian multiplier λUB, a VI error tolerance η for WLAO*, and approximation

parameters M and ρ. The algorithm starts by initializing an AND/OR graph355

and iteration count k as 1. Since none of the solutions has been found at this

point, UB is set as infinity and incumbent solution πinc is None. In addition,

initially λ is set as zero vector. Note that any initial λ can be used, but we use

zero vector as initial λ since we can detect the trivially feasible problem and

return the solution without further computation by solving the relaxed C-SSP360

with zero Lagrangian multiplier in the beginning of the algorithm. For this,

after initialization, the algorithm solves a Lagrangian relaxation (Eq. (4)) with

initial λ (line 2). If the policy found with zero Lagrangian multiplier is feasible,

then it implies that the problem is trivially feasible, hence this policy is optimal

to the C-SSP problem (lines 3–5). Otherwise, we proceed to solve for the dual365

optimum (lines 6–13).

If the problem is not trivially feasible, then we iteratively perform exact line

searches as illustrated in Fig. 4b and Fig. 4d for each coordinate (lines 8 and 9).

Finally, there are two termination conditions. First of all, if the number of side

constraints is 1 (N = 1), then the coordinate search with exact line search con-370

verges with a single iteration, hence we return. Second, if the difference between

subsequent Lagrangian function values is below the approximation parameter ρ,

then it implies that the search has almost converged and we terminate. Finally,

if the number of iterations has reached the maximum iteration parameter M ,

25

Algorithm 7: Lagrangian-Dual

Input: C-SSP instance H, upper bound of Lagrangian multiplier λUB,

VI error tolerance η, maximum iteration number M , optimality

tolerance ρ

1 initialize AND/OR graph G with initial state s̄, iteration count k ← 1,

upper bound UB←∞, incumbent policy πinc ← none, Lagrangian

multiplier λ← 0

2 L, f, g, π ← Lagrangian-Relaxation(H, G, λ, η)

3 if gi ≤ 0 for every i = 1, . . . , N then

4 LB← f , UB← f , πd ← π, πinc ← π, λ∗ ← λ

5 return πd, πinc, LB, UB, λ∗, G

6 while true do

7 Lprev ← L

8 for i = 1, ..., N do

9 L, π, πinc,LB,UB, λ,G←

1d-Lagrangian-Dual(H, G, λ, λUB,UB, πinc, i, η)

10 k ← k + 1

11 if N = 1 or |L− Lprev| ≤ ρ or k > M then

12 πd ← π, λ∗ ← λ

13 return πd, πinc,LB,UB, λ∗, G

then we terminate the first stage as well. Note that ρ and M can be set as zero375

and ∞, respectively, if no approximation is used in the first stage.

Now, we turn our attention to the exact line search that has been used as a

subroutine in line 9 of the Algorithm 7. In fact, the exact line search is an one-

dimensional Lagrangian dual, which is also an one-dimensional piecewise linear

concave optimization. We apply a bisection-like method shown in Algorithm 8,380

which is proved to be effective for one-dimensional piecewise linear concave

optimizations [26, 27, 28]. Similar to Algorithm 7, Algorithm 8 starts by solving

26

Algorithm 8: 1d-Lagrangian-Dual

Input: C-SSP instance H, AND/OR graph G, Lagrangian multiplier λ,

upper bound of Lagrangian multiplier λUB, upper bound UB,

incumbent policy πinc, coordinate i, VI error tolerance η

1 λ0 ← λ, λ0
i ← 0, λ∞ ← λ, λ∞i ← λUB

i

2 L(λ0), f0, g0, π0 ← Lagrangian-Relaxation(H, G, λ0, η)

3 if g0
j ≤ 0 for every j = 1, . . . , N and f0 < UB then

4 UB← f0, πinc ← π0

5 L(λ∞), f∞, g∞, π∞ ← Lagrangian-Relaxation(H, G, λ∞, η)

6 if g∞j ≤ 0 for every j = 1, . . . , N and f∞ < UB then

7 UB← f∞, πinc ← π∞

8 if g0
i · g∞i ≥ 0 then

9 z ← argmaxj∈{0,∞} L(λj)

10 LB← L(λz)

11 return L(λz), πz, πinc, LB, UB, λ, G

12 repeat

13 update λi using Eq. (8)

14 L← f0 + λg0

15 L(λ), fnew, gnew, πnew ← Lagrangian-Relaxation(H, G, λ, η)

16 if L(λ) < L and gnewi > 0 then

17 π0 ← πnew, f0 ← fnew, g0 ← gnew

18 else if L(λ) < L and gnewi ≤ 0 then

19 π∞ ← πnew, f∞ ← fnew, g∞ ← gnew

20 if gnewj ≤ 0 for every j = 1, . . . , N and fnew < UB then

21 UB← fnew, πinc ← πnew

22 until L = L(λ)

23 LB← L(λ)

24 return L, π∞, πinc,LB,UB, λ,G

27

two Lagrangian relaxations with lower and upper bounds λ0 and λ∞ (lines 2

and 5), where λ0 and λ∞ are computed in line 1. For each case, we update

UB and πinc if a policy is feasible and better than the current incumbent policy385

(lines 3–4 and 6–7). Then, if it has been proved that the lower envelope is

monotonic (line 8), we finish the search and return the better solution in terms

of the Lagrangian function value. Otherwise, it iteratively updates λ and solves

for Eq. (5) using Algorithm 4 to find the dual optimum (lines 12–22).

Figure 5 illustrates the iterative process in lines 12–22 with a simple example.

Note that a graph in each sub-figure shows the i-th coordinate subsection of

(λ, L) space where each policy is represented as a line. Also note that solid bold

lines represent policies that have been found and gray lines represent policies

that have not been found so far. Given π0 and π∞ and their corresponding

function and constraint values f0, g0, f∞ and g∞ that have been found in lines

2–7, we update λ as the intersection of two solutions (Fig. 5a), which satisfy the

following equality:

L(λ, π0) = L(λ, π∞)

where

L(λ, π0) = f(π0) +

N∑
i=1

λi · gi(π0)

and

L(λ, π∞) = f(π∞) +
N∑
i=1

λi · gi(π∞).

Therefore, new i-th coordinate of λ at the intersection of two policies can be

computed as follows:

λi =

f(π0)− f(π∞) +
∑
j 6=i λj

(
gj(π

0)− gj(π∞)

)
gi(π∞)− gi(π0)

. (8)

Then we obtain a new π by solving Eq. (5) with the updated λ (line 15 and390

Fig. 5b). Since new π has positive gradient in i-th coordinate, we update π0

(lines 16 and 17). Then we repeat the process, which updates λ using Eq. (8)

28

(a) The process starts with two initial solu-

tions π0 and π∞ (lines 2–7 in Algorithm 8).

(b) Update π0 since πnew has positive gradi-

ent in λi direction (lines 16 and 17 in Algo-

rithm 8).

(c) Update π∞ since πnew has negative gra-

dient in λi direction (lines 18 and 19 in Al-

gorithm 8).

(d) The process is terminated since λnew has

converged (line 22 in Algorithm 8).

Figure 5: Illustration of the process of solving one-dimensional Lagrangian dual problem

with respect to i-th coordinate of λ. Each graph shows (λi, L) space where each policy is

represented as a line.

and solve Eq. (5) with the updated λ, as shown in Fig. 5c. Note that we update

π∞ in this case (lines 18 and 19) since new π has negative gradient. In addition,

if a new policy is feasible and better than the incumbent, then UB and πinc are395

updated (lines 20 and 21).

29

If we repeat the process again (Fig. 5d), the Lagrangian function value re-

mains the same if we solve Lagrangian relaxation with updated λ, in which

case we have found the dual optimal solution λ∗i for this one-dimensional case

(line 22). Note that since we update UB throughout the process (lines 4, 7 and400

21), it comes with the anytime property. In addition, the algorithm is complete

and terminates with finite iterations. This is because, roughly speaking, the

algorithm only evaluates L(λ)’s at the intersections between policies, which are

finite due to a finite number of deterministic policies. For more details about

the one-dimensional piecewise linear concave optimization, please refer to [27].405

However, if the given λUB
i is not large enough, there might be a case that

Algorithm 8 fails to optimize the 1-d Lagrangian dual for the i−th coordinate.

Although this does not affect the optimality of the proposed algorithm, which

will be discussed in the following section, obtaining Lagrangian dual can be

beneficial to achieve a better solution during the first stage and also to have410

better convergence in the second stage. One of the possible ideas that overcomes

this issue without prior knowledge on λUB
i is repeatedly solving Lagrangian

relaxation in line 5 of Algorithm 8 by adaptively increasing λUB
i until g∞i is

negative or λUB
i reaches some relatively large number.

3.4. Stage 2: Closing the duality gap415

Since finding an optimal deterministic policy for C-SSP can be viewed as

a discrete optimization problem, the strong duality does not generally hold for

our problem. Even though the dual optimal policy found in the first stage

can serve as an approximated solution, our goal is finding a primal optimal

solution eventually. Therefore, the objective of the second stage of the proposed420

method is closing the duality gap if there is any. In addition, we would like

to emphasize that the algorithm is anytime, which incrementally updates the

incumbent policy until we find a true optimal policy.

Conceptually, the way the algorithm obtains a primal optimal policy is quite

simple. From the dual optimal policy, we can find a primal optimal solution by425

iteratively finding the next best solutions, with respect to the Lagrangian func-

30

tion value L(λ∗, π). This procedure is illustrated in Fig. 6 with an intuitive

example which only includes a single secondary cost. The figure shows all the

deterministic policies in (λ, L) space, including feasible ones (g1(π) ≤ 0) and

infeasible ones (g1(π) > 0), in green solid lines and red dotted lines, respec-430

tively. Note that the true primal optimal policy π∗ is indicated with a bold

line. Fig. 6 also shows the Lagrangian function value L(λ∗, π) for each policy

as an intersection of the policy with the dotted vertical line at λ∗. Similarly, a

y-intercept of a policy π is the primal cost f(π). In addition, π∞ = π1 is the

solution associated with λ∗ which can be obtained by Algorithm 7, where πk435

denotes k-th best policy with respect to the Lagrangian function value L(λ∗, π).

Starting from π1, we find the next best policies in terms of L(λ∗, π), in non-

decreasing manner, until we obtain a primal optimal policy π∗, and update the

incumbent policy whenever we obtain a better feasible policy. In the example

shown in Fig. 6, the primal optimal policy can be found as the fifth best policy,440

and the incumbent solution can be updated once we find the fourth and fifth

best policies.

To prevent us from searching exhaustively, we need to have a termination

condition that indicates that the current incumbent policy is optimal. For this

purpose, we need to keep track of LB and UB of the primal cost, f(π). Let445

Ll(λ∗) be a Lagrangian function value of the l-th best policy. Then Ll(λ∗) is

a lower bound of the primal cost for all the k-th best policies for k > l, since

gki (π) ≤ 0 for every i = 1, . . . , N for any feasible solution, hence none of the

k-th best solution for k > l can intersect the y-axis with a lower value than

Ll(λ∗). On the other hand, the primal cost of the current incumbent solution450

is obviously an upper bound of the primal optimal cost. Therefore, whenever

the condition LB ≥ UB is satisfied, we can assure that the current incumbent

solution is a primal optimal policy. In the example shown in Fig. 6, the condition

is satisfied when the sixth best policy is found, and the algorithm terminates

with the optimal policy π5 = π∗.455

Algorithm 9 shows the Closing-Gap algorithm illustrated above. The algo-

rithm starts with initialization, where the best policy order k is set as 1, the

31

Figure 6: (λ,L) space representing policies for an example C-SSP with a single constraint.

Green solid lines and red dotted lines show feasible and infeasible policies, respectively, where

bold green line shows the optimal policy. Each policy intersects y-axis and vertical line

at λ∗ (shown as dotted line) with the primal cost f and the Lagrangian function value L,

respectively.

32

Algorithm 9: Closing-Gap

Input: Policy πd, incumbent policy πinc, lower bound LB, upper

bound UB, Lagrangian multiplier λ∗, C-SSP instance H,

AND/OR graph G, VI error tolerance η

1 initialize best policy order k ← 1, current best policy π1 ← πd, set of

best policies Π← {π1}, candidates set Γ← {}, set of fixed

state-action pairs π1
F ← {}, set of blocked state-action pairs π1

B ← {}

2 repeat

3 k ← k + 1

4 set Sπk−1 as a set of non-terminal reachable states from s̄ by πk−1.

5 (Lk, πk, fk, gk, πkF , π
k
B),Π,Γ, G← Next-Best-Policy(k, πk−1,

Sπk−1 , πk−1
F , πk−1

B ,Π,Γ, λ∗,H, G, η)

6 LB← Lk.

7 if gki ≤ 0 for every i = 1, . . . , N and fk < UB then

8 UB← fk and πinc ← πk

9 until LB ≥ UB

10 return πinc,UB

first best policy is initialized as the policy provided by Lagrangian-dual (Al-

gorithm 7), and the k-best policy set Π and candidate set Γ are initialized as

{π1} and the empty set, respectively. We also initialize two sets, fixed state-460

action pair set π1
F and blocked state-action pair set π1

B , as empty sets. Then

the algorithm iteratively finds the next best policy (line 5) until the termination

condition is satisfied (line 9). While finding the next best policies, if a newly

found policy is feasible and better than the current incumbent policy, then we

update the incumbent policy and the upper bound (lines 7 and 8).465

Note that, although we assumed that the second stage starts with the dual

optimum λ∗ and an associated policy πd in the above illustration, the optimality

of the algorithm remains the same even with any Lagrangian multiplier λ and

an associated policy. In other words, if π′ and λ′ are given to Algorithm 9

33

instead of πd and λ∗, where π′ is an optimal policy to the Lagrangian relaxation470

with λ′, then πinc returned by Algorithm 9 is guaranteed to be optimal. The

optimality of the algorithm is formally described in the following theorem.

Theorem 3.1. Suppose we are given a C-SSP that has at least one feasible

policy. Also, suppose πd and λ∗ are given to Algorithm 9 where πd is an optimal

policy to the Lagrangian relaxation with some Lagrangian multiplier λ∗. Then,475

once Algorithm 9 is terminated, the incumbent policy πinc is a primal optimal

policy. Moreover, the algorithm is complete.

Proof. The optimality can be proved by contradiction. Let f∗ be the primary

cost of the incumbent policy πinc. Suppose k = J is the index when Algorithm 9

is terminated. Let Π be a set of every policy and suppose there exists π ∈

Π\{πk|k = 1, ..., J}, such that gi(π) ≤ 0 for every i and f(π) < f∗. Since π is

not included in the first J best solutions,

L(π, λ∗) = f(π) + λ∗g(π) ≥ LJ(λ∗).

Also, at the termination, the following inequality holds:

LJ(λ∗) = LB ≥ UB = f∗,

which result in

f(π) + λ∗g(π) ≥ f∗.

However, this is contradiction, since λ∗ · g(π) is non-positive, which shows that

f(π) ≥ f∗.

To show the algorithm is complete, suppose the Lagrangian function value480

of an optimal policy evaluated at λ∗ is L′. Now, recall that the number of

policies (|Π|) is finite since there are finite numbers of states and actions in C-

SSP. Therefore, there are finite, say K, number of policies that have Lagrangian

function values lower than or equal to L′ at λ∗. Therefore the algorithm can

obtain the optimal solution with at most K iterations in the Algorithm 9.485

34

The crucial part of the second stage given in Algorithm 9 is finding the next

best policy given the first k-best policies (line 5), which is shown in Algorithm 10.

The algorithm can be viewed as an AND/OR graph version of Yen’s algorithm

[29], or a special case of Lawler’s k-best solution method [30]. The intuition

behind Algorithm 10 is the following. Suppose πk is the current best policy.490

Then, for each non-terminal state reachable from the initial state s̄ by following

πk, we generate a best deviated policy, and keep them in a candidate set. Note

that the candidate set is cumulative during the entire run of Algorithm 9 and

10. Then a best policy among the candidates becomes the next best policy,

πk+1.495

Each candidate generation can be thought of generating and solving a new

SSP instance by adding more constraints to an SSP instance from which the

current best policy was generated, where the additional constraints are repre-

sented as fixed and blocked state-action pair sets πF and πB . In other words, if

(s, a) ∈ πF for some state s and action a, then we fix the action selection from500

s as a. Similarly, if (s′, a′) ∈ πB for some state s′ and action a′, then we re-

move action a′ from available actions of s′. Suppose a set of non-terminal states

reachable from the initial state s̄ by following πk is ordered with a breadth-first

search (BFS) order, where s0 = s̄. Then a new SSP instance for a candidate

generation with si from the current best policy πk is formed with the following505

three steps:

1. copy πF and πB from an SSP instance that generated the current best

policy πk,

2. add (si, π
k(si)) to πB ,

3. for every j < i, add (sj , π
k(sj)) to πF .510

Roughly speaking, the second step enables us to find a deviated policy that is

worse than the current best policy by blocking the action selected by the current

best policy. In addition, the third step enables us to find deviated policies for

each state reachable from the current best policy given that the earlier states

do not deviate from the current best policy. Note that a rigorous justification515

35

and the correctness of the algorithm is given in Appendix A.

Fig. 7 illustrates an example of the first run of the Next-Best-Policy algo-

rithm (Algorithm 10). As shown in the left of the Fig. 7, the algorithm is fed

the first best policy π1 with the fixed and blocked state-action pair sets πF and

πB . The policy is represented as an AND/OR graph, where each node is a state,520

which are numbered with BFS order, and each hyperedge is an action, which is

labeled with the action name. In addition, the sets πF and πB are empty, as

initialized in Algorithm 9. Then from the current best policy, which is π1 in this

case, Algorithm 10 generates candidates with each non-terminal reachable state

from s0 with BFS order. On the right of Fig. 7, each box represents a modified525

SSP for each candidate generation, where the red thick circle is a deviating state

and shaded circles are fixed states. For example, for the candidate generation

with s6, states s0 to s5 are fixed and action a2 is blocked from s6. Then a

candidate can be generated by solving an SSP with those new constraints given

by πF and πB .530

Similarly, Fig. 8 shows an example of the k-th run of Algorithm 10. Since

πF and πB are copied and augmented when we generate a candidate, they are

cumulative and might not be empty for the n-th run for n > 1, which is also

the case for the example in Fig. 8. One notable difference from the first run of

the algorithm is that candidates are not generated from the states which are535

included in πF . For example, in Fig. 8, the first candidate generation was with s2

instead of s0 since s0 and s1 are in xF . This is because any candidate generation

for a state in xF results in an infeasible SSP, since a candidate generation will

add a state-action pair in xF to xB as well, which cannot be satisfied at the

same time.540

Algorithm 10 shows the illustrated Next-Best-Policy algorithm. The algo-

rithm begins by initializing fixed and blocked state-action pair sets πnew
F and

πnew
B as the sets that were computed when we generated πk−1, i.e., πk−1

F and

πk−1
B . Then the algorithm iteratively generates candidates for each non-terminal

state that are reachable from the initial state by πk−1 with BFS order (lines545

2–14). As explained previously with Fig. 8, we skip a candidate generation if

36

Figure 7: Illustration of the first iteration of the Next-Best-Policy (Algorithm 10) for an

example C-SSP. The graph on the left is the policy from which we want to generate candidates,

and the graphs on the right are candidate generating problems with added constraints. For

each candidate generating problem, a red circle represents deviating state from which we block

the previously selected action, and shaded circles represent fixed states from which we fix the

previously selected actions. 37

Figure 8: Illustration of the k-th iteration of the Next-Best-Policy (Algorithm 10) for an

example C-SSP. The figure illustrates the process in the same way as in Fig. 7.

38

a deviating state is in πnew
F (line 3). Then in lines 4–8, we add new blocked

state-action pair(s) and modify the C-SSP instance based on constraints given

by πnew
F and πnew

B . Then we solve the modified C-SSP using the WLAO* (line

9) and add the newly computed candidate into the candidates set (lines 10 and550

11). Finally, we add the current deviating state with its action selected by πk−1

into πnew
F (line 12), remove currently blocked state-action pair from πnew

B (line

13) and reset the action model of the C-SSP instance (line 14) for the next

iteration. After generating all the candidates, the next k-th best policy can be

obtained by selecting the best policy from the candidate set with respect to the555

Lagrangian function value (lines 15 and 16). Note that Γ is a priority queue

with the Lagrangian function value L(λ∗, π).

39

Algorithm 10: Next-Best-Policy

Input: best policy order k, current best policy πk−1, set of reachable

states Sπk−1 , set of fixed state-action pairs πk−1
F , set of blocked

state-action pairs πk−1
B , set of best policies Π, candidates set Γ,

Lagrangian multiplier λ, C-SSP instance H, AND/OR graph G,

VI error tolerance η

1 πnew
F ← πk−1

F , πnew
B ← πk−1

B

2 for s ∈ Sπk−1 in BFS order do

3 if @(s′, a) ∈ πnew
F s.t. s = s′ then

4 πnew
B ← πnew

B ∪ {(s, πk−1(s))}

5 for (s′, a) ∈ πnew
F do

6 A(s′)← {a}

7 for (s′, a) ∈ πnew
B do

8 A(s′)← A(s′)\{a}

9 fnew, gnew, πnew ← WLAO*(H, G, λ, η)

10 Lnew ← fnew + λ> · gnew

11 Γ← Γ ∪ {(Lnew, πnew, fnew, gnew, πnew
F , πnew

B)}

12 πnew
F ← πnew

F ∪ {(s, πk−1(s))}

13 πnew
B ← πnew

B \{(s, πk−1(s))}

14 reset action model A of H

15 (Lk, πk, fk, gk, πkF , π
k
B)← pop(Γ)

16 Π← Π ∪ {πk}

17 return (Lk, πk, fk, gk, πkF , π
k
B),Π,Γ, G

40

4. Approximation: Candidate Pruning

Although the proposed algorithm can produce an optimal policy eventually,

in practical applications, especially in safety-critical and time-limited applica-560

tions, we are most interested in having a near-optimal solution in a given amount

of the time. In those applications, it is often preferred to have a better conver-

gence rate at the cost of optimality. To accomplish this desired property, we

propose an approximation scheme that is guaranteed to produce an ε-optimal

policy given ε > 0 with better convergence rate.565

The key idea of the approximation scheme is skipping generating a candidate

in the second stage of the proposed algorithm if we can prove the values of the

candidate and its further generation candidates are not much better than the

value of the current best solution. We begin by introducing a notion of potential,

which is an estimation of value reduction that could be obtained by generating570

candidates from a subset of states. Then we present the candidate pruning

algorithm based on the potential. Finally we provide speed-up techniques that

can reduce the computational overhead of the approximation scheme.

4.1. Estimating the value reduction by candidates

We propose a simple estimation for the value reduction by a set of candidates

based on artificial goals. To elaborate, we briefly review the policy evaluation

in a matrix form as follows. Given a policy π, let Sπ be a set of states that

are reachable from the initial state s̄ by π. For simplicity, let the states Sπ be

ordered from 0 to |Sπ| − 1 so that the non-terminal states come first and s0 be

the initial state s̄. In addition, let M be the number of terminal states where

M < |Sπ| − 1. Then the j-th cost vector of the given policy π is defined as

follows:

Cπj =

 C̄πj
0

 ,
where C̄πj is the length |Sπ| −M − 1 column vector,

(
C̄πj
)
i

= Cj(si, π(si)), and

0 is the length M zero vector. Similarly, the transition matrix of π is defined as

41

follows:

Pπ =

 Qπ Rπ

0 I

 ,
where

(
Pπ
)
i,k

= Pr(sk|si, π(si)). Note that Qπ is the (|Sπ| − M − 1)-by-575

(|Sπ| −M − 1) matrix, Rπ is the (|Sπ| −M − 1)-by-M matrix, 0 is the M -by-

(|Sπ| −M − 1) zero matrix and I is the M -by-M identity matrix.

Then, if we define the j-th value function of the policy π as

V πj =

 V̄ πj
¯̄V πj

 ,
where V̄ πj and ¯̄V πj are value functions for non-terminal and terminal states,

respectively, the value function can be computed as follows: V̄ πj
¯̄V πj

 =

 C̄πj
0

+

 Qπ Rπ

0 I

 ·
 V̄ πj

¯̄V πj

 .
Therefore, ¯̄V πj is the zero vector, and V̄ πj can be computed as follows:

V̄ πj = (I −Qπ)−1 · C̄πj .

Now, we want to compute an upper bound of the potential value reduction

by a set of candidates generated from states in Ŝπ ⊂ Sπ. One of the simple

choices that we use in this paper is temporarily changing each state in Ŝπ into a

goal state by modifying the cost vector and transition matrix accordingly. Let

Ĉπj and Q̂π be modified j-th cost vector and transition matrix for non-terminal

states, which are defined as follows:

(
Ĉπj
)
i

=


(
C̄πj
)
i

if si 6∈ Ŝπ

0 if si ∈ Ŝπ

for every j = 0, . . . , N , and

(
Q̂π
)
i,k

=


(
Qπ
)
i,k

if si 6∈ Ŝπ

0 if si ∈ Ŝπ

42

for every k = 0, . . . , |Sπ| −M − 1. Then the modified value function, which we

denoted as V̂ πj , also can be computed as follows:

V̂ πj = (I − Q̂π)−1 · Ĉπj . (9)

Finally, we define a potential of j-th value, which is an upper bound of the j-th

value reduction by deviating from a state in Ŝπ as follows:

Definition 4.1. (Potential of j-th value)

φπj (Ŝπ) = V̄ πj (s̄)− V̂ πj (s̄).

4.2. Candidate pruning algorithm580

Now we present the candidate pruning algorithm shown in Algorithm 11 that

is based on the potential introduced in the previous section. The general idea

of the Algorithm 11 is the following. Given an approximation bound ε and the

current best policy πk with Sπk , we collect as many states from Sπk as possible

into Ŝπk with the reverse order of BFS, until no more states can be included585

without the potential of Ŝπk exceeding ε (lines 8–12). However, the algorithm

works a little differently based on whether πk is feasible or not. If πk is feasible,

the algorithm tries to prune candidates that cannot be better than πk by ε in

terms of the primary cost. On the other hand, if πk is infeasible (i.e., there is

an index i such that gi > 0), then the algorithm tries to prune candidates that590

cannot become feasible. For this purpose, we use an index set I in the algorithm

to indicate which potential(s) should be computed for the pruning (lines 2–7).

One caveat of the candidate pruning is that the order of the policies com-

puted during the second stage of the algorithm is no longer guaranteed to be

monotonic increasing in terms of L(λ∗) due to pruning. Therefore, we cannot595

use the termination condition in Algorithm 9. Although the termination con-

dition is no longer available, the candidate pruning can be preferred when we

have a certain computation time budget and finding a true optimal solution is

not the primary interest.

Algorithm 12 shows a modified Closing-Gap algorithm which uses the can-600

didate pruning as an approximation scheme to improve the convergence rate

43

Algorithm 11: Candidate-Pruning

Input: current best policy πk−1, set of reachable states Sπk−1 ,

approximation parameter ε

1 initialize index set I ← {} and pruned states set Ŝ ← {}

2 if πk−1 is feasible then

3 I ← {0}, ε0 ← ε

4 else

5 for i = 1, ..., n do

6 if gi > 0 then

7 I ← I ∪ {i}, εi ← gi

8 for s ∈ Sπk−1 in reverse order of BFS do

9 Ŝ ← Ŝ ∪ {s}

10 compute φi(Ŝ) for every i ∈ I.

11 if φi(Ŝ) ≥ εi for every i ∈ I then

12 return Ŝ\{s}

at the cost of the termination condition. The major difference from the orig-

inal Closing-Gap algorithm (Algorithm 9) is the process of removing a subset

of states from the set of reachable states from which we generate candidates

(lines 5 and 6). In addition, the termination condition has been replaced as the605

computation time budget (line 2).

Now, we show that our proposed algorithm with the approximation scheme

in Algorithms 11 and 12 will produce an ε-optimal solution.

Theorem 4.1. The proposed algorithm with candidate pruning (Algorithms 11

and 12) will produce an ε-optimal solution given the approximation parameter610

ε.

Proof. To show that our approximation scheme guarantees ε-optimality with

given ε > 0, it suffices to show that every policy pruned by the approximation

scheme for a policy π is either i) not better than π by ε in terms of the primary

44

Algorithm 12: Closing-Gap-With-Pruning

Input: Lagrangian dual optimal policy π, incumbent policy πinc, lower

bound LB, upper bound UB, Lagrangian multiplier λ,

AND/OR graph G, VI error tolerance η, approximation

parameter ε

1 initialize best policy order k ← 1, current best policy π1 ← π, set of

fixed state-action pairs π1
F ← {}, set of blocked state-action pairs

π1
B ← {}, set of best policies Π← {π1}, candidates set Γ← {}

2 while time left do

3 k ← k + 1

4 set Sπk−1 as a set of non-terminal reachable states from s̄ by πk−1.

5 Ŝ ← Candidate-Pruning(πk−1,Sπk−1 , ε)

6 Sπk−1 ← Sπk−1\Ŝ

7 (Lk, πk, fk, gk, πkF , π
k
B),Π,Γ, G← Next-Best-Policy(k, πk−1,

Sπk−1 , πk−1
F , πk−1

B ,Π,Γ, λ,G, η)

8 if gki ≤ 0 for every i = 1, . . . , N and fk < UB then

9 UB← fk and πinc ← πk

10 return πinc

cost, or ii) infeasible. Throughout the proof, let π be the current best policy,615

Sπ be a set of reachable states from s̄ by π, Ŝπ be a set of pruned states based

on Algorithm 11, and S−π = Sπ\Ŝπ. Also, let gi be the i-th value of π.

Suppose π is feasible. Then it implies that

φπ0 (Ŝπ) = V̄ π0 (s̄)− V̂ π0 (s̄) < ε.

Since we generate candidates with BFS order in Algorithm 10 and collect pruned

candidates with the reverse order of BFS in Algorithm 11, the part of the policy

for S−π is fixed whenever we generate a candidate from a state in Ŝπ. In addition,620

since the fixed state-action pair set πF is copied and augmented whenever we

generate a candidate, S−π is fixed whenever we further generate a candidate from

45

a generated policy from π by deviating from a state in Ŝπ. Since V̂ π0 (s̄) is a

lower bound of having fixed policy for S−π , any candidate that is pruned by the

approximation scheme cannot be better than π by ε in terms of the primary625

cost.

Suppose π is infeasible. Then it implies that there is some i such that

φπi (Ŝπ) = V̄ πi (s̄)− V̂ πi (s̄) < gi,

where gi > 0. Then with the same reasoning given in the feasible case, any

candidate that is pruned by the approximation scheme cannot be better than π

by gi in terms of the i-th cost, and is infeasible.

4.3. Speed-up techniques in candidate pruning630

Although candidate pruning can increase the convergence rate of the pro-

posed algorithm, the overhead of computing potential in line 10 of Algorithm 11

can be prohibitively high. In this section, we present two approaches that can

reduce the computational overhead.

Batch update. The computational overhead in the candidate pruning mainly635

comes from taking the inverse in Eq. (9) to compute a potential. Given the

fact that the computational cost of computing this inverse does not depend on

the number of modified states, we can facilitate the candidate pruning process

if we can prune a bunch of states at once instead of over multiple iterations.

Therefore, we can balance the overhead and efficiency of the candidate pruning640

by adding more than 1 state at a time to the pruned set in Algorithm 11.

Rank-1 update. As pointed out previously, the computational overhead in the

candidate pruning mainly comes from taking the inverse of the modified tran-

sition matrix in Eq. (9). However, for each iteration in Algorithm 11, only one

row of the transition matrix is modified as the zero vector. This is actually645

rank-1 update of the matrix, and it is known that the Sherman-Morrison for-

mula enables us to find the inverse of rank-1 updated matrix more efficiently

46

than taking the inverse from scratch given that the inverse of the original matrix

was already computed [31, 32].

To compute the potential, we need to compute (I−Q̂πS′)−1 in Eq. (9), where

we used subscription S ′ to emphasize that S ′ is a set of pruned states. However,

if we already computed (I − Q̂πS′\{si})
−1 for some si ∈ S ′, then we can apply

the Sherman-Morrison formula as follows to compute (I − Q̂πS′)−1:

(I − Q̂πS′)−1 = (I − Q̂πS′\{si} + uvT)−1

= (I − Q̂πS′\{si})
−1 −

(I − Q̂πS′\{si})
−1uvT (I − Q̂πS′\{si})

−1

1 + vT (I − Q̂πS′\{si})
−1u

where u and v are column vectors defined as follows:

uj =

0 if j 6= i,

1 if j = i,

and

vj =
(
Q̂πS′\{si}

)
i,j
.

47

5. Experimental Results650

In this section, we evaluate the proposed method with three different state-

of-the-art methods. The first is the MILP-based method which reduces a C-

SSP to a MILP formulation and uses a commercial solver to find an optimal

deterministic policy [3]. The second and the third algorithms are i-dual-LP and

its variant, i-dual-MILP [8, 9]. Note that in this section, i-dual-LP refers to655

i-dual to make a clear distinction from i-dual-MILP, and the term i-dual is used

to refer to either i-dual-LP or i-dual-MILP. I-dual is similar to the MILP-based

method in the sense that it encodes a C-SSP to a mathematical programming

formulation and uses a commercial solver to find a solution. However, instead of

encoding and solving the problem at once, the i-dual incrementally expands the660

search space and solves a sequence of (MI)LPs until it finds an optimal solution.

Note that the policy found by i-dual-LP might be stochastic but we compare

the proposed method against i-dual-LP as well for reference.

We evaluate the proposed method in comparison with the benchmark meth-

ods on three domains to show various aspects of the proposed method in addition665

to its strength and limitations. In the racetrack domain, we evaluate the vanilla

version of the algorithm for C-SSPs with a single constraint. Then in the ele-

vators domain, we investigate the effect of candidate pruning for C-SSPs with

multiple constraints under various parameter settings. Similarly, we study the

effect of candidate pruning in the aircraft routing domain, but we also study670

how the algorithm scales with varying sizes of problems. In addition, in both

elevators and aircraft routing domains, we demonstrate the advantage of using

speed-up techniques developed in Section 4.3. Throughout the experiments, we

set error tolerances η and ρ as 0.110, and all values of λUB are set as 0.1. In ad-

dition, as mentioned at the end of Section 3.3, λ∞i was adaptively increased by675

a factor of 10 until g∞i is negative or λUB
i reaches 1010 in line 5 of Algorithm 8.

The proposed algorithm was implemented in Python 3, and LPs and MILPs

in the benchmark methods were solved using Gurobi 9. All of the algorithms

were executed on an Intel core i5-7200U with 8GB of RAM. In addition, the

48

time-out was set to 1800 seconds. In the rest of this section, we provide680

the details of the comparison methods and problem domains. Then we pro-

vide the evaluation results to show the performance of the proposed method.

Note that the source code of the proposed algorithm with all the test scenarios

used in the experimental results can be found at https://github.com/sk5050/

Anytime-CSSP.685

5.1. Benchmark methods

5.1.1. MILP-based method [3]

If we allow to have a stochastic policy as our solution, then a C-SSP can be

solved over the dual space with the following LP [10, 2, 8]:

(LP 1) min
x

∑
s∈S

∑
a∈A(s)

xs,a · C0(s, a) (10)

s.t.
∑
s∈S

∑
a∈A(s)

xs,a · Ci(s, a) ≤ ∆i ∀i ∈ {1, ..., N} (11)

∑
a∈A(s)

xs,a −
∑
s′∈S

∑
a∈A(s′)

xs′,a · Pr(s|s′, a) = 0 ∀s ∈ S\(G ∪ {s̄})

(12)∑
a∈A(s̄)

xs̄,a −
∑
s′∈S

∑
a∈A(s′)

xs′,a · Pr(s̄|s′, a) = 1 (13)

∑
s∈G

∑
s′∈S

∑
a∈A(s′)

xs′,a · Pr(s|s′, a) = 1 (14)

xs,a ≥ 0 ∀s ∈ S, a ∈ A(s) (15)

where xs,a is called occupation measure that represents the expected number of

times action a ∈ A(s) is executed in s and s̄ is the initial state. Once we obtain

an optimal solution for occupation measure x∗, then an optimal policy can be

obtained by normalizing x∗ as follows:

π∗(s, a) = x∗s,a/
∑

a∈A(s)

x∗s,a.

49

https://github.com/sk5050/Anytime-CSSP
https://github.com/sk5050/Anytime-CSSP
https://github.com/sk5050/Anytime-CSSP

Dolgov and Durfee [3] proposed a MILP-based solution method that finds

an optimal deterministic policy for a C-SSP. The MILP formulation is basically

based on LP 1 but with additional constraints as follows:

(MILP 1) min
x

∑
s∈S

∑
a∈A(s)

xs,a · C0(s, a)

s.t. (11)–(15)∑
a∈A(s)

ys,a ≤ 1 ∀s ∈ S

xs,a/X ≤ ys,a ∀s ∈ S, a ∈ A(s)

ys,a ∈ {0, 1} ∀s ∈ S, a ∈ A(s)

where X is some constant that can be computed by solving LP 1 with the

objective function replaced by maxs,a xs,a. Finally, an optimal deterministic

policy can be obtained by

π∗(s) = a⇔ y∗s,a = 1.

5.1.2. i-dual-LP [8, 9]690

Instead of solving LP 1 directly, starting with the initial state s̄, i-dual-

LP incrementally enlarges the search space guided by heuristics, and solves

a sequence of LP 1 instances on the restricted search spaces. The procedure

iteratively enlarges the search space until all of the tip states are goal states,

by which time the solution is a closed policy. Moreover, if we use admissible695

heuristics, the solution is guaranteed to be an optimal policy. Similar to LP 1,

however, the policy found by i-dual-LP may be stochastic.

5.1.3. i-dual-MILP [8]

As mentioned by the authors in [8], the i-dual-LP can be modified to find an

optimal deterministic policy for a C-SSP by replacing LP with MILP formula-700

tion in its iterative process. In other words, for each iteration, the i-dual-MILP

solves MILP 1 instead of LP 1 for a restricted search space. Although this guar-

antees finding an optimal deterministic policy, the computational overhead for

50

solving multiple MILPs might be too high. Therefore, we use a modified version

of i-dual-MILP in this paper. In the modified version, to reduce the computa-705

tional cost for enlarging part of the i-dual algorithm, we first run i-dual-LP

until we find an optimal stochastic policy. Then we switch from i-dual-LP to

i-dual-MILP to find an optimal deterministic policy.

5.2. Problem domains

5.2.1. Racetrack710

The racetrack domain was first introduced in [33] and is one of the most

widely used domains in SSP studies. Fig. 9 shows an example of the racetrack

problem, where the goal of the problem is passing the finish line from an initial

state located at the starting line as fast as possible, by accelerating or decel-

erating properly. The set of states consists of integer vectors (x, y, ẋ, ẏ), where715

the first two indicate the position in the grid world, and the latter two indicate

speed in the x and y directions. For each action, the car can decide whether to

accelerate or decelerate by 1 or stay in the current speed for each direction, all

of which results in 9 different available actions. However, the controller is not

perfect, so with a probability p, an action has no effect, and the speed remains720

the same as before. In addition, if the car hits any boundary of the racetrack

except the finish line, the car is randomly located at one of the grids in the

starting line with zero velocity. Finally, the goal is reached if the car passes the

finish line.

In addition to the original problem, we added one more aspect to make725

the problem as a C-SSP. As marked as the red shaded area in the examples in

Fig. 10, there are bumpy grids that cause tire wear. Therefore, in the constrained

racetrack problem, there is a secondary cost that damages the tire only from

bumpy grids and the maximum damage should be bounded.

In the evaluation, we used four different racetrack configurations as shown730

in Fig. 10, where green grids show initial locations. Note that the layouts of the

racetrack are from [33] and [34], and we made two bumpy grids modifications for

each layout. In addition, we used p = 0.1 for the “slippery” scenario for all the

51

Figure 9: An example problem instance of the racetrack domain.

evaluations. For heuristics, we used “shortest-path heuristic” for the primary

cost [16] and “zero heuristic” for the secondary cost. Finally, the secondary cost735

induced by a bumpy grid is 10 and the secondary cost is bounded by 1 for all

the problem instances.

5.2.2. Elevators

The elevators domain was introduced in [8, 9] for the evaluation of i-dual

method. There are five parameters that define a problem: the number of floors740

in the building n, the number of elevators e, the number of persons that are

known to be waiting for an elevator w, the number of hidden persons that are

expected to arrive and request an elevator h, and the probability p of arrival of

any hidden person for each time step.

The objective of the problem is minimizing the total number of elevators’745

movements. In addition, there are two constraints for each person, where one

upper bounds the waiting time and the other upper bounds the travel time in

an elevator. For each person, the former is bounded by 0.75n and the latter is

bounded by n+ 1.

We use the simple admissible heuristic functions defined as follows. An obvi-750

ous optimistic waiting time for a person is the distance from her current position

to the closest elevator if she is currently waiting, and 0 otherwise. Similarly, an

optimistic heuristic for travel time is the difference between the current position

and the destination if she has not arrived at the destination, and 0 otherwise.

Then, for each person, we can compute the total admissible heuristic time to755

52

(a) Large-a (b) Large-b

(c) Ring-a (d) Ring-b

Figure 10: Racetrack configurations used in the evaluation.

the destination by summing optimistic heuristic waiting and travel times. Fi-

nally, an admissible heuristic for the primary cost can be obtained by taking

the maximum of every person’s total admissible heuristic time.

In our experiments, we set n = 20, e = 2, h = 1, w = 2 and p = 0.75,

which result in 6 constraints in each problem. In addition, to study how the760

performance of the algorithm is changed based on the number of constraints,

we tested on problems with 4 constraints where constraints on non-hidden pas-

sengers’ travel time are relaxed.

53

5.2.3. Risk-bounded aircraft routing problem

Chance-constrained SSP and its reduction to C-SSP. The chance-constrained765

approach has been widely studied in various domains including operations re-

search, motion planning, control, to name a few [35, 36, 37]. One of the recent

applications of the chance-constrained approach is risk-bounded planning under

uncertain environments [14, 38]. In their applications, the user can define the

level of safety guarantees and systematically balance the efficiency and the risk.770

Among different risk-bounded planning approaches, we focus on the risk-

bounded conditional planning which is formulated as a chance-constrained SSP

(CC-SSP) [14]. CC-SSP is defined as an SSP with two added elements S and ∆.

The objective of a CC-SSP is finding an optimal policy that maintains the risk

of violating a constraint in S below the given threshold ∆. The latter constraint775

can be formulated mathematically with the notion of execution risk, which is

defined as follows:

er(s̄|π) = 1− Pr

(∞∧
i=0

Sai = 1

∣∣∣∣s0 = s̄, π

)
, (16)

where Sai is a Bernoulli random variable with value 1, when an agent has not

violated constraints at time i. Then we can enforce the risk-bound with the

following constraint:

er(s̄|π) ≤ ∆. (17)

To apply our proposed method, we reduce a CC-SSPQ = 〈S, s̄,G ⊂ S,S,A, T, C,∆〉

problem to C-SSP H = 〈S ′, s̄′,G′ ⊂ S ′,A′, T ′, ~C ′, ~∆′〉 problem with the follow-

ing mapping:780

• S ′ = S ∪ {g0}, where g0 is an artificial goal.

• s̄ = s̄′

• G′ = G ∪ {g0}

54

• A set of actions A′ is defined as follows:

A′(s) =

a0 for s ∈ S

A(s) otherwise.

where a0 is an artificial action.

• Transition function T ′ is defined as follows:

T ′(s, a, s′) =


1 for s ∈ S, s′ = g0,

0 for s ∈ S, s′ 6= g0,

T (s, a, s′) otherwise.

• ~C ′ = [C0, C1], where

C0(s, a) =

0 for s ∈ S

C(s, a) otherwise,

and

C1(s, a) =

1 for s ∈ S

0 otherwise.

• ~∆′ = [∆1] where ∆1 = ∆.785

Then,

E

[∞∑
k=0

C1(sk, ak)

∣∣∣∣s0 = s̄, π

]
≤ ∆1

is equivalent to Eq. (17) for a policy π, and an optimal solution to Q can be

obtained by solving H.

Note that a chance-constrained SSP enables us to handle dead-ends in a

probabilistic way. In other words, instead of using the common way of handling790

dead-ends with finite-penalty [39], we can define dead-ends as constrained states

and bound the probability of reaching a dead-end by some given allowable risk

∆.

55

(a) Configuration 1. (b) Configuration 2. (c) Configuration 3.

Figure 11: Airspace configuration examples used in the evaluation. Aircraft initial and goal

positions are shown with circles and stars, respectively, and convective weather cells are shown

with the red shaded regions. A random problem instance is generated by randomly selecting

initial location(s) and moving direction(s) of weather cell(s).

Risk-bounded Aircraft Routing Problem in the Presence of Adverse Weather

Conditions. Now we present the risk-bounded aircraft routing problem in the795

presence of adverse weather conditions as an application of CC-SSP. The prob-

lem is inspired by [40]. In their work, an aircraft routing problem was formulated

as a stochastic shortest path problem where aircraft movement is deterministic

and a convective weather cell transitions stochastically. To avoid encountering

a convective weather cell, they introduced a secondary cost when an aircraft en-800

counters a weather cell, and penalize the secondary cost with some fixed weight

on top of the primary cost.

Different from the originally introduced penalty version of the problem, we

formulate the problem as a CC-SSP, which explicitly bounds the probability of

encountering a convective weather cell. Fig. 11 shows examples of the problem,805

where a circle and the red shaded region describe an aircraft position and a

weather cell, respectively. Similar to [40], for each time step, an aircraft can

deterministically move to an adjacent cell and a weather cell moves stochasti-

cally based on a given probability distribution. Then the objective is to get

to the destination waypoint (marked as a star) as fast as possible while main-810

taining the probability of encountering a weather cell below the given threshold

∆. In our evaluations, we assumed that a weather cell moves towards a given

56

direction for a given probability p, and it moves +90 and −90 directions with

(1 − p)/2, respectively. In addition, we used Euclidean distance for a heuristic

of the primary cost function, and zero heuristic for the risk.815

We tested on 3 different configurations with varying sizes and the number

of weather cells, where the first two configurations have a single weather cell

and the third configuration has two weather cells. Note that we generated an

instance by randomly selecting the initial position(s) and moving direction(s) for

weather cell(s), where Fig. 11 shows example instances for each configuration.820

Also note that p and ∆ were set as 0.8 and 0.01, respectively, for every instance.

5.3. Results

5.3.1. Racetrack

Table 1 shows the evaluation results of three different methods for the race-

track problems in Fig. 10, where the first column shows the configuration name.825

Columns 2–5 show the results of the MILP-based method, where the first two

columns show the time and optimality gap of the initial feasible solution and

the latter two columns show the time and the total number of states expanded

when a true optimal solution was found. Then the results of the i-dual-LP and

i-dual-MILP are followed where time and the number of states expanded are830

recorded for each method. Finally, the remaining columns show the results of

the proposed method. To show the anytime property of the proposed method,

we report two solutions which obtained < 1% and < 0.1% optimality gaps,

respectively, where the optimality gap, computation time, and the number of

states expanded are shown for each solution.835

As shown in the table, the proposed method could obtain solutions that

have only < 1% optimality gap with less than 10% of computation time of

the MILP-based method for the first three racetrack configurations (Large-a,

Large-b and Ring-a). Although the speed-up of the proposed method for the

last configuration was smaller than for the other configurations, the proposed840

method still could obtain the solution with < 1% optimality gap with less than

half of the computation time used by the MILP-based method. In addition,

57

C
o
n
fi
g
.

M
IL

P
i-

d
u
a
l

P
ro

p
o
se

d
m

e
th

o
d

In
it

ia
l

O
p
t

L
P

M
IL

P
<

1
%

o
p
ti

m
a
li
ty

g
a
p

<
0
.1

%
o
p
ti

m
a
li
ty

g
a
p

ti
m

e
(s

)
g
a
p

ti
m

e
(s

)
st

a
te

s
ti

m
e

(s
)

st
a
te

s
ti

m
e

(s
)

st
a
te

s
g
a
p

ti
m

e
(s

)
st

a
te

s
g
a
p

ti
m

e
(s

)
st

a
te

s

L
a
rg

e
-a

2
6
4
.2

1
.4

2
%

3
5
0
.6

2
1
6
2
0

6
5
5
.6

1
2
9
0
6

-
-

0
.1

2
%

2
9
.2

1
4
0
8
3

0
.0

9
%

6
9
.2

1
4
0
8
3

L
a
rg

e
-b

2
9
1
.5

0
.0

0
%

2
9
1
.5

2
1
6
2
0

5
2
7
.3

1
3
0
6
0

-
-

0
.9

3
%

1
5
.4

1
4
7
1
5

0
.0

9
%

3
2
.6

1
4
7
2
6

R
in

g
-a

3
9
2
.1

0
.0

0
%

3
9
2
.1

3
0
4
4
6

4
6
6
.6

1
2
9
5
4

7
0
8
.9

1
2
9
9
2

0
.6

5
%

1
5
.0

1
6
7
9
7

0
.0

4
%

2
1
.1

1
6
7
9
7

R
in

g
-b

1
5
1
.8

0
.0

0
%

1
5
1
.8

3
0
4
4
6

1
0
8
2
.0

1
6
0
9
1

1
4
9
4
.5

1
6
2
0
5

0
.0

6
%

3
4
.0

2
2
3
9
6

0
.0

6
%

3
4
.0

2
2
3
9
6

Table 1: Evaluation results of the racetrack problem instances.

58

(a) Results of the large-a configuration. (b) Results of the large-b configuration.

(c) Results of the ring-a configuration. (d) Results of the ring-b configuration.

Figure 12: Solution histories of the MILP-based and the proposed method on racetrack prob-

lem instances.

the proposed method could reduce the gap further down below 0.1% with only

marginal time except for the first configuration. Again, the computation time

of the proposed method for the first configuration for < 0.1% solution was845

smaller than the computation time used by the MILP-based method for the

initial feasible solution.

Fig. 12 shows the anytime solution histories for both MILP-based and the

proposed methods, where the black solid line with triangle markers shows the

solutions of the MILP-based method, the red solid line and blue dotted line850

with circle markers show the solutions of the first stage and the second stage of

the proposed method, respectively. The results in the figures show that the first

stage of the method could improve the solution quality very quickly and the

second stage could further reduce the gap with the remaining time. However,

59

the results show that the proposed method struggles to close the gap after it855

obtains a certain optimality gap (< 0.1% in all cases), although the gap was

small.

Finally, it is interesting to notice that both i-dual-LP and i-dual-MILP per-

formed poorly even compared with the MILP-based method. Although it is true

that the i-dual expands only part of the search space, there is computational860

overhead by solving a sequence of (MI)LPs whenever it expands the states.

Therefore, the overhead can dominate the advantage when the difference be-

tween the number of states expanded by the (MI)LP-based method and i-dual

is small. This can be also observed in experimental results of [8, 9], where the

i-dual dominates the LP-based method when the number of states expanded865

for i-dual was only 1 − 2% of the number of states expanded by the LP-based

method.

5.3.2. Elevators

In this experiment, we investigate the effects of approximations that are used

in Algorithms 7 and 12 as well as the advantage of using speed-up techniques870

introduced in Section 4.3. For M , which controls the number of iterations for

solving Lagrangian dual (Algorithm 7), we test two different values, where the

one is the number of constraints and the other is ∞. In other words, with the

former M value, we basically optimize each coordinate of λ once, and with the

latter M value, we run Algorithm 7 until it converges. On the other hand,875

we also can approximate the second stage of the proposed method by pruning

candidates with parameter ε at the cost of optimality, as introduced in Section 4.

For ε, we test four different values, 0, 0.1, 0.2 and 0.3, where ε = 0 implies that

we don’t use candidate pruning and larger ε prunes candidates more aggressively.

Finally, for each ε value except 0, we evaluate the algorithm with or without880

speed-up techniques to demonstrate the advantage of using speed-up techniques.

Note that we use the rank-1 update for the speed-up technique throughout the

experiment for simplicity.

For the comparison methods, we report the number of problems solved within

60

the time limit (1800 seconds), the average and standard deviation of the com-885

putation times for solved problems, and the average number of states for solved

problems. For the proposed method, we summarize three anytime solutions that

obtained < 10%, < 1% and < 0.1% optimality gaps, respectively. In addition

to the metrics that are reported for the comparison methods, we also report the

average speed-up from either MILP or i-dual-MILP that performed better along890

with minimum and maximum speed-up. Note that the speed-up is calculated

as min{tMILP,ti-dual-MILP,1800}
tproposed

, where tMILP, ti-dual-MILP and tproposed are computa-

tion times for MILP, i-dual-MILP and the proposed method, respectively. Also

note that the speed-up is 1 if every method could not find a solution within the

time limit and 0 if at least one of the comparison methods could find a solution895

while the proposed method could not find a solution.

Table 2 shows the results for the elevators problems with 6 constraints, where

we tested on 30 randomly generated problem instances. Note that the first two

columns of the table for the proposed method show approximation parameters

M and ε, respectively, and the star marks (?) next to ε values indicate that the900

speed-up technique was used. For the case without any approximation (M =∞

and ε = 0), the proposed method could not solve 8–9 out of 30 problem instances

for the optimality gap less than 10%. With candidate pruning (ε = 0.1, 0.2, 0.3),

however, the proposed algorithm performed better than the case without ap-

proximation and found near-optimal solutions with < 0.1% optimality gap for905

26–27 out of 30 problem instances.

This tendency is further emphasized with the approximation in Lagrangian

dual with M = 6. In other words, although the proposed algorithm found

< 0.1% optimality gap solutions for 22 out of 30 cases without candidate prun-

ing (ε = 0), the number of problems solved increases as it prunes candidates910

more aggressively, and found < 0.1% optimality gap solutions for 28–29 out of

30 instances with candidate pruning (ε = 0.1, 0.2, 0.3). The best results over-

all without speed-up technique were obtained with M = 6 and ε = 0.3, where

the proposed method achieved 22x of average speed-up against the comparison

methods for < 1% optimality gap, and achieved 21.7x of average speed-up ex-915

61

cept one instance for < 0.1% optimality gap. The results shown in Table 2 also

compare the algorithm performance with or without using speed-up techniques.

Although the number of solved problems remains the same, the average compu-

tation times were consistently reduced for almost every case. This shows that

the speed-up technique indeed reduced the computational overhead induced by920

candidate pruning and resulted in better efficiency in terms of the overall com-

putation time. In addition, it is worth noting that the average number of states

expanded by the proposed algorithm is only about 20% of the entire state space

that has been expanded by the MILP-based method.

During the experiment, the proposed method with limited M performed925

better because there is not much benefit of optimizing Lagrangian dual exactly

and it is rather more efficient to proceed to the second stage after it finds an

approximated solution to the Lagrangian dual. This is well shown in Fig. 13,

where the solid lines with circle markers show the solution histories with M = 6,

and the dotted lines with square markers show the solution histories with M =930

∞. Note that the speed-up technique was used for every case in the figure. The

cases with both M = 6 and M = ∞ have similar histories, but the histories

with M = ∞ are shifted to the right over time. This is resulted from the fact

that, with M =∞, the algorithm spent more time in the first stage to optimize

the Lagrangian dual, which didn’t provide any benefit in this problem instance.935

In addition, the proposed method generally converged to near-optimal solu-

tions faster as it pruned candidates more aggressively. The candidate pruning,

however, has a trade-off between efficiency and the optimality, as discussed in

Section 4. This trade-off can be observed in one of the test instances that is

shown in Fig 14. In this instance, the algorithm achieved < 0.1% optimality940

gap successfully with ε = 0.1 and 0.2. With ε = 0.3, however, although the

convergence rate up to < 1% optimality gap is the highest, it could not obtain

a solution with < 0.1% optimality gap, which might be due to aggressive candi-

date pruning. Note that this is an expected behavior, and in fact what we desire

with approximation: better convergence at the cost of optimality. However, the945

experimental results show that the candidate pruning increases convergence rate

62

Figure 13: Solution histories of the MILP-based method and the proposed method with

different parameters for an instance of elevators problem.

without losing near-optimality in most of the cases.

Similar to Table 2, Table 3 shows the results for the elevators problems with

4 constraints, where we tested on 30 randomly generated problem instances. A

similar comparison can be made between the proposed method and the com-950

parison methods with the case with 6 constraints. Without using the speed-up

technique, the proposed algorithm performed the best with M = 4 and ε = 0.3

where it achieved more than 30x average speed-up against the comparison meth-

ods for < 1% optimality gap, and found < 0.1% optimality gap solutions for

28 out of 30 instances. Moreover, the speed-up technique further reduced the955

average computation time for every case.

However, a major difference between Table 2 and Table 3 is that different

M values have a bigger effect in the experiments with 6 constraints than 4 con-

straints. As mentioned earlier, the smaller M can be advantageous if optimizing

Lagrangian dual requires too much effort, as shown in Fig. 14. Therefore, the960

approximation in Lagrangian dual with M can affect the algorithm more signif-

icantly as the Lagrangian dual has a larger dimension with more constraints.

Finally, throughout the experiment, MILP-based and the proposed methods

outperformed i-dual-LP and i-dual-MILP. Possible reasons that i-dual particu-

larly showed poor performance on the elevators domain are the following. First,965

63

Figure 14: Solution histories of the proposed method for an instance of elevators problem with

different parameters (top) and zoom in view of near-optimal solutions (bottom).

64

B
a
s
e
li
n
e

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

M
IL

P
3
0

(
1
4
0
.4
±

8
1
.5

)
1
0
4
4
9
5
.3

i-
d
u
a
l-
L
P

1
4

(
4
8
6
.8
±

5
2
7
.2

)
4
4
0
0
.6

i-
d
u
a
l-
M

IL
P

1
3

(
4
6
7
.3
±

5
5
9
.1

)
3
9
5
5
.9

P
r
o
p
o
s
e
d

m
e
t
h
o
d

M
ε

<
1
0
%

o
p
t
im

a
li
t
y

g
a
p

<
1
%

o
p
t
im

a
li
t
y

g
a
p

<
0
.1

%
o
p
t
im

a
li
t
y

g
a
p

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p

∞

0
2
2

(
3
3
.8
±

5
0
.2

)
2
1
8
5
9
.5

2
3
.3

[0
,
2
8
6
.2

]
2
1

(
4
3
.1
±

6
0
.1

)
2
2
7
4
3
.9

2
0
.5

[0
,
2
8
6
.2

]
2
1

(
4
3
.4
±

6
0
.5

)
2
2
7
5
9
.5

2
0
.5

[0
,
2
8
6
.2

]

0
.1

2
8

(
3
8
.9
±

5
9
.1

)
1
9
8
2
0
.8

2
4
.5

[0
,
2
8
1
.2

]
2
7

(
4
2
.9
±

6
0
.0

)
2
0
5
9
4
.4

2
1
.4

[0
,
2
8
1
.2

]
2
6

(
4
4
.7
±

6
1
.0

)
2
1
2
4
1
.8

2
0
.8

[0
,
2
8
1
.2

]

0
.1

(
?
)

2
8

(
3
6
.3
±

5
1
.5

)
1
9
8
2
0
.8

2
4
.8

[0
,
2
8
7
.5

]
2
7

(
4
0
.0
±

5
2
.3

)
2
0
5
9
4
.4

2
1
.8

[0
,
2
8
7
.5

]
2
6

(
4
1
.7
±

5
3
.1

)
2
1
2
4
1
.8

2
1
.2

[0
,
2
8
7
.5

]

0
.2

2
8

(
3
8
.7
±

5
9
.1

)
1
9
8
3
1
.6

2
4
.6

[0
,
2
8
4
.6

]
2
7

(
4
2
.6
±

5
9
.8

)
2
0
6
0
7
.2

2
1
.6

[0
,
2
8
4
.6

]
2
7

(
4
3
.0
±

6
0
.0

)
2
0
6
1
9
.7

2
1
.3

[0
,
2
8
4
.6

]

0
.2

(
?
)

2
8

(
3
5
.4
±

5
0
.1

)
1
9
8
3
1
.6

2
4
.9

[0
,
2
8
3
.9

]
2
7

(
3
9
.2
±

5
0
.9

)
2
0
6
0
7
.2

2
1
.8

[0
,
2
8
3
.9

]
2
7

(
3
9
.5
±

5
1
.2

)
2
0
6
1
9
.7

2
1
.6

[0
,
2
8
3
.9

]

0
.3

2
9

(
3
5
.6
±

5
3
.2

)
2
0
0
7
5
.8

2
5
.0

[0
,
2
8
6
.2

]
2
7

(
4
0
.7
±

5
3
.4

)
1
9
8
6
9
.7

2
1
.1

[0
,
2
8
6
.2

]
2
6

(
4
1
.8
±

5
4
.5

)
2
0
4
8
2
.3

2
0
.8

[0
,
2
8
6
.2

]

0
.3

(
?
)

2
9

(
3
8
.5
±

5
4
.0

)
2
0
0
7
5
.8

2
5
.3

[0
,
2
8
3
.8

]
2
7

(
3
5
.8
±

4
5
.7

)
1
9
8
6
9
.7

2
1
.5

[0
,
2
8
3
.8

]
2
6

(
3
6
.8
±

4
6
.8

)
2
0
4
8
2
.3

2
1
.1

[0
,
2
8
3
.8

]

6

0
2
2

(
2
5
.2
±

2
7
.9

)
2
1
5
9
5
.2

2
3
.7

[0
,
2
8
5
.5

]
2
2

(
2
7
.3
±

2
8
.2

)
2
1
7
8
4
.0

2
1
.3

[0
,
2
8
5
.5

]
2
2

(
2
7
.5
±

2
9
.1

)
2
1
8
0
3
.6

2
1
.2

[0
,
2
8
5
.5

]

0
.1

3
0

(
2
6
.7
±

2
7
.1

)
1
9
3
8
3
.7

2
5
.7

[1
.4

,
2
8
3
.5

]
2
9

(
2
9
.5
±

2
7
.8

)
2
0
0
8
2
.2

2
2
.5

[0
,
2
8
3
.5

]
2
8

(
3
0
.7
±

2
8
.7

)
2
0
6
6
9
.6

2
1
.8

[0
,
2
8
3
.5

]

0
.1

(
?
)

3
0

(
2
5
.9
±

2
6
.5

)
1
9
3
8
3
.7

2
6
.1

[1
.5

,
2
8
2
.6

]
2
9

(
2
8
.2
±

2
6
.8

)
2
0
0
8
2
.2

2
2
.7

[0
,
2
8
2
.6

]
2
8

(
2
9
.4
±

2
7
.6

)
2
0
6
6
9
.6

2
1
.9

[0
,
2
8
2
.6

]

0
.2

3
0

(
2
6
.9
±

2
7
.1

)
1
9
3
9
2
.9

2
5
.6

[1
.4

,
2
8
3
.9

]
2
9

(
2
9
.7
±

2
7
.9

)
2
0
0
9
3
.5

2
2
.4

[0
,
2
8
3
.9

]
2
9

(
3
0
.0
±

2
8
.5

)
2
0
1
0
9
.1

2
2
.3

[0
,
2
8
3
.9

]

0
.2

(
?
)

3
0

(
2
5
.6
±

2
6
.3

)
1
9
3
9
2
.9

2
6
.4

[1
.6

,
2
8
5
.0

]
2
9

(
2
7
.9
±

2
6
.6

)
2
0
0
9
3
.5

2
2
.9

[0
,
2
8
5
.0

]
2
9

(
2
8
.2
±

2
7
.3

)
2
0
1
0
9
.1

2
2
.6

[0
,
2
8
5
.0

]

0
.3

3
0

(
2
6
.3
±

2
6
.8

)
1
9
3
7
6
.8

2
6
.1

[1
.4

,
2
8
5
.9

]
3
0

(
3
1
.5
±

2
7
.9

)
1
9
5
7
4
.8

2
2
.0

[1
.2

,
2
8
5
.9

]
2
9

(
3
2
.2
±

2
8
.8

)
2
0
1
1
7
.8

2
1
.7

[0
,
2
8
5
.9

]

0
.3

(
?
)

3
0

(
2
5
.3
±

2
6
.3

)
1
9
3
7
6
.8

2
6
.4

[1
.6

,
2
8
5
.5

]
3
0

(
2
9
.4
±

2
7
.0

)
1
9
5
7
4
.8

2
2
.5

[1
.3

,
2
8
5
.5

]
2
9

(
3
0
.1
±

2
8
.0

)
2
0
1
1
7
.8

2
2
.1

[0
,
2
8
5
.5

]

Table 2: Evaluation results of the elevators problems with 6 constraints.

65

as mentioned in the racetrack results, the overhead of solving a sequence of

(MI)LPs in i-dual cannot be compensated if the difference between the number

of states expanded by i-dual and the size of the state space is small. Secondly,

which is also related to the previous point, the quality of the heuristic functions

is important to reduce the search space, but our naive optimistic heuristics are970

weak in the sense that they do not guide the search well. Finally, the ratio of

the branching factor to the size of the state space does matter for i-dual. For

example, if the branching factor is big compared to the size of the state space,

the number of (MI)LP instances that i-dual solves will be small, and vice versa.

Since the branching factor of the elevator is 1 or 2 for each action (either a975

hidden person arrives or not) and the size of the state space is comparatively

big, i-dual solves too many intermediate (MI)LPs until reaching the required

search space.

5.3.3. Risk-bounded aircraft routing problem

In this experiment, we demonstrate the proposed method on the risk-bounded980

aircraft routing problem. Similar to the elevators problem, we investigate the

effects of the candidate pruning and speed-up techniques, where we test four

different ε values, 0, 0.1, 0.2 and 0.3, for the candidate pruning. Note that the

approximation for the Lagrangian dual with the parameter M is not applicable

for this problem since there is only a single constraint. In addition, to study985

how the algorithm scales with the size of the problems, we test on three differ-

ent configurations shown in Fig. 11, ordered in the size of the state space. For

each configuration, we tested on 30 problem instances which were generated by

randomly selecting initial position(s) of weather cell(s) and moving direction(s).

Similar to the previous section, we report the number of problems solved990

within the time limit (1800 seconds), the average and standard deviation of

the computation times for solved problems, and the average number of states

for solved problems for comparison methods. Again, we report three anytime

solutions that achieve < 10%, < 1% and < 0.1% optimality gaps, respectively,

with the same metrics used for comparison methods and speed-up against the995

66

B
a
s
e
li
n
e

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

M
IL

P
3
0

(
1
3
8
.9
±

7
4
.1

)
1
0
9
1
1
2
.9

i-
d
u
a
l-
L
P

1
5

(
8
5
6
.1
±

4
9
6
.8

)
6
7
8
4
.5

i-
d
u
a
l-
M

IL
P

1
2

(
7
3
8
.1
±

4
0
7
.1

)
6
3
4
7
.0

P
r
o
p
o
s
e
d

m
e
t
h
o
d

M
ε

<
1
0
%

o
p
t
im

a
li
t
y

g
a
p

<
1
%

o
p
t
im

a
li
t
y

g
a
p

<
0
.1

%
o
p
t
im

a
li
t
y

g
a
p

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p

∞

0
2
7

(
2
3
.9
±

4
2
.7

)
1
8
9
5
6
.3

3
6
.3

[0
,
2
0
5
.9

]
2
6

(
2
9
.0
±

4
7
.8

)
1
9
9
7
8
.2

3
1
.0

[0
,
2
0
5
.9

]
2
6

(
2
9
.0
±

4
7
.8

)
2
0
0
3
5
.0

2
5
.6

[0
,
1
8
8
.9

]

0
.1

3
0

(
3
3
.5
±

5
7
.6

)
1
8
1
3
7
.5

3
5
.5

[0
.5

,
1
8
9
.2

]
2
7

(
4
0
.2
±

6
3
.1

)
1
9
5
4
7
.1

2
8
.6

[0
,
1
8
9
.2

]
2
6

(
3
5
.3
±

5
8
.6

)
1
9
9
5
3
.3

2
4
.8

[0
,
1
8
9
.2

]

0
.1

(
?
)

3
0

(
3
0
.5
±

5
0
.3

)
1
8
1
3
7
.5

3
6
.4

[0
.6

,
1
8
6
.8

]
2
7

(
3
6
.9
±

5
5
.9

)
1
9
5
4
7
.1

2
9
.4

[0
,
1
8
6
.8

]
2
6

(
3
2
.6
±

5
2
.1

)
1
9
9
5
3
.3

2
5
.0

[0
,
1
8
6
.8

]

0
.2

3
0

(
3
4
.1
±

5
9
.1

)
1
8
1
2
5
.1

3
7
.3

[0
.5

,
2
1
2
.2

]
2
8

(
3
9
.9
±

6
4
.3

)
1
9
1
0
6
.0

3
2
.3

[0
,
2
1
2
.2

]
2
7

(
3
4
.8
±

5
9
.4

)
1
9
4
8
2
.2

2
6
.4

[0
,
1
8
9
.2

]

0
.2

(
?
)

3
0

(
2
8
.7
±

4
6
.9

)
1
8
1
2
5
.1

3
5
.6

[0
.7

,
1
8
8
.9

]
2
8

(
3
3
.8
±

5
2
.2

)
1
9
1
0
6
.0

3
1
.3

[0
,
1
8
8
.9

]
2
7

(
3
0
.3
±

4
9
.5

)
1
9
4
8
2
.2

2
6
.6

[0
,
1
8
8
.9

]

0
.3

3
0

(
3
2
.6
±

5
4
.9

)
1
8
1
4
1
.2

3
6
.3

[0
.5

,
1
8
9
.2

]
2
9

(
3
8
.0
±

5
8
.4

)
1
8
6
8
1
.9

3
2
.1

[0
,
1
8
9
.2

]
2
7

(
3
4
.0
±

5
6
.5

)
1
9
4
3
4
.3

2
6
.4

[0
,
1
8
8
.4

]

0
.3

(
?
)

3
0

(
2
3
.7
±

4
1
.0

)
1
8
1
4
1
.2

3
6
.2

[1
.7

,
1
8
9
.4

]
2
9

(
3
1
.0
±

4
0
.1

)
1
8
6
8
1
.9

3
2
.3

[0
,
1
8
9
.4

]
2
7

(
3
0
.7
±

5
0
.8

)
1
9
4
3
4
.3

2
7
.1

[0
,
1
8
9
.4

]

4

0
2
7

(
2
4
.5
±

4
4
.2

)
1
8
9
7
9
.4

3
5
.3

[0
,
1
8
9
.6

]
2
6

(
2
8
.1
±

4
9
.4

)
1
9
9
6
7
.4

2
9
.8

[0
,
1
8
9
.6

]
2
6

(
2
8
.2
±

4
6
.4

)
2
0
0
3
0
.6

2
4
.8

[0
,
1
8
9
.6

]

0
.1

3
0

(
3
2
.2
±

5
3
.6

)
1
8
1
6
9
.4

3
5
.3

[0
.5

,
1
8
8
.7

]
2
8

(
3
7
.0
±

5
6
.4

)
1
9
4
9
3
.6

2
9
.5

[0
,
1
8
8
.7

]
2
7

(
3
3
.7
±

5
3
.5

)
1
9
8
8
8
.9

2
4
.4

[0
,
1
8
8
.7

]

0
.1

(
?
)

3
0

(
3
1
.1
±

5
1
.4

)
1
8
1
6
9
.4

3
6
.5

[0
.6

,
1
9
0
.2

]
2
8

(
3
5
.6
±

5
3
.8

)
1
9
4
9
3
.6

3
0
.1

[0
,
1
9
0
.2

]
2
7

(
3
1
.4
±

4
9
.5

)
1
9
8
8
8
.9

2
4
.7

[0
,
1
9
0
.2

]

0
.2

3
0

(
3
5
.1
±

6
0
.7

)
1
8
1
4
9
.2

3
6
.0

[0
.5

,
1
8
8
.8

]
2
9

(
3
8
.9
±

6
2
.5

)
1
9
0
7
1
.3

3
1
.0

[0
,
1
8
8
.8

]
2
8

(
3
4
.1
±

5
7
.6

)
1
9
4
3
8
.9

2
5
.6

[0
,
1
8
8
.8

]

0
.2

(
?
)

3
0

(
2
8
.8
±

4
7
.1

)
1
8
1
4
9
.2

3
6
.1

[0
.7

,
1
9
5
.4

]
2
9

(
3
2
.2
±

4
9
.0

)
1
9
0
7
1
.3

3
1
.4

[0
,
1
9
5
.4

]
2
8

(
2
9
.0
±

4
6
.4

)
1
9
4
3
8
.9

2
5
.7

[0
,
1
8
8
.8

]

0
.3

3
0

(
3
4
.4
±

5
9
.1

)
1
8
1
4
5
.3

3
6
.4

[0
.5

,
1
8
9
.1

]
3
0

(
3
8
.3
±

5
9
.8

)
1
8
6
4
1
.5

3
1
.4

[0
.5

,
1
8
9
.1

]
2
8

(
3
4
.2
±

5
7
.7

)
1
9
3
7
9
.1

2
5
.7

[0
,
1
8
9
.1

]

0
.3

(
?
)

3
0

(
2
3
.9
±

4
1
.7

)
1
8
1
4
5
.3

3
6
.5

[1
.7

,
1
8
9
.9

]
3
0

(
2
9
.6
±

4
5
.9

)
1
8
6
4
1
.5

3
1
.6

[0
.9

,
1
8
9
.9

]
2
8

(
2
9
.2
±

4
7
.4

)
1
9
3
7
9
.1

2
6
.4

[0
,
1
8
9
.9

]

Table 3: Evaluation results of the elevators problems with 4 constraints.

67

baselines. Note that when the optimal cost is unknown (due to failure from

both MILP and i-dual), the optimality gap is estimated as the best lower bound

on the optimal cost computed by the proposed method.

Table 4 shows the results for the first configuration (Fig. 11a), where the

MILP-based method performed the best among baselines by solving every prob-1000

lem with average of 12.7 seconds. First of all, the proposed method without can-

didate pruning solved every instance for < 1% optimality gap with average of

126.6x speed-up compared to the comparison methods. For < 0.1% optimality

gap, however, it failed to find solutions for 2 out of 30 cases. Given that the size

of the state space for the first configuration is small (6305.2 number of states1005

in average), these results show how the proposed algorithm possibly struggles

to converge to (near-)optimal solution when there are too many policies with

almost the same primary cost.

Roughly speaking, the purpose of the candidate pruning is to skip such poli-

cies by examining their potential in cost improvement, which in fact is demon-1010

strated in Table 4. By using the candidate pruning with ε = 0.1 and without

the speed-up technique, the algorithm found < 0.1% optimality gap solutions

for every case. However, the computation time also increased significantly. Al-

though the average computation time for < 0.1% gap solutions are still lower

than with the MILP-based method, the standard deviation is very high. In ad-1015

dition, as the minimum speed-up value shows, there is a case that found < 0.1%

gap solution five times slower than a comparison method. In fact, this is not sur-

prising, since candidate pruning has computational overhead that comes from

performing matrix inversions.

The speed-up techniques have been introduced to reduce such computational1020

overhead, which is well demonstrated in the case with ε = 0.1 and the speed-

up technique. With the speed-up technique, the average computation time

has reduced from 8.9 to 1.8 seconds with a much smaller standard deviation.

In addition, the minimum speed-up value shows that the algorithm achieved

< 0.1% optimality gap faster than comparison methods for every instance.1025

However, as discussed in the previous section with Fig. 14, there is a trade-off

68

in the candidate pruning: candidate pruning improves convergence rate at the

cost of optimality. This is shown in Table 4 for ε = 0.2 and 0.3 cases. Although

the proposed algorithm could still find more < 0.1% optimality gap solutions

than the case without candidate pruning, the number of problems solved was1030

decreased compared to the case with ε = 0.1 due to aggressive pruning.

Table 5 shows the results for the second configuration (Fig. 11b). The pro-

posed method found < 1% gap solutions for every case with or without candi-

date pruning with more than 300x of average speed-up against the comparison

methods, whereas the MILP-based method, which performed the best among1035

baselines, only could solve 18 out of 30 test instances.

Similar to the results for the first configuration, the algorithm failed to

achieve < 0.1% optimality gap for 5 out of 30 instances without the candi-

date pruning. It is interesting to note, however, the algorithm performed even

worse with the candidate pruning with ε = 0.1 and without the speed-up tech-1040

nique both in terms of the number of problems solved and computation time.

Again, it is not surprising because the computational overhead from the candi-

date pruning is based on the matrix inversion, which becomes more significant as

the size of a matrix (which depends on the size of a policy) increases. Therefore,

in this case, the computational overhead is so large to prevent the algorithm1045

from taking advantage of the candidate pruning. However, again, the algorithm

could take advantage of the candidate pruning with the speed-up technique by

reducing the computational overhead, which results in solving 27 out of 30 in-

stances for < 0.1% gap with average of 276.4x speed-up against the comparison

methods.1050

Fig. 15 shows the solution histories for one of the test instances of the sec-

ond configuration and well demonstrates the overall tendency described above.

Without pruning (blue line), the algorithm achieved the near-optimal solution

slower than the case with both candidate pruning and speed-up technique with

ε = 0.1 (red line). Also, the case with the candidate pruning without speed-up1055

technique poorly performed due to computational overhead and could not even

obtain near-optimal solution in this case (green line).

69

Figure 15: Solution histories of the MILP-based method and the proposed method with

different settings for an instance of aircraft routing problem with the second configuration.

The advantage of using the speed-up technique also can be found for ε = 0.2

and 0.3 cases as well in Table 5. More specifically, the number of problems solved

was improved from 22 to 25 for ε = 0.2 case, and from 22 to 24 for ε = 0.3 case.1060

However, the overall numbers of problems solved, with or without the speed-up

technique, were smaller than the ε = 0.1 case, which again demonstrates the

trade-off in the candidate pruning.

Finally, Table 6 shows the results for the third configuration (Fig. 11c), in

which case none of the baseline methods solved any problem instance given1065

1800 seconds time limit. It is worth noting that the results for the proposed

method have no statistically meaningful difference with or without pruning or

speed-up technique. In fact, the state space and the size of policy for the third

configuration are too huge to make improvement in the second stage for the

proposed method. Therefore, all the results are based on the first stage of1070

the algorithm and have no difference between different cases. However, it is

interesting to note that the proposed algorithm still achieved < 1% and < 0.1%

optimality gap for 27 and 13 out of 30 problem instances, respectively, solely

based on the first stage of the algorithm with much less time than the time

limit.1075

5.4. Summary

In this section, we evaluated the performance of the proposed method on

70

B
a
s
e
li
n
e

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

M
IL

P
3
0

(
1
2
.7
±

9
.9

)
6
3
0
5
.2

i-
d
u
a
l-

L
P

3
0

(
3
4
.3
±

1
3
3
.4

)
1
6
6
6
.1

i-
d
u
a
l-

M
IL

P

3
0

(
8
2
.8
±

2
4
1
.7

)
1
7
2
8
.8

P
r
o
p
o
s
e
d

m
e
t
h
o
d

ε
<

1
0
%

o
p
t
im

a
li
t
y

g
a
p

<
1
%

o
p
t
im

a
li
t
y

g
a
p

<
0
.1

%
o
p
t
im

a
li
t
y

g
a
p

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p

0
3
0

(
0
.2
±

0
.4

)
1
5
7
8
.3

1
2
7
.3

[1
5
.1

,
4
4
1
.2

]
3
0

(
0
.3
±

0
.7

)
1
5
7
8
.6

1
2
6
.6

[9
.7

,
4
4
1
.2

]
2
8

(
0
.4
±

0
.6

)
1
4
4
3
.9

1
0
1
.9

[0
,
4
4
1
.2

]

0
.1

3
0

(
0
.3
±

0
.6

)
1
5
7
8
.3

1
1
8
.5

[1
1
.7

,
4
4
1
.2

]
3
0

(
0
.4
±

1
.0

)
1
5
7
8
.6

1
1
7
.9

[7
.1

,
4
4
1
.2

]
3
0

(
8
.9
±

4
1
.5

)
1
6
5
2
.2

1
0
1
.1

[0
.2

,
4
4
1
.2

]

0
.1

(
?
)

3
0

(
0
.2
±

0
.4

)
1
5
7
8
.3

1
2
9
.7

[1
7
.0

,
4
4
1
.2

]
3
0

(
0
.3
±

0
.7

)
1
5
7
8
.6

1
2
9
.0

[1
0
.6

,
4
4
1
.2

]
3
0

(
1
.8
±

5
.9

)
1
6
5
2
.2

1
0
2
.1

[1
.1

,
4
4
1
.2

]

0
.2

3
0

(
0
.3
±

0
.5

)
1
5
7
8
.3

1
1
6
.4

[8
.1

,
4
4
1
.2

]
3
0

(
0
.4
±

0
.8

)
1
5
7
8
.6

1
1
5
.7

[8
.1

,
4
4
1
.2

]
2
9

(
1
1
.5
±

4
6
.7

)
1
6
0
4
.9

1
0
0
.8

[0
,
4
4
1
.2

]

0
.2

(
?
)

3
0

(
0
.3
±

0
.6

)
1
5
7
8
.3

1
1
6
.1

[8
.2

,
4
4
1
.2

]
3
0

(
0
.4
±

0
.9

)
1
5
7
8
.6

1
1
5
.5

[8
.2

,
4
4
1
.2

]
2
9

(
2
.2
±

7
.8

)
1
6
0
4
.9

1
0
1
.5

[0
,
4
4
1
.2

]

0
.3

3
0

(
0
.3
±

0
.6

)
1
5
7
8
.3

1
1
5
.5

[9
.2

,
4
4
1
.2

]
3
0

(
0
.4
±

0
.9

)
1
5
7
8
.6

1
1
4
.9

[8
.2

,
4
4
1
.2

]
2
9

(
1
0
.8
±

4
4
.0

)
1
6
0
4
.9

1
0
0
.9

[0
,
4
4
1
.2

]

0
.3

(
?
)

3
0

(
0
.3
±

0
.6

)
1
5
7
8
.3

1
1
5
.8

[8
.6

,
4
4
1
.2

]
3
0

(
0
.4
±

0
.9

)
1
5
7
8
.6

1
1
5
.1

[8
.1

,
4
4
1
.2

]
2
9

(
2
.3
±

8
.1

)
1
6
0
4
.9

1
0
1
.3

[0
,
4
4
1
.2

]

Table 4: Evaluation results of the aircraft routing problems with the first configuration.

71

B
a
s
e
li
n
e

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

M
IL

P
1
8

(
2
5
6
.9
±

2
7
4
.9

)
1
0
5
6
5
.3

i-
d
u
a
l-

L
P

1
2

(
4
5
1
.6
±

4
7
9
.1

)
8
0
7
1
.3

i-
d
u
a
l-

M
IL

P

3
(
5
7
7
.4
±

4
6
4
.1

)
4
9
7
4
.0

P
r
o
p
o
s
e
d

m
e
t
h
o
d

<
1
0
%

o
p
t
im

a
li
t
y

g
a
p

<
1
%

o
p
t
im

a
li
t
y

g
a
p

<
0
.1

%
o
p
t
im

a
li
t
y

g
a
p

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p

0
3
0

(
5
.1
±

7
.0

)
1
1
1
4
0
.3

3
1
9
.5

[1
.7

,
1
5
3
8
.3

]
3
0

(
5
.1
±

7
.0

)
1
1
1
4
0
.3

3
1
9
.5

[1
.7

,
1
5
3
8
.3

]
2
5

(
2
6
.8
±

4
4
.7

)
1
1
6
0
7
.2

2
7
1
.6

[0
,
1
5
3
8
.3

]

0
.1

3
0

(
4
.5
±

7
.0

)
1
1
1
4
0
.3

3
2
3
.7

[1
.7

,
1
5
3
8
.2

]
3
0

(
4
.5
±

7
.0

)
1
1
1
4
0
.3

3
2
3
.7

[1
.7

,
1
5
3
8
.2

]
2
4

(
5
8
.6
±

1
1
2
.2

)
1
1
6
8
2
.8

2
7
4
.0

[0
,
1
5
3
8
.2

]

0
.1

(
?
)

3
0

(
4
.5
±

6
.9

)
1
1
1
4
0
.3

3
2
2
.8

[1
.7

,
1
5
3
8
.8

]
3
0

(
4
.5
±

6
.9

)
1
1
1
4
0
.3

3
2
2
.8

[1
.7

,
1
5
3
8
.8

]
2
7

(
2
1
.4
±

2
7
.9

)
1
1
5
0
4
.6

2
7
6
.4

[0
,
1
5
3
8
.8

]

0
.2

3
0

(
4
.6
±

7
.0

)
1
1
1
4
0
.3

3
1
6
.1

[1
.7

,
1
5
3
8
.6

]
3
0

(
4
.6
±

7
.0

)
1
1
1
4
0
.3

3
1
6
.1

[1
.7

,
1
5
3
8
.6

]
2
2

(
3
5
.2
±

7
4
.4

)
1
1
4
2
1
.6

2
7
1
.6

[0
,
1
5
3
8
.6

]

0
.2

(
?
)

3
0

(
4
.6
±

7
.0

)
1
1
1
4
0
.3

3
1
8
.3

[1
.7

,
1
5
3
8
.5

]
3
0

(
4
.6
±

7
.0

)
1
1
1
4
0
.3

3
1
8
.3

[1
.7

,
1
5
3
8
.5

]
2
5

(
2
0
.5
±

3
0
.5

)
1
1
5
0
8
.8

2
7
3
.5

[0
,
1
5
3
8
.5

]

0
.3

3
0

(
4
.9
±

7
.1

)
1
1
1
4
0
.3

3
1
8
.0

[1
.7

,
1
5
3
8
.3

]
3
0

(
4
.9
±

7
.1

)
1
1
1
4
0
.3

3
1
8
.0

[1
.7

,
1
5
3
8
.3

]
2
2

(
3
6
.3
±

7
7
.4

)
1
1
4
2
1
.6

2
7
3
.2

[0
,
1
5
3
8
.3

]

0
.3

(
?
)

3
0

(
4
.6
±

7
.0

)
1
1
1
4
0
.3

3
1
8
.2

[1
.7

,
1
5
3
8
.4

]
3
0

(
4
.6
±

7
.0

)
1
1
1
4
0
.3

3
1
8
.2

[1
.7

,
1
5
3
8
.4

]
2
4

(
1
9
.2
±

3
1
.8

)
1
1
4
0
0
.3

2
7
2
.3

[0
,
1
5
3
8
.4

]

Table 5: Evaluation results of the aircraft routing problems with the second configuration.

72

B
a
s
e
li
n
e

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

M
IL

P
0

(
-)

-

i-
d
u
a
l-

L
P

0
(
-)

-

i-
d
u
a
l-

M
IL

P

0
(
-)

-

P
r
o
p
o
s
e
d

m
e
t
h
o
d

<
1
0
%

o
p
t
im

a
li
t
y

g
a
p

<
1
%

o
p
t
im

a
li
t
y

g
a
p

<
0
.1

%
o
p
t
im

a
li
t
y

g
a
p

#
s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p
#

s
o
lv

e
d

/
t
im

e
(
s
)

s
t
a
t
e
s

s
p
e
e
d
-u

p

0
3
0

(
1
4
5
.1
±

1
3
8
.3

)
2
5
4
9
3
4
.2

6
9
.3

[3
.5

,
5
2
6
.7

]
2
7

(
1
3
1
.6
±

1
3
3
.9

)
2
3
2
9
4
2
.7

6
8
.5

[1
.0

,
5
2
6
.7

]
1
3

(
2
6
6
.3
±

3
4
3
.3

)
2
5
5
0
1
1
.2

5
1
.5

[1
.0

,
5
2
6
.7

]

0
.1

3
0

(
1
4
5
.0
±

1
3
8
.2

)
2
5
4
9
3
4
.2

6
9
.4

[3
.5

,
5
2
6
.1

]
2
7

(
1
3
1
.6
±

1
3
3
.9

)
2
3
2
9
4
2
.7

6
8
.5

[1
.0

,
5
2
6
.1

]
1
3

(
2
6
6
.5
±

3
4
3
.6

)
2
5
5
0
1
1
.2

5
1
.5

[1
.0

,
5
2
6
.1

]

0
.1

(
?
)

3
0

(
1
4
5
.1
±

1
3
8
.1

)
2
5
4
9
3
4
.2

6
9
.4

[3
.5

,
5
2
5
.9

]
2
7

(
1
3
1
.5
±

1
3
3
.6

)
2
3
2
9
4
2
.7

6
8
.5

[1
.0

,
5
2
5
.9

]
1
3

(
2
6
6
.6
±

3
4
3
.8

)
2
5
5
0
1
1
.2

5
1
.5

[1
.0

,
5
2
5
.9

]

0
.2

3
0

(
1
4
5
.5
±

1
3
9
.5

)
2
5
4
9
3
4
.2

6
9
.3

[3
.4

,
5
2
2
.0

]
2
7

(
1
3
1
.7
±

1
3
4
.9

)
2
3
2
9
4
2
.7

6
8
.5

[1
.0

,
5
2
2
.0

]
1
3

(
2
6
6
.7
±

3
4
3
.2

)
2
5
5
0
1
1
.2

5
1
.3

[1
.0

,
5
2
2
.0

]

0
.2

(
?
)

3
0

(
1
4
5
.0
±

1
3
8
.2

)
2
5
4
9
3
4
.2

6
9
.1

[3
.5

,
5
2
5
.7

]
2
7

(
1
3
1
.8
±

1
3
4
.2

)
2
3
2
9
4
2
.7

6
8
.3

[1
.0

,
5
2
5
.7

]
1
3

(
2
6
6
.5
±

3
4
3
.5

)
2
5
5
0
1
1
.2

5
1
.3

[1
.0

,
5
2
5
.7

]

0
.3

3
0

(
1
4
4
.9
±

1
3
7
.5

)
2
5
4
9
3
4
.2

6
9
.0

[3
.5

,
5
2
1
.7

]
2
7

(
1
3
1
.4
±

1
3
3
.2

)
2
3
2
9
4
2
.7

6
8
.2

[1
.0

,
5
2
1
.7

]
1
3

(
2
6
6
.6
±

3
4
2
.9

)
2
5
5
0
1
1
.2

5
1
.3

[1
.0

,
5
2
1
.7

]

0
.3

(
?
)

3
0

(
1
4
5
.1
±

1
3
8
.5

)
2
5
4
9
3
4
.2

6
9
.8

[3
.5

,
5
3
0
.6

]
2
7

(
1
3
1
.3
±

1
3
3
.8

)
2
3
2
9
4
2
.7

6
8
.9

[1
.0

,
5
3
0
.6

]
1
3

(
2
6
8
.4
±

3
4
7
.3

)
2
5
5
0
1
1
.2

5
1
.9

[1
.0

,
5
3
0
.6

]

Table 6: Evaluation results of the aircraft routing problems with the third configuration.

73

three domains in comparison with three baseline methods. The evaluation re-

sults well demonstrated the anytime property of the proposed method. In other

words, the proposed method could obtain solutions with < 10% and < 1% opti-1080

mality gaps much faster than the baseline methods for most of the test instances.

In addition, for the aircraft routing problem with the third configuration where

none of the baseline methods could solve the problem, the proposed algorithm

still could find solutions with optimality gap less than 10%, 1% and 0.1% for

30, 27 and 13 cases out of 30, respectively.1085

However, the results also showed that the method suffers from slow conver-

gence rate and cannot achieve near-optimality with minimal (< 0.1%) optimal-

ity gap in several cases given limited planning time. In addition to the vanilla

version of the algorithm, we also proposed candidate pruning to facilitate the

search at the cost of optimality in Section 4. Throughout the experiments, we1090

could observe that candidate pruning generally improves the convergence rate

of the proposed method and helps us to find near-optimal solutions with < 0.1%

optimality gap faster in comparison with the cases without candidate pruning.

However, we could also observe the trade-off between the convergence rate and

optimality while using candidate pruning. For example, candidate pruning with1095

ε = 0.3 was outperformed by the case with ε = 0.1 for the aircraft routing

problems with the first and the second configurations due to aggressive prun-

ing. In general, the effect of the parameter ε for candidate pruning depends

on the domain and problem instance, and it is difficult to find a universally

outperforming parameter. Although it is out of the scope of this paper, finding1100

a systematic way to balance the trade-off between efficiency and optimality in

candidate pruning with parameter ε should be a promising direction for future

research.

Although candidate pruning potentially facilitates the search by skipping

generating a candidate in the second stage of the proposed algorithm, the com-1105

putational overhead might dominate its advantage and make the performance

of the method even worse. To overcome such computational overhead, we in-

troduced the speed-up techniques in Section 4.3, that reduce the computational

74

effort of matrix inversion which is the main source of computational overhead

in candidate pruning. The advantage of using the speed-up techniques was well1110

demonstrated in both elevators and aircraft routing domains. In the elevators

domain, we could observe that the speed-up technique reduced the computation

time consistently for almost every case compared to the cases without using

speed-up technique. In the aircraft routing domain, the advantage was more

dramatic and the speed-up technique even increased the number of problems1115

solved with < 0.1% optimality gap compared to the cases without using the

speed-up technique. Note that the difference in the magnitude of the advantage

of using the speed-up techniques is mainly due to the difference in the sizes of

policies between the domains, since the sizes of matrices that we need to take

inverse during candidate pruning depend on the sizes of policies. Therefore,1120

the experimental results suggest that the use of speed-up technique is more

important in the domains where the sizes of policies are usually large.

Finally, we also studied the effect of approximation in Lagrangian dual with

parameter M that controls the number of iterations for solving Lagrangian dual

when there are multiple constraints. The experimental results for the elevators1125

domain showed that, in general, solving Lagrangian dual only approximately

with limited M performs better than solving it optimally. These results might

come from the fact that the Lagrangian dual algorithm could iterate too much

with marginal improvements, in which case the closing gap procedure can im-

prove the solution quality faster especially with candidate pruning.1130

75

6. Conclusion

This work introduces an anytime algorithm that is able to find an optimal de-

terministic policy for constrained stochastic shortest path problems (C-SSPs).

We argue that the anytime property is one of the most crucial requirements

for a solution method for C-SSPs, especially with safety-critical applications.1135

Our proposed method focuses on finding a feasible but decent solution quickly,

then updating the solution as much as we can, until time is up. The algo-

rithm is proved able to obtain a true optimal solution eventually, if we have

enough planning time. We achieve this by dividing the solution method in

two stages, where the first stage finds a Lagrangian dual optimal solution, and1140

the second stage incrementally updates the solution to close a duality gap if

it exists. Throughout the process, we leverage the heuristic forward search

which improves efficiency in many ways. First, heuristics guide us to explore

only the part of the search space where the admissibility of a heuristic guaran-

tees optimality. Second, throughout the process of our proposed method, we1145

solve a series of SSPs with only slight modifications. Heuristic forward search

enables us to reuse previously generated AND/OR graphs and reduce redun-

dant computations. In many time- and safety-critical real-world applications,

it is often desirable to obtain a suboptimal solution with limited computation

time. In those applications, increasing convergence rate of the solution quality1150

is worth pursuing at the cost of optimality. Motivated by this, we propose an

approximation scheme which prunes candidate generations in the second stage

of the algorithm, which is guaranteed to obtain an ε-optimal solution with user

specified approximation parameter ε. The evaluation results presented in this

paper show that the proposed approach could obtain suboptimal solutions with1155

< 10% and < 1% optimality gaps much faster than the baseline methods for

most of the test problem instances. However, the results also show that the al-

gorithm suffers from slow convergence rate and cannot achieve near-optimality

with minimal (< 0.1%) optimality gap in several cases especially with multiple

constraints. In those cases, the approximation scheme and speed-up technique1160

76

could improve the convergence rate so that it can achieve near-optimality for

some cases, while there are still some cases that could not achieve it. Another

interesting observation from the experiments is that the proposed approach

could produce solutions with at most 10% optimality gap for extremely large

problems that could not be solved by baseline methods given limited planning1165

time. The observations made from the experiments identify when the users take

advantage of using the proposed method. As argued above, the proposed ap-

proach can be beneficial especially with safety-critical applications when a user

needs to have a feasible policy in a limited planning time, as it can produce

suboptimal solutions much faster than the baseline methods. However, it might1170

be beneficial to use the MILP-based methods when optimality is the primary

concern, since the proposed method has slow tail convergence rate. In addition,

the proposed method can be thought of as an approximation method when the

problem is too huge to be solved by the baseline methods. There are a number

of avenues for future work. In the experimental results, the proposed approach1175

showed various ranges of performance based on different parameter selections.

This leads us to further study ways to systematically choose such parameters as

discussed in Section 5.4. For example, one of the promising research directions

is deciding approximation parameter ε in candidate pruning by considering the

given planning time. More specifically, if the given planning time is enough to1180

solve the problem without approximation, then there is no reason to use can-

didate pruning. On the other hand, if the given planning time is too limited

compared to the size of the problem, we might want to prune candidates more

aggressively with bigger ε. Second, the proposed approach is actually a class of

algorithms where we can plug-in different algorithms for each step of the method.1185

Therefore, another interesting future work is highly optimizing the algorithm

by plugging in state-of-the-art methods for those steps. For example, we can

substitute a coordinate search used in the first stage of the algorithm with more

recent algorithms such as a quasi-Newton approach [41]. In addition, various

approximation schemes are worth exploring in order to improve the convergence1190

rate of the algorithm, which is particularly important with applications where

77

planning time is highly limited. Finally, although this paper proposes a general

framework without consideration of choosing heuristics, the quality of heuristics

affects the performance of the proposed method a lot. Therefore, it would be

valuable to explore various domain-independent heuristics and integrate them1195

as in [11, 12]. There are also interesting ongoing research works that generalize

the problem model while the proposed method still can be beneficial to use.

One of the ideas that we are currently pursuing is generalizing the proposed ap-

proach for hierarchical planning where the higher level of the planning problem

is based on a model-based approach, such as a temporal plan network (TPN)1200

[42], which has symbolic constraints and decisions. Another avenue that we are

pursuing is including path constraints in stochastic sequential decision making,

such as temporal logic constraints [43], to generalize the expressibility of the

safety and goal achievement in the problem.

Declaration of competing interest1205

We wish to confirm that there are no known conflicts of interest associated

with this publication and there has been no significant financial support for this

work that could have influenced its outcome.

Acknowledgements

This work was supported by the Boeing Corporation under grant No. 6943358.1210

78

Appendix A. Correctness of the k-best stochastic shortest path al-

gorithm

In this section, we prove that the k-best stochastic shortest path algorithm

in Algorithm 9 and 10 is correct. For this, it suffices to show that our algorithm

is a special case of Lawler’s algorithm [30], which is a general k-best solution1215

method for discrete optimization. First, we briefly review Lawler’s algorithm.

Given an optimization problem with a set of binary decision variables xi for

i = 1, . . . , n, the Lawler’s algorithm finds k-best solutions with the following

procedure [30]:

0) (Initialization) Set the solution number k and candidate set Γ as 1 and1220

∅, respectively. Compute an optimal solution and put this solution in the

candidate set Γ. Note that none of the variables has fixed value in this

step.

1) (Compute k-th solution) Remove a solution with the lowest cost from Γ.

Let denote this solution as xk = (xk1 , x
k
2 , . . . , x

k
n) and indicate xk as the1225

k-th best solution.

2) (Test termination condition) If a termination condition is satisfied, then

stop.

3) (Generate candidates) Suppose, without loss of generality, the values of

x1, x2, . . . , xs were fixed when we computed xk. With those variables fixed

as before, generate n− s new problems by fixing the remaining variables

as follows:

(1) xs+1 = 1− xks+1,

(2) xs+1 = xks+1, xs+2 = 1− xks+2,

(3) xs+1 = xks+1, xs+2 = xks+2, xs+3 = 1− xks+3,

...

(n− s) xs+1 = xks+1, xs+2 = xks+2, . . . , xn−1 = xkn−1, xn = 1− xkn.

Compute optimal solutions for each of newly generated n − s problems.

79

Put each optimal solution with a record of the fixed variables in Γ. Increase1230

k by 1. Continue to step 1).

Now, to show that our k-best stochastic shortest path algorithm for an SSP

is a special case of Lawler’s algorithm, let define a set of binary decision variables

x(s, a) for every s ∈ S and a ∈ A(s), where an action a is selected from a state

s if and only if x(s, a) = 1. Let πk be the k-th best policy, Sπk be a set of states1235

reachable from the initial state s̄ by πk, and πk(s) be the action selected by πk

from s. Also, let A(s) = {a1(s), a2(s), . . . , a|A(s)|(s)}.

Theorem Appendix A.1. Suppose we apply Lawler’s algorithm to find k-

best stochastic shortest paths for an SSP. Suppose, without loss of generality,

the states in Sπk for the k-th best policy πk are indexed with BFS order, i.e.,1240

s0, s1, s2, . . . , with s0 = s̄, and the other states are indexed arbitrarily. Now,

suppose for step 3) of k-th iteration of Lawler’s algorithm, we create problems for

x(si, π
k(si))’s first for i = 0, . . . , |Sπk |−1 in ascending order, then create the rest

of the problems in arbitrary order. Then, in step 3) of k-th iteration, the fixed

variables can be partitioned into xkF =
{
x(si, π

k(si)) | i = 0, . . . , |xkF |− 1, |xkF | <1245

|Sπk |
}

and xkB, where the variables in the former set have value of 1 and the

variables in the latter set have value of 0. Moreover, the set of created problems

are in the following form:

(1) x(s|xkF |, π
k(s|xkF |)) = 0,

(2) x(s|xkF |, π
k(s|xkF |)) = 1, x(s|xkF |+1, π

k(s|xkF |+1)) = 0,

(3) x(s|xkF |, π
k(s|xkF |)) = 1, x(s|xkF |+1, π

k(s|xkF |+1)) = 1,

x(s|xkF |+2, π
k(s|xkF |+2)) = 0,

...

(|Sπk | − |xkF |) x(s|xkF |, π
k(s|xkF |)) = 1, x(s|xkF |+1, π

k(s|xkF |+1)) = 1, . . . ,

x(s|S
πk
|−2, π

k(s|S
πk
|−2)) = 1, x(s|S

πk
|−1, π

k(s|S
πk
|−1)) = 0.

80

Proof. The proof can be done by induction. Suppose π1 has been computed by

any stochastic shortest path algorithm.1250

(Base case) In the first iteration, it is obvious that x1
F = x1

B = ∅. Then we

create problems as follows based on Lawler’s algorithm with given order in the

theorem:

(1) x(s0, π
1(s0)) = 0,

(2) x(s0, π
1(s0)) = 1, x(s1, π

1(s1)) = 0,

(3) x(s0, π
1(s0)) = 1, x(s1, π

1(s1)) = 1, x(s2, π
1(s2)) = 0,

...

(|Sπ1 |) x(s0, π
1(s0)) = 1, x(s1, π

1(s1)) = 1, . . . ,

x(s|Sπ1 |−2, π
1(s|Sπ1 |−2)) = 1, x(s|Sπ1 |−1, π

1(s|Sπ1 |−1)) = 0,

(|Sπ1 |+ 1) x(si, π
1(si)) = 1 ∀i = 0, . . . , |Sπ1 | − 1,

x(s|Sπ1 |, a
1(s|Sπ1 |)) = 0,

(|Sπ1 |+ 2) x(si, π
1(si)) = 1 ∀i = 0, . . . , |Sπ1 | − 1,

x(s|Sπ1 |, a
1(s|Sπ1 |)) = 1, x(s|Sπ1 |, a

2(s|Sπ1 |)) = 0,

...

However, the problems (p) with p > |S1
π| include constraints

x(si, π
1(si)) = 1 ∀i = 0, . . . , |Sπ1 | − 1,

which form the closed policy π1. Therefore, any problem (p) with p > |S1
π| is

infeasible and can be ignored because it has at least one constraint that either1255

fixes an action from a non-reachable state from π1 or fixes an action from a

reachable state from π1 different that the already fixed action. This concludes

that the created problems are of the form as claimed in the theorem.

Now, suppose π2 is the second best policy, which was obtained by solving

(j)-th problem. Then, in the second iteration, the fixed variables are

x(s0, π
1(s0)) = x(s0, π

2(s0)) = 1, . . . , x(sj−2, π
1(sj−2)) = x(sj−2, π

2(sj−2)) = 1,

81

and

x(sj−1, π
1(sj−1)) = 0,

where the former and the latter can be identified as x2
F and x2

B , respectively.

This proves the base case.1260

(induction step) Suppose the claim holds for the first k iterations. Let

πk be the k-th best policy, and the fixed variables are partitioned as xkF ={
x(si, π

k(si)) | i = 0, . . . , |xkF | − 1, |xkF | < |Sπk |
}

and xkB , where the variables in

the former set have value of 1 and the variables in the latter set have value of

0. Then we create problems as follows based on Lawler’s algorithm with given1265

order in the theorem:

(1) x(s|xkF |, π
k(s|xkF |)) = 0,

(2) x(s|xkF |, π
k(s|xkF |)) = 1, x(s|xkF |+1, π

k(s|xkF |+1)) = 0,

(3) x(s|xkF |, π
k(s|xkF |)) = 1, x(s|xkF |+1, π

k(s|xkF |+1)) = 1,

x(s|xkF |+2, π
k(s|xkF |+2)) = 0,

...

(|Sπk | − |xkF |) x(s|xkF |, π
k(s|xkF |)) = 1, x(s|xkF |+1, π

k(s|xkF |+1)) = 1, . . . ,

x(s|S
πk
|−2, π

k(s|S
πk
|−2)) = 1, x(s|S

πk
|−1, π

k(s|S
πk
|−1)) = 0,

(|Sπk | − |xkF |+ 1) x(si, π
k(si)) = 1 ∀i = 0, . . . , |Sπk | − 1,

x(s|S
πk
|, a

1(s|S
πk
|)) = 0,

(|Sπk | − |xkF |+ 2) x(si, π
k(si)) = 1 ∀i = 0, . . . , |Sπk | − 1,

x(s|S
πk
|, a

1(s|S
πk
|)) = 1, x(s|S

πk
|, a

2(s|S
πk
|)) = 0,

...

where the problems (p) with p > |Sπk | − |xkF | can be ignored based on the same

reason as the base case. Therefore, the created problems are of the form as

claimed in the theorem.

82

Finally, suppose, without loss of generality, we selected πk+1 as the (k+1)-th

best policy from (j)-th problem created in the l-th iteration, where l ≤ k, which

has the following constraints:

x(s|xlF |, π
l(s|xlF |)) = 1, . . . , x(sj−2, π

l(sj−2)) = 1, x(sj−1, π
l(sj−1)) = 0.

Therefore, xk+1
F and xk+1

B becomes

xk+1
F = xlF ∪ {x(s|xlF |, π

l(s|xlF |)), . . . , x(sj−2, π
l(sj−2))},

= {x(s0, π
k+1(s0)), x(s1, π

k+1(s1)), . . . , x(sj−2, π
k+1(sj−2))},

and

xk+1
B = xlB ∪ {x(sj−1, π

l(sj−1))},

which proves the theorem.1270

References

[1] D. P. Bertsekas, J. N. Tsitsiklis, An analysis of stochastic shortest path

problems, Mathematics of Operations Research 16 (3) (1991) 580–595.

[2] E. Altman, Constrained Markov decision processes, Vol. 7, CRC Press,

1999.1275

[3] D. Dolgov, E. Durfee, Stationary deterministic policies for constrained

MDPs with multiple rewards, costs, and discount factors, in: Interna-

tional Joint Conference on Artificial Intelligence, Vol. 19, LAWRENCE

ERLBAUM ASSOCIATES LTD, 2005, p. 1326.

[4] F. Geißer, G. Povéda, F. Trevizan, M. Bondouy, F. Teichteil-Königsbuch,1280

S. Thiébaux, Optimal and heuristic approaches for constrained flight plan-

ning under weather uncertainty, in: Proceedings of the International Con-

ference on Automated Planning and Scheduling, Vol. 30, 2020, pp. 384–393.

83

[5] S. Hong, S. U. Lee, X. Huang, M. Khonji, R. Alyassi, B. C. Williams, An

anytime algorithm for chance constrained stochastic shortest path prob-1285

lems and its application to aircraft routing, in: 2021 IEEE International

Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 475–481.

[6] P. Paruchuri, M. Tambe, F. Ordonez, S. Kraus, Towards a formalization of

teamwork with resource constraints, in: Proceedings of the Third Interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems-1290

Volume 2, IEEE Computer Society, 2004, pp. 596–603.

[7] E. A. Feinberg, Constrained discounted Markov decision processes and

hamiltonian cycles, Mathematics of Operations Research 25 (1) (2000) 130–

140.

[8] F. Trevizan, S. Thiébaux, P. Santana, B. Williams, Heuristic search in dual1295

space for constrained stochastic shortest path problems, in: Twenty-Sixth

International Conference on Automated Planning and Scheduling, 2016.

[9] F. Trevizan, S. Thiébaux, P. Santana, B. Williams, I-dual: solving con-

strained SSPs via heuristic search in the dual space, in: Proceedings of the

26th International Joint Conference on Artificial Intelligence, AAAI Press,1300

2017, pp. 4954–4958.

[10] L. C. Kallenberg, Linear programming and finite Markovian control prob-

lems, Vol. 148 of Mathematical Centre Tracts, Mathematisch Centrum,

1983.

[11] F. Trevizan, S. Thiébaux, P. Haslum, Occupation measure heuristics for1305

probabilistic planning, in: Twenty-Seventh International Conference on

Automated Planning and Scheduling, 2017.

[12] P. Baumgartner, S. Thiébaux, F. Trevizan, Heuristic search planning with

multi-objective probabilistic LTL constraints, in: Sixteenth International

Conference on Principles of Knowledge Representation and Reasoning,1310

2018.

84

[13] C. Bäckström, Equivalence and tractability results for SAS+ planning., in:

KR, 1992, pp. 126–137.

[14] P. Santana, S. Thiébaux, B. Williams, RAO*: an algorithm for chance con-

strained POMDPs, in: Proc. AAAI Conference on Artificial Intelligence,1315

2016.

[15] N. J. Nilsson, Principles of artificial intelligence, Morgan Kaufmann, 2014.

[16] E. A. Hansen, S. Zilberstein, LAO*: A heuristic search algorithm that finds

solutions with loops, Artificial Intelligence 129 (1-2) (2001) 35–62.

[17] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university1320

press, 2004.

[18] S. Ovchinnikov, Max-min representation of piecewise linear functions,

arXiv preprint math/0009026.

[19] S. Boyd, L. Xiao, A. Mutapcic, Subgradient methods, lecture notes of

EE392o, Stanford University, Autumn Quarter 2004 (2003) 2004–2005.1325

[20] P. Neame, N. Boland, D. Ralph, An outer approximate subdifferen-

tial method for piecewise affine optimization, Mathematical programming

87 (1) (2000) 57–86.

[21] W. W. Hager, S. Park, The gradient projection method with exact line

search, Journal of Global Optimization 30 (1) (2004) 103–118.1330

[22] W. M. Carlyle, J. O. Royset, R. Kevin Wood, Lagrangian relaxation and

enumeration for solving constrained shortest-path problems, Networks: an

international journal 52 (4) (2008) 256–270.

[23] J. O. Royset, W. M. Carlyle, R. K. Wood, Routing military aircraft with a

constrained shortest-path algorithm, Military Operations Research (2009)1335

31–52.

85

[24] D. D. Dewolfe, J. G. Stevens, R. K. Wood, Setting military reenlistment

bonuses, Naval Research Logistics (NRL) 40 (2) (1993) 143–160.

[25] H.-J. M. Shi, S. Tu, Y. Xu, W. Yin, A primer on coordinate descent algo-

rithms, arXiv preprint arXiv:1610.00040.1340

[26] B. L. Fox, D. M. Landi, Searching for the multiplier in one-constraint op-

timization problems, Operations Research 18 (2) (1970) 253–262.

[27] C. Beltran, F.-J. Heredia, An effective line search for the subgradient

method, Journal of optimization theory and applications 125 (1) (2005)

1–18.1345

[28] G. Y. Handler, I. Zang, A dual algorithm for the constrained shortest path

problem, Networks 10 (4) (1980) 293–309.

[29] J. Y. Yen, Finding the k shortest loopless paths in a network, management

Science 17 (11) (1971) 712–716.

[30] E. L. Lawler, A procedure for computing the k best solutions to discrete1350

optimization problems and its application to the shortest path problem,

Management science 18 (7) (1972) 401–405.

[31] J. Sherman, W. J. Morrison, Adjustment of an inverse matrix correspond-

ing to a change in one element of a given matrix, The Annals of Mathe-

matical Statistics 21 (1) (1950) 124–127.1355

[32] M. S. Bartlett, An inverse matrix adjustment arising in discriminant anal-

ysis, The Annals of Mathematical Statistics 22 (1) (1951) 107–111.

[33] A. G. Barto, S. J. Bradtke, S. P. Singh, Learning to act using real-time

dynamic programming, Artificial intelligence 72 (1-2) (1995) 81–138.

[34] B. Bonet, H. Geffner, Labeled RTDP: Improving the convergence of real-1360

time dynamic programming., in: ICAPS, Vol. 3, 2003, pp. 12–21.

86

[35] A. Charnes, W. W. Cooper, Chance-constrained programming, Manage-

ment science 6 (1) (1959) 73–79.

[36] L. Blackmore, M. Ono, B. C. Williams, Chance-constrained optimal path

planning with obstacles, IEEE Transactions on Robotics 27 (6) (2011)1365

1080–1094.

[37] S. U. Lee, R. Gonzalez, K. Iagnemma, Robust sampling-based motion plan-

ning for autonomous tracked vehicles in deformable high slip terrain, in:

2016 IEEE International Conference on Robotics and Automation (ICRA),

IEEE, 2016, pp. 2569–2574.1370

[38] M. Ono, B. C. Williams, Iterative risk allocation: A new approach to robust

model predictive control with a joint chance constraint, in: Decision and

Control, 2008. CDC 2008. 47th IEEE Conference on, Citeseer, 2008, pp.

3427–3432.

[39] Mausam, A. Kolobov, Planning with Markov decision processes: An AI per-1375

spective, Synthesis Lectures on Artificial Intelligence and Machine Learning

6 (1) (2012) 1–210.

[40] E. Balaban, I. Roychoudhury, L. Spirkovska, S. Sankararaman, C. S. Kulka-

rni, T. Arnon, Dynamic routing of aircraft in the presence of adverse

weather using a POMDP framework, in: 17th aiaa aviation technology,1380

integration, and operations conference, 2017, p. 3429.

[41] J. Yu, S. Vishwanathan, S. Günter, N. N. Schraudolph, A quasi-newton

approach to nonsmooth convex optimization problems in machine learning,

The Journal of Machine Learning Research 11 (2010) 1145–1200.

[42] P. Kim, B. C. Williams, M. Abramson, Executing reactive, model-based1385

programs through graph-based temporal planning, in: IJCAI, Citeseer,

2001, pp. 487–493.

[43] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium

on Foundations of Computer Science (SFCS 1977), IEEE, 1977, pp. 46–57.

87

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

	Introduction
	Related work
	Organization

	Background
	Stochastic shortest path problem
	Constrained stochastic shortest path problem
	(L)AO*
	Lagrangian Dual

	Anytime Algorithm for C-SSP
	Overview of the algorithm
	Solving Lagrangian relaxation of C-SSP with fixed
	Stage 1: Solving Lagrangian dual of C-SSP
	Stage 2: Closing the duality gap

	Approximation: Candidate Pruning
	Estimating the value reduction by candidates
	Candidate pruning algorithm
	Speed-up techniques in candidate pruning

	Experimental Results
	Benchmark methods
	MILP-based method dolgov2005stationary
	i-dual-LP trevizan2016heuristic,trevizan2017dual
	i-dual-MILP trevizan2016heuristic

	Problem domains
	Racetrack
	Elevators
	Risk-bounded aircraft routing problem

	Results
	Racetrack
	Elevators
	Risk-bounded aircraft routing problem

	Summary

	Conclusion
	Correctness of the k-best stochastic shortest path algorithm

