Executing Reactive, M odel-based Programs
through Graph-based Temporal Planning

Phil Kim and Brian C. Williams
MIT Rm. 37-381
77 Massachusetts Ave.
Cambridge, MA 02139 USA
{kimwillians}@mit.edu

Abstract

In the future, webs of unmanned air and space ve-
hicles will act together to robustly perform elabo-
rate missions in uncertain environments. \We co-
ordinate these systems by introducing a reactive
model-based programming language (RMPL) that
combines within a single unified representation the
flexibility of embedded programming and reactive
execution languages, and the deliberative reason-
ing power of temporal planners. The KIRK plan-
ning system takes as input a problem expressed as
a RMPL program, and compiles it into a tempo-
ral plan network (TPN), similar to those used by
temporal planners, but extended for symbolic con-
straints and decisions. This intermediate represen-
tation clarifies the relation between temporal plan-
ning and causal-link planning, and permits a single
task model to be used for planning and execution.
Such a unified model has been described as a holy
grail for autonomous agents by the designers of the
Remote Agent[Muscettola et al., 1998b].

1 Mode-based Programming

The recent spread of advanced processing to embedded sys-
tems has created vehicles that execute complex missions with
increasing levels of autonomy;, in space, on land and in the air.
These vehicles must respond to uncertain and often unforgiv-
ing environments, both with a fast response time and with a
high assurance of first time success. The future looks to the
creation of cooperative robotic networks. For example, a het-
erogenous collection of vehicles, such as planes, helicopters
and boats, might work in concert to perform a search and res-
cue during a hurricane or similar natural disaster. In addition,
giant space telescopes are being deployed that are composed
of satellites carrying the telescope’s different optical compo-
nents. These satellites act in concert to image planets around
other stars, or unusual weather events on earth.

The creation of robotic networks cannot be supported by
the current programming practice alone. Recent mission fail-
ures, such as the Mars Climate Orbiter and Polar Landers,
highlight the challenge of creating highly capable vehicles
within realistic budget limits. Due to cost constraints, space-
craft flight software teams often do not have time to think

Mark Abramson
Draper Lab
555 Technology Square, M S3F
Cambridge, MA 02139 USA
mabr anson@dr aper. com

through all the plausible situations that might arise, encode
the appropriate responses within their software and then vali-
date that software with high assurance. To break through this
barrier we need to invent a new programming paradigm.

In this paper we advocate the creation of embedded, model-
based programming languages. First, programmers should
retain control for the overall success of a mission, by pro-
gramming game plans and contingencies that in the pro-
grammer’s experience will ensure a high degree of suc-
cess. The programmer should be able to program these
game plans using features of the best embedded program-
ming languages available. For example, reactive synchronous
languages[Halbwachs, 1993], like Esterel, Lustre and Signal,
offer a rich set of constructs for interacting with sensors and
actuators, for creating complex behaviors involving concur-
rency and preemption, and for modularizing these behaviors
using all the standard encapsulation mechanisms. Model-
based programming extends this style of reactive language
with a minimal set of constructs neccessary to perform flexi-
ble mission coordination, while hiding its reasoning capabil-
ities under the hood of the language’s interpreter or compiler.

Second, we argue that model-based programming lan-
guages should focus on elevating the programmer’s thinking,
by automating the process of reasoning about low-level sys-
tem interactions. Many recent space mission failures, such
as Mars Climate Orbiter and Mars Polar Lander, can be iso-
lated to difficulties in reasoning through low-level system in-
teractions. On the other hand, this limited form of reason-
ing and book keeping is the hallmark of computational meth-
ods. The interpreter or compiler of a model-based program
reasons through these interactions using composable models
of the system being controlled. We are developing a lan-
guage, called the Reactive Model-Based Programming Lan-
guage (RMPL), that supports four types of reasoning about
system interactions: reasoning about contingencies, schedul-
ing, inferring a system’s hidden state and controlling that
state. This paper develops RMPL in the context of contin-
gencies and scheduling, while [Williams et al., 2001], shows
how RMPL is used to infer hidden state.

RMPL offers a middle ground between execution lan-
guages, like RAPS [Firby, 1995], and highly flexible,
operator-based temporal planners,like HSTS [Muscettola et
al., 1998a]. RAPS offers the exception handling and concur-
rency mechanisms of embedded languages, while adding goal

monitoring, nondeterministic choice and metric constraints.
However, RAPS makes its decisions reactively, without ad-
dressing concerns of schedulability and threat resolution, and
hence can fall into a failure state. RMPL incorporates the
forward looking planning and scheduling abilities of mod-
ern temporal planners, but can severely restrict the space of
plans considered to possible threads of execution through the
RMPL program. This speeds response and mitigates risk.
The paper begins by introducing a subset of RMPL that in-
cludes constructs from traditional reactive programming plus
constructs for specifying contingencies and scheduling con-
straints. Second, we describe how Kirk, an RMPL-based
planner/executive, compiles RMPL programs into temporal
plan networks (TPN), which compactly represent all possi-
ble threads of execution of an RMPL program, and all re-
source constraints and conflicts between concurrent activi-
ties. Third, we present Kirk’s online planning algorithm for
RMPL that “looks” by using network search algorithms to
find threads of execution through the TPN that are tempo-
rally consistent. The result is a partially ordered temporal
plan. Kirk then “leaps” by executing the plan using plan exe-
cution methods[Tsamardinos et al., 1998] developed for Re-
mote Agent[Muscettola et al., 1998b]. Finally, we discuss
Kirk’s application to a simulated search and rescue mission.

2 Example: Cooper ative Search and Rescue

As part of a search and rescue mission, consider an activity
called Enroute, in which a group of vehicles fly together from
a rendezvous point to the target search area. In this activity,
the group selects one of two paths for traveling to the target
area, flies together along the path through a series of way-
points to the target position, and then transmits a message to
the forward air controller to indicate their arrival, while wait-
ing until the group receives authorization to engage the target
search area.

The two paths available for travel to the target area are each
only available for a predetermined window of time, which
is important to consider when selecting one of these paths.
In addition, the timing of the Enroute activity is bound by
externally imposed requirements, for example, the search and
rescue mission must complete in 25-30 minutes, with 20% to
30% of the time allotted to the Enroute activity.

Codifying the Enroute activity requires most standard fea-
tures of embedded languages. There are both sequential
and concurrent threads of activities, such as going to a se-
ries of way points, and sending a message to the forward air
controller (FAC), while concurrently awaiting authorization.
There are maintenance conditions and synchronizations. For
example, the air corridor needs to be maintained safe during
flight, and synchronization occurs with the FAC.

In addition to constructs found in traditional embedded

languages, we need constructs for expressing timing require-
ments and alternative choices or contingencies, in this exam-
ple to use one of two corridors. These constructs are common
to robotic execution languages[Firby, 1995]. However, they
are only used reactively. Kirk must reason forward through
the RMPL program’s execution, identifying a course of ac-
tion that is consistent.

3 RMPL Constructs

To summarize, RMPL needs to include constructs for ex-
pressing concurrency, maintaining conditions, synchroniza-
tion, metric constraints and contingencies. The relevant
RMPL constructs are as follows. We use lower case letters,
like ¢, to denote activities or conditions, and upper case let-
ters, like A and B, to denote well-formed RMPL expressions:

a. Invokes primitive activity a, starting at the current time.
This is the basic construct for initiating activities.

c. Asserts that condition ¢ is true at the current time, where
c is a literal. This is the basic construct for asserting condi-
tions.

if ¢ thennext A. Starts executing A if condition ¢ is cur-
rently satisfied, where c is a literal. This is the basic construct
for expressing conditional branches and asserting precondi-
tions.

do A maintaining c. Executes A, and ensures throughout
A that ¢ occurs. This is the basic construct for introducing
maintenance conditions and protections.

A, B. Concurrently executes A and B. It is the basic con-
struct for forking processes.

A; B. Consecutively executes A and then B. It is the basic
construct for sequential processes.

All,u]. Constrains the duration of program A to be at least
I and at most . This is the basic construct for expressing
timing requirements.

choose {4, B}. Reduces non-deterministically to program
A or B. This is the basic construct for expressing multiple
strategies and contingencies.

Note that together, ¢ and if ¢ thennext A provide the ba-
sic constructs for synchronization, by specifying required and
asserted conditions. A, B and A; B provide the neccessary
constructs for building complex concurrent threads.

The “do maintaining” construct offers a building block for
creating complex preemption and exception handling mech-
anisms. Note that to fully exploit these mechanisms Kirk
would need to perform conditional planning. The algorithms
presented in this paper only address unconditional planning.
With this restriction “do maintaining” acts as a maintenance
condition that Kirk must prove holds at planning time.

Using these constructs we express the Enroute activity as
follows:

G oup-Enroute()[1,u] = {
choose {
do {

G oup- Fl y- Pat h(PATHL_1, PATHL_2,
PATHL_3, TAI _POS) [1*90% u*90% ;

} mai ntai ni ng PATHL_OK,
do {
Group- Fl y- Pat h(PATH2_1, PATH2_2,
PATH2_3, TAI _PCS) [| *90% u*90% ;
} mai ntai ni ng PATH2_OK

[0,0]

G oup- Transni t (FAC, ARRI VED_TAI) [0, 2],
do {
Group- Wi t (TAI_HOLD1, TAI _HOLD2)
[0, u*10%
} wat chi ng PROCEED OK
}
}

The choose expression models the two options for flight
paths. 90% of the total time of the overall maneuver is al-
located to this group flight. Each flight has a maintenance
condition that the flight path is okay. Arrival is transmitted to
the forward air controller, and receipt of a message to proceed
is concurrently monitored.

4 Temporal Plan Networks

Executing an RMPL program involves choosing a set of
threads of execution (Plans), checking to ensure that the ex-
ecution is consistent and schedulable, and then scheduling
events on the fly. It is essential that we generate these plans
quickly. This suggests compiling RMPL programs to a plan
graph, along the lines of Graphplan or Satplan [Weld, 1999],
and then searching the precompiled graph. However, it is
also important for the plan to have the temporal flexibility
offered by a partially ordered, temporal plan. Least committ-
ment leaves slack to adapt to execution uncertainties and to
recover from faults. This partial committment is expressed
in temporal planning through a Simple Temporal Network
(STN)[Dechter et al., 1991]. Hence, a key observation of
our approach is that to build in temporal flexibility we should
build our graph-based plan representation, called a Temporal
Plan Network (TPN), as a generalization of an STN.

The TPN corresponding to the above Enroute program is
shown below. Activity name labels are omitted to keep the
figure clear, but the node pairs 4,5 and 6,7 represent the two
Group-Fly-Path activities, and node pairs 9,10 and 11,12 cor-
respond to the Group-Wait and Group-Transmit activities, re-
spectively. Node 3 is a decision node that represents a choice
between two methods for flying to the search area. The TPN
represents the consequences of the constraint that the mission
last between 25 and 30 minutes. It also models the decision
between the two paths to the target area, and it models the
restrictions that each of the paths can only be used if they are

available.
[450,540]

»
>

Ask (PATH1=0K) Ask (PROCEED=0K)

[0,0] [0,0] [0,0]

N

[(),()J\ Ask (PATH2=0K) 4)] [0,0]\ 0)/ [0.09]
[405.486] [0,2]

A TPN encodes all feasible executions of an activity. It
does this by augmenting an STN with two types of con-
straints: temporal constraints restrict the behavior of an ac-
tivity by bounding the duration of an activity, time between
activities, or more generally the temporal distance between
two events. Symbolic constraints restrict the behavior of an

[0.0]

[405,486] [0,54]

2

[0,0]

activity by expressing the assertion or requirement of certain
conditions by activities that all valid executions must satisfy.

For example, consider some of the possible executions of
the Enroute activity. One possible execution is that the group
flies along path one (pair 4,5) to the target area in 420 time
units (seconds in this case), transmits an arrival message to
the forward air controller (11,12) for one second, and con-
currently waits (9,10) for another 40 seconds to receive au-
thorization to proceed. Another possible execution is that the
group selects the second path, flies to the target area in 500
seconds, takes 2 seconds to transmit the arrival message, and
is authorized to proceed immediately. If it were the case that
path one was available from the time at which the Enroute ac-
tivity started to at least the time that the group arrived at the
target area, then the first execution is valid. This is because it
satisfies both the temporal constraints on the Enroute activity,
and the requirement that path one is available for the duration
of the flight along it. The planning algorithm presented in the
next section performs the identification of consistent activity
executions.

A Temporal Planning Network is a Simple Temporal Net-
work, augmented with symbolic constraints and decision
nodes. These additions are sufficent to capture all RMPL
constructs given earlier. Like a simple temporal network,
the nodes of a TPN represent temporal events, and the arcs
represent temporal relations that constrain the temporal dis-
tance between events. An arc of a TPN may be labeled with
a symbolic constraint Tell(c) or Ask(c), as well as a duration.
A Tell(c) label on an arc (i,j) asserts that the condition rep-
resented by c is true over the interval between the temporal
events modeled by the nodes i and j. Similarly, an Ask(c) la-
bel on an arc (i,j) requires that the condition represented by ¢
is true over the interval represented by this arc. For example,
in the Enroute TPN, the Ask(PATH1=0K) label on the arc
(4,5) represents the requirement for path one to be available
for the interval of time corresponding to the interval of time
between the temporal event modeled by node 4 and node 5.
These Ask-type symbolic constraints allow for the encoding
of conditions in the network.

Decision nodes are used to explicitly introduce choices in
activity execution that the planner must make. For example,
in the Enroute activity there are two choices of paths for the
group to use for flying to the target area, path one and path
two. The activity model captures the two choices as out-arcs
of node 3 of the enroute TPN. This decision node is des-
ignated by a double outline and dashed out-arcs. All other
nodes in the Enroute TPN are non-decision nodes.

5 CompilingRMPL to TPN

Given a well formed RMPL expression, we compile it to a
TPN by mapping each RMPL primitive to a TPN as defined
below. RMPL sub-expressions, denoted by upper case letters,
are recursively mapped to equivalent TPN:

A[l,u]. Invoke activity A between [and « time units.

A start A.end

<> [.ul <>

c[l, u]. Assert that condition c is true now until [, u].

() [1,u] ()
Tell(c)
if ¢ thennext A[l,u]. Execute A for [1,«], if condition ¢ is

currently satisfied.

A.start A.end
C [0,0] C [1,u] C
Ask(c)

do A[l, u] maintaining c. Execute A for [[,], and ensure
throughout A that ¢ occurs.

A start A.end
(> [yl (>
ASK(Q)
A[lla ul]a B[l23 u2]-
and B for [lz, UQ].

Concurrently execute A for [l1,u4]

A.start

00 [0,0]
Q\B Start

Ally,u1]; B[la,u2]. Execute A for [l1,u;], then B for
[l2,’l,l/2]
A start A.end

QM»Q\‘B.start B.end

[od

choose {A[ll, Ul], B[lz, Uz]}
B2, uz], non-deterministically.

Reduces to A[ly,u1] or

A .start

A.end

6 Planning using TPNs

After compiling an RMPL program into a TPN, Kirk’s plan-
ner uses the TPN to search for an execution that is both com-
plete and consistent. The execution corresponds to an un-
conditional, temporal plan. A plan is complete if choices
have been made for each relevant decision point, it con-
tains only primitive-level activities, and all activities labeled
Ask(c) have been linked to a Tell(c). A plan is consistent if
it does not violate any of its temporal constraints or symbolic
constraints. The resulting plan is then executed using the plan
runner described in [Tsamardinos et al., 1998].

The input to Kirk’s planner is a TPN describing an activ-
ity scenario. A scenario consists of the TPN for the top-level
activity invoked and any constraints on its invocation. The
following TPN invokes Enroute (nodes 1-13). In a parallel

thread it constrains the time ranges over which path one is
available (nodes 14-15) and over which the vehicles may per-
form search (nodes 16-17).

The output of the planner consists of a set of paths through
the input network from the start-node to the end-node of the
top-level activity. In the example the paths s-1-3-4-5-8-9-
10-13-2-e and s-14-15-16-17-e define a consistent execution.
The first path defines the execution of the group of vehicles,
and the second path defines the “execution” of the rest of the
world in terms of the assertion or requirement of relevant con-
ditions over the duration of the scenario. The portion of the
TPN not selected for execution is shown in gray.

Planning involves two interleaved phases. The first phase
resembles a network search that discovers the sub-network
,that constitute a feasible plan, while incrementally checking
for temporal consistency. The second phase is analogous to
the repair step of a causal link planner, in which threats are
detec]ted and resolved, and open conditions are closed[Weld,
1994].

6.1 PhaseOne: Sdlect Plan Execution

The first phase selects a set of paths from the start-node to
the end-node of the top-level activity. The planner handles
this execution selection problem as a variant of a network
search[Ahuja et al., 1993] rooted at the start-node of the TPN
encoding of the top-level activity.

Sear ching the Networ k

Recall that each node of a TPN is either a decision node or
a non-decision node. If a plan includes a non-decision node
with multiple out-arcs, then all of these arcs and their tail
nodes must be included in the plan. If a plan includes a deci-
sion node with multiple out-arcs, then the arcs represent alter-
nate choices, and the planning algorithm selects exactly one
to be included in the plan.

Network search completes only when all paths reach the
end-node of the top-level activity, and the subnetwork of the
TPN, defined by these paths, is temporally consistent. This
corresponds to testing consistency of an STN[Dechter et al.,
1991], as discussed in the next section.

The first phase of planning is summarized by the Modified
Network Search algorithm, shown below. The set A, is the set
of active nodes, which are those nodes whose paths have not
yet been fully extended. The sets SN and SA are the sets of
selected nodes and selected arcs, respectively:

1 Modi fi ed- Net wor k- Search(N)
A = { start-node of N};
SN = { start-node of N };
SA={};

Wiile (Ais not enpty)

g~ wWwN

6 Node = Sel ect and renove a nenber of A

7 If (Node is a decision-node)

8 Arc = Sel ect any unnarked out-arc of Node and
9 Mark Arc and

10 Add Arc to SA;

11 If (tail of Arc is not in SN)

12 Add tail of Arc to A and SN

13 End- | f

14 El se

15 For each Arc that is an out-arc of Node
16 Add Arc to SA

17 If (tail of Arc is not in SN)

18 Add tail of Arc to A and SN,

19 End- | f

20 End- For

21 End- | f

22

23 If (Cycle-Induced(SN, SA))

24 If (Not(Tenporally-Consistent(SN, SA)))
25 Backtrack(SN, SA, A);

26 End- 1 f

27 End- | f

28 End- Wi | e
29 End- Function

The algorithm extends an active node at each iteration.
Decision nodes are treated by extending the path along one
out arc (lines 8-13), while non-decision nodes are treated by
branching the path and extending along all out arcs (lines 15-
20). At the end of each iteration of the main While-loop, the
modified network search tests for temporal consistency (lines
24-26). If the test fails, then the search calls Backtrack(..) in
line 25, which reverts SN, SA, and A to their states before the
most recent decision that has unmarked choices remaining,
and selects a different out-arc. While for simplicity this ex-
planation uses chronological backtracking, a wealth of more
efficient search algorithms can be applied.

Note that it is not necessary to check temporal consistency
after every iteration of the While-loop, since as long as no
cycles are induced in the network, there is no way for a tem-
poral inconsistency to be induced. Determining whether a
cycle has been created can be done for each arc that is se-
lected by checking whether the arc’s tail node has already
been selected. Since this can be done in constant time, it is
significantly more efficient in practice than testing temporal
consistency after every iteration, although it doesn’t impact
worst case complexity.

Also note that the algorithm stops extending a path when
it encounters a node that is already in SN. The fact that this
node is already in SN implies that two concurrent threads of
execution have merged.

Finally, after the modified network search completes, the
selected nodes and arcs define a set of paths from the start-
node to the end-node of the top activity.

Example: Sear ching the Enroute Networ k

To illustrate the modified network search, we return to the
Enroute input network, where node 1 is the start-node and
node 2 is the end-node:

Initially, node 1 is selected, which is indicated by its darker
shade, and it is active. In the first iteration, Kirk chooses
node 1 from the set of active nodes, and since node 1 is not a
decision node, it selects all out-arcs and adds their tails to the
selected and active set. This continues until both node 5 and
node 15 are selected:

At this point, the modified network search chooses node 5
from the active set. Since node 5 is a decision node, the algo-
rithm must choose either arc (5,7) or arc (5,10). It selects arc
(5,7) and continues extending until it reaches the following:

Note that arc (14,2) is selected, forming the cycle, 1-3-4-5-
7-8-9-6-13-14-2-1, so the algorithm checks for temporal con-
sistency. In this example, this selected sub-network is tem-
porally inconsistent, so the algorithm backtracks to the most
recent decision with open options, which is Node 5. Out-arc
(5,10) has not yet been tried, so it is selected and the path
extend to the end-node. Finally a path through arc (15,16) is
found to the end-node, resulting in the temporally consistent
sub-network:

Checking Temporal Consistency

To check temporal consistency we note that any subnet of a
Plan Network, minus its symbolic constraint labels, forms a
Simple Temporal Network. Hence temporal consistency can
be checked using standard methods for Simple Temporal Net-
works [Dechter et al., 1991]. Recall that an STN is consistent
if and only if its encoding as a distance graph contains no neg-
ative cycles [Dechter et al., 1991]. There exist several well
known algorithms for detecting negative cycles in polynomial
time. The Bellman-Ford algorithm [Cormen et al., 1990] can
be used to check for negative cycle in O(nm) time, where m
and n are the number of arcs and nodes in the distance graph,
respectively. This algorithm only needs to maintain one dis-
tance label at each node, which takes only O(n) space. A
variant of this algorithm is used by HSTS [Muscettola et al.,
1998a] for fast inconsistency detection.

The algorithm we use in the Kirk planner is a variant of
the generic label-correcting single-source shortest-path algo-
rithm [Ahuja et al., 1993], which takes O(nm) worst-case
asymptotic running time, but performs faster in many situa-
tions. This algorithm also requires only O(n) space. Space

precludes a more detailed development.

6.2 Phase Two: Threatsand Open Conditions

Symbolic constraints— Ask(c) and Tell(c) — are handled
analogous to threats and open conditions in causal link
planning[Weld, 1994]. Two symbolic constraints conflict if
one is either asserting (by using Tell) or requesting (by us-
ing Ask) that a condition is true, and the second is asserting
or requesting that the same condition is false. For example,
Tell(Not(c)) and Ask(c) conflict. An open conditionina TPN
appears as Ask constraints, which represent the need for some
condition to be true over the interval of time represented by
the arc labeled with the Ask constraint.

Resolving Threats

To detect threats the planner computes the feasible time
bounds for each temporal event (node) in the network, and
then uses these bounds to identify potentially overlapping in-
tervals that are labeled with inconsistent constraints. These
bounds can be computed by solving an all-pairs shortest-path
problem over the distance graph of the partially completed
plan. Kirk uses the Floyd-Warshall algorithm for computing
all-pairs shortest paths. We are currently evaluating Johnson’s
algorithm which runs in O(n? log(n)+mn), or O(n?log(n))
ifm = O(n).

Once these feasible time ranges are determined, the plan-
ner detects which arcs may overlap in time. If there are two
arcs that may overlap and that are labeled with conflicting
symbolic constraints, then they are resolved by ordering the
intervals, if possible.

These interval pairs need to be identified efficiently. Kirk
maintains an interval set data structure for each proposition
p that keeps track of all intervals that assert or require p or
its negation. In order to identify threats, the planner need
only check each interval set for threats. This takes O(si?)
asymptotic running time, where 4 is the maximum cardinality
over all interval sets, and performs much better in practice
because the interval sets typically have few elements. More
sophisticated indexing schemes may improve performance,
such as interval tree structures [Cormen et al., 1990].

A threat is resolved by introducing temporal constraints.
Each threat consists of two arcs that represent intervals of
time that may overlap. To resolve threats we introduce a con-
straint that forces an ordering between the two activites, sim-
ilar ti) promotion and demotion in classical planning[Weld,
1994}

<7,8>

<12,15>
Ask(Not(c))

<14,18>
[1,00] A.end

Tell(c)

B.start B.end

Closing Open Conditions

An open condition is represented by an arc labeled with an
Ask constraint, which represents the request for a condition
to be satisfied over the interval of time represented by the
arc. If this interval of time is contained by another interval

over which the condition is asserted by a Tell constraint, then
the open condition is satisfied (i.e., closed), and a causal link
is drawn from the Tell to the Ask. Open conditions are de-
tected simply by scanning through all activites and checking
any Ask constraints. Finding potentially overlapping inter-
vals is performed using the same method described above for
detecting threats. Once a Tell is found that can satisfy an
open condition, temporal constraints are added so that the du-
ration of the open condition is contained within the Tell. This
method of closing open asks is also closely related to the way
that the HSTS planner satisfies compatibilities [Muscettola et
al., 1998a]:

<1, 2> <8, 10>

<9,12>

B.start B.end

7 Implementation and Discussion

Kirk’s compiler generates TPN specification files, and is writ-
ten in Lisp. Kirk’s planner, written in C++, generates a
plan from the TPN and checks consistency. Kirk’s executive,
based on the remote agent plan runner [Tsamardinos et al.,
1998], takes the resulting partially ordered temporal plan and
executes it on the multi-air vehicle simulator. The following
table summarizes Kirk’s performance on nominal plans for
several activities within the search and rescue scenario. The
fully expanded TPN generated from the Group-Search-and-
Rescue activity included 273 nodes. The testing platform was
an IBM Aptiva E6U with an Intel 400Mhz Pentium Il proces-
sor and 128MB of RAM, running Redhat Linux version 6.1:

Top Activity Nodes Activities Plan Time
Follow(..) 4 1 4ms
Group-Rescue(..) 27 8 235 ms
Group-Enroute() 112 19 16s
Group-SR-Mission() 273 47 404 s

“Top Activity” refers to the top-level activity that was be-
ing planned. “Nodes” is the size of the expanded TPN after
planning. Usually, about half of these were included in the
final plan, with the rest corresponding to unselected execu-
tions. “Activities” indicates the number of primitive activities
included in the final plan. Finally, the “Plan Time” gives the
time that it took for Kirk to generate a plan corresponding to
each of these activities.

Kirk offers two sources for efficiency. First, typically an
RMPL program significantly constrains the space of possi-
ble plans considered, in the spirit of hierarchical task network
planners [Erol et al., 1994]. Second, the use of TPNs re-
duces online planning to graph search. In the example Kirk
does well with no search guidance up to about 100 nodes. At
this point the time becomes dominated by the time required
to compute feasible time bounds for events. This is due to
the use of Bellman-Ford and chronological search. We are
exploring a reimplementation based on Johnson’s algorithm
and a more sophisticated search strategy.

The primary contribution of this paper is the Reactive
Model-based Programming Language and the Temporal Plan
Network representation. The algorithms presented here only
begin to explore RMPL/TPN-based planning. The following
are some example directions for further research.

This paper focuses on the use of TPNs as a synthe-
sis of causal link planning[Weld, 1994], temporal plan-
ning [Muscettola, 1994] and hierarchical task network
planning[Erol et al., 1994]. Can methods from graph-based
planning[Blum and Furst, 1997; Weld, 1999; Smith and
Weld, 1999], particularly mutual exclusion relationships, be
effectively employed within a TPN? An important element
of practical temporal planners in the space domain, such as
HSTS[Muscettola, 1994] and IxTeT[Laborie and Ghallab,
1995], is the ability to plan with depletable resources. Can
RMPL and TPNs be similarly extended? How can RMPL
and TPNs be extended to support decision theoretic planning
and agile maneuver planning, common to robotic vehicles?

RMPL offers an expressive embedded programming lan-
guage, by inheriting most of its primitive combinators from
the Timed Concurrent Constraint Language (TCC) [Saraswat
et al., 1996]. For example, as with TCC, these primitives
allow a rich set of operators to be derived for preemption
and exception handling, similar to those found in embedded
languages like Esterel[Berry and Gonthier, 1992]. However,
the algorithm presented here performs unconditional plan-
ning, and hence only considers the case where exceptions can
be prevented. RMPL’s ability to express exception handling
mechanisms can best be exploited through the development
of conditional planning algorithms.

Finally, RMPL allows the programmer to constrain the
family of possible behaviors that the planner considers when
controlling an embedded system. It is important that this
family of behaviors be safe. Embedded languages like
Esterel[Berry and Gonthier, 1992], Lustre[Halbwachs et al.,
] and Signal[Guernic et al.,] offer a clean semantics, and of-
fer support for direct machine verification of safety and live-
ness properties. The verification of RMPL programs would
be similar, but requires methods, such as timed automata veri-
fication, that support metric constraints and non-determinism.

Acknowledgments

We would like to thank Michael Hofbaur, Tony Abad and the
anonymous reviewers for their invaluable insights. This re-
search is supported in part by the Office of Naval Research
under contract N00014-99-1-1080 and by the DARPA MO-
BIES program under contract F33615-00-C-1702.

References

[Ahujaetal., 1993] R. Ahuja, T. Magnanti, and J. Orlin.
Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[Berry and Gonthier, 1992] G. Berry and G. Gonthier. The
esterel programming language: Design, semantics and
implementation. Science of Computer Programming,
19(2):87 — 152, November 1992.

[Blum and Furst, 1997] A. Blum and M. Furst. Fast planning
through planning graph analysis. Artificial Intelligence,
90(1-2):281-300, 1997.

[Cormenetal., 1990] T. Cormen,
R. Rivest. Introduction to Algorithms.
Camb., MA, 1990.

[Dechter et al., 1991] R. Dechter, 1. Meiri, and J. Pearl. Tem-
poral constraint networks. AlJ, 49:61-95, 1991.

[Erol et al., 1994] K. Erol, J. Hendler, and D. Nau. Htn plan-
ning: Complexity and expressivity. In Proceedings of
AAAI-94, pages 1123-1128, 1994.

[Firby, 1995] R. James Firby. The RAP language manual.
Technical Report AAP-6, Univ. Chicago, March 1995.

[Guernicet al.,] P. Le Guernic, M. Le Borgne, T. Gauthier,
and C. Le Maire. Programming real time applications with
signal. pages 1321-1336.

[Halbwachs et al.,] N. Halbwachs, P. Caspi, and D. Pilaud.
The synchronous programming language lustre. pages
1305-1320.

[Halbwachs, 1993] N. Halbwachs. Synchronous program-
ming of reactive systems. Kluwer Academic, 1993.

[Laborie and Ghallab, 1995] P. Laborie and M. Ghallab.
Planning with sharable resource constraints. In Proceed-
ings of 1JCAI-95, 1995,

[Muscettola et al., 1998a] N. Muscettola, P. Morris, B. Pell,
and B. Smith. Issues in temporal reasoning for au-
tonomous control systems. In Autonomous Agents, 1998.

[Muscettola et al., 1998b] N. Muscettola, P. Nayak, B. Pell,
and B. C. Williams. The new millennium remote agent: To
boldly go where no ai system has gone before. Artificial
Intelligence, 103(1-2):5-48, 1998.

[Muscettola, 1994] N. Muscettola. HSTS: Integrating plan-
ning and scheduling. In Mark Fox and Monte Zweben,
editors, Intelligent Scheduling. Morgan Kaufmann, 1994,

[Saraswat et al., 1996] V. Saraswat, R. Jagadeesan, and
V. Gupta. Timed Default Concurrent Constraint Program-
ming. J Symb Comp, 22(5-6):475-520, 1996.

[Smith and Weld, 1999] D. Smith and D. Weld. Temporal
planning with mutual exclusion reasoning. In Proceedings
of 1JCAI-99, 1999.

[Tsamardinos et al., 1998] 1. Tsamardinos, N. Muscettola,
and P. Morris. Fast transformation of temporal plans for
efficient execution. In Proceedings of AAAI-98, 1998.

[Weld, 1994] D. Weld. An introduction to least commitment
planning. In Al Magazine, 1994.

[Weld, 1999] D. Weld. Recent advances in ai planning. In
Al Magazine, 1999.

[Williams et al., 2001] B. C. Williams, S. Chung, and
V. Gupta. Mode estimation of model-based programs:
Monitoring systems with complex behavior. In Proceed-
ings of IJCAI-01, 2001.

C Leiserson, and
MIT Press,

