
Efficient and Effective Techniques for Large-Scale Multi-Agent Path Finding

by

Jiaoyang Li

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree

DOCTOR OF PHILOSOPHY
(Computer Science)

August 2022

Copyright 2022 Jiaoyang Li

Acknowledgements

I had never expected my Ph.D. life to be such a wonderful experience. I am grateful for receiving

a lot of help from my colleagues, friends, and family.

First and foremost, I want to express my deepest gratitude to my advisor Sven Koenig for

guiding me through every step of doing research. Sven has deeply impacted and inspired me. His

enthusiasm, dedication, and perfectionism in research have shaped my personality as a researcher.

He offers the greatest freedom for me to work on anything that excites me, but he is also always

there when I need his advice. I could not have hoped for a better advisor.

I am grateful to have the rest of my dissertation committee, namely T. K. Satish Kumar, Nora

Ayanian, Satyandra K. Gupta, and Brian C. Williams, for their valuable time, guidance, support,

and feedback. I especially want to thank Satish for helping me with my writing during the early

years of my Ph.D. I also thank Bistra Dilkina for helpful feedback on an earlier version of this

dissertation.

At USC, I have worked with great colleagues in our research group. I want to extend my ap-

preciation to Hang Ma for introducing me to MAPF during my visit to USC as an undergraduate

student. Since then, Hang has continually provided me with invaluable advice, shared his first-

hand experience with me, and answered thousands of my questions with lots of patience. I would

also like to thank Shao-Hung Chan, Weizhe Chen, Liron Cohen, Wolfgang Hönig, Taoan Huang,

Christopher Leet, Kexuan Sun, Tansel Uras, Hong Xu, Han Zhang, Hejia Zhang, Yi Zheng, and

other colleagues at USC for the many casual, enjoyable discussions and fruitful collaborations that

directly influenced this dissertation.

ii

Next, I would like to thank my long-time collaborators from Monash University, Australia. I am

extremely grateful to Peter J. Stuckey and Daniel Harabor for the countless hours of brainstorming

with me. Despite the continents and time differences between us, we have met virtually every

week for more than four years. I learned a great deal from their visionary insights and hands-

on experiences. Our ongoing and fruitful collaboration generated numerous research ideas and

led to a considerable part of this dissertation, including Chapters 4 and 6. I also thank other

folks in the optimization group at Monash University for being a great educational resource in my

studies on optimization and for supporting me during my one-year visit to Monash University. My

special thanks go to Zhe Chen, who has offered me a lot of help and spent many hours coding and

debugging with me. Part of the implementation of MAPF-LNS was done by him.

I would also like to thank my collaborators from Ben-Gurion University, Israel. I am extremely

grateful to Ariel Felner for introducing me to the world of heuristic search and for teaching me how

to write good papers and do proper research. I still remember that when I wrote my first paper,

Ariel Skyped with me at 6 am his time every morning and walked me through my draft sentence

by sentence. I am grateful to Ariel and Eli Boyarski for their contribution to the work presented in

Chapter 3. I also thank Dor Atzmon, Roni Stern, and many others from Ben-Gurion University for

inspiring discussions on heuristic search and for taking care of me during my visits.

I want to extend my sincere thanks to Wheeler Ruml from the University of New Hampshire

for teaching me bounded-suboptimal searches and for sharing his knowledge and experience with

me. Working with Wheeler is an inspirational experience, and our collaboration led to the work

presented in Chapter 5.

While this dissertation focuses on the algorithmic side of MAPF, I have also worked with many

excellent researchers with different expertise on the applicational side of MAPF that provided

valuable insights and contributed indirectly to this dissertation. Many thanks to Joseph W. Durham,

Andrew Tinka, and Scott Kiesel from Amazon Robotics for the warehouse robots project, Robert

Morris from NASA Ames for the airport surface operation project, Jingkai Chen from MIT for the

multi-robot motion planning and robotic arm assembly projects, Le Hai Vu and The Hoang from

iii

Monash University for the autonomous intersection management project, and Naveed Haghani,

Nathan R. Sturtevant, Pavel Surynek, Thayne T. Walker, Julian Yarkony, and many others for other

MAPF-related projects.

I have been fortunate to work with many talented Masters and undergraduate students, includ-

ing Eugene Lin, Minghua Liu, Sumanth Varambally, Jiangxing Wang, Qinghong Xu, Moli Yang,

Shuyang Zhang, Xinyi Zhong, and many others. I learned a lot from them and the mentoring

experience.

Finally, I would like to thank my family and friends. I am indebted to my parents for their

unconditional love and support. Their love and support define who I am today.

The research presented in this dissertation was supported by National Science Foundation un-

der grant numbers 1319966, 1409987, 1724392, 1817189, 1837779, and 1935712 as well as a gift

from Amazon.

iv

Table of Contents

Acknowledgements ii

List of Tables ix

List of Figures xii

List of Algorithms xviii

Abbreviations xix

Abstract xxi

Chapter 1: Introduction 1
1.1 Motivations . 4

1.1.1 Why CBS . 4
1.1.2 Why Heuristic Search and Symmetry Reasoning 6
1.1.3 Why Large Neighborhood Search . 9

1.2 Contributions . 10

Chapter 2: Background 14
2.1 Definition of Multi-Agent Path Finding (MAPF) 14

2.1.1 MAPF Instances Used in the Experiments in This Dissertation 16
2.2 Overview of MAPF Algorithms . 17

2.2.1 Optimal MAPF Algorithms . 17
2.2.2 Bounded-Suboptimal MAPF Algorithms 20
2.2.3 Unbounded-Suboptimal MAPF Algorithms 21

2.3 Overview of Conflict-Based Search (CBS) and Its Variants 22
2.3.1 Vanilla CBS . 22
2.3.2 CBS Improvements . 25
2.3.3 Suboptimal Variants of CBS . 27
2.3.4 Variants of CBS for Generalized MAPF Problems 28

Chapter 3: Speeding up Optimal CBS via Admissible Heuristics 29
3.1 The CG Heuristic . 30

3.1.1 Cardinal Conflict Graphs . 30

v

3.1.2 Constructing Cardinal Conflict Graphs . 32
3.1.3 Properties of Cardinal Conflict Graphs . 33

3.2 The DG Heuristic . 33
3.2.1 Pairwise Dependency Graphs . 34
3.2.2 Constructing Pairwise Dependency Graphs 35
3.2.3 Merging MDDs . 35

3.3 The WDG Heuristic . 37
3.3.1 Weighted Pairwise Dependency Graphs 37
3.3.2 Constructing Weighted Pairwise Dependency Graphs 39
3.3.3 The Two-Agent MAPF Problem . 39

3.4 Runtime Reduction Techniques . 40
3.4.1 Lazy Computation of Heuristics . 40
3.4.2 Memoization . 41

3.5 Empirical Evaluation . 42
3.5.1 Small Maps . 43
3.5.2 Large Maps . 45
3.5.3 Comparison with the Perfect Heuristic . 46
3.5.4 Possible Slowdown . 47

3.6 Summary . 48
3.7 Extensions . 49

Chapter 4: Speeding up Optimal CBS via Symmetry Reasoning 50
4.1 Background . 51

4.1.1 Principle of Designing Constraints for CBS 52
4.1.2 Related Work on Symmetry Reasoning 53

4.2 Rectangle Symmetry . 55
4.2.1 Rectangle Reasoning Technique I: For Entire Paths 57
4.2.2 Rectangle Reasoning Technique II: For Path Segments 62

4.3 Generalized Rectangle Symmetry . 68
4.3.1 High-Level Idea . 70
4.3.2 Algorithm . 73
4.3.3 Theoretical Analysis . 76
4.3.4 Empirical Evaluation . 77

4.4 Target Symmetry . 79
4.4.1 Identifying Target Conflicts . 81
4.4.2 Resolving Target Conflicts . 81
4.4.3 Classifying Target Conflicts . 82
4.4.4 Theoretical Analysis . 83
4.4.5 Empirical Evaluation . 83

4.5 Corridor Symmetry . 84
4.5.1 Identifying Corridor Conflicts . 86
4.5.2 Resolving Corridor Conflicts . 86
4.5.3 Classifying Corridor Conflicts . 88
4.5.4 Theoretical Analysis . 89

4.6 Generalized Corridor Symmetry . 89

vi

4.6.1 Pseudo-Corridor Conflicts . 90
4.6.2 Corridor Conflicts with Start Vertices inside the Corridor 92
4.6.3 Corridor-Target Conflicts . 94
4.6.4 Summary on Generalized Corridor Symmetry 100
4.6.5 Empirical Evaluation . 100

4.7 Symmetry Reasoning Framework . 101
4.7.1 Framework . 101
4.7.2 Empirical Evaluation . 103
4.7.3 Empirical Comparison with Mutex Propagation 109

4.8 Combining Symmetry Breaking with the WDG Heuristic 111
4.8.1 Empirical Evaluation . 113

4.9 Summary . 114
4.10 Extensions . 115

Chapter 5: Speeding up Bounded-Suboptimal CBS via Inadmissible Heuristics 117
5.1 Background: Enhanced CBS (ECBS) . 118
5.2 Explicit Estimation CBS (EECBS) . 119

5.2.1 Limitations of ECBS . 121
5.2.2 Explicit Estimation Search (EES) . 123
5.2.3 Explicit Estimation CBS (EECBS) . 124
5.2.4 Online Learning of the Cost-To-Go Heuristic 125

5.3 Bringing CBS Improvements to EECBS . 127
5.3.1 Bypassing Conflicts . 127
5.3.2 Prioritizing Conflicts . 129
5.3.3 Symmetry Reasoning . 130
5.3.4 WDG Heuristic . 131

5.4 Empirical Evaluation . 133
5.5 Summary . 135
5.6 Extensions . 136

Chapter 6: Improving MAPF Solutions via Large Neighborhood Search 137
6.1 MAPF-LNS: Reducing the Cost of MAPF Solutions 139

6.1.1 Background: Anytime MAPF Algorithms 139
6.1.2 MAPF-LNS Framework . 140
6.1.3 Neighborhood Selection . 140
6.1.4 Empirical Evaluation . 145

6.2 MAPF-LNS2: Repairing Infeasible MAPF Solutions 156
6.2.1 MAPF-LNS2 Framework . 156
6.2.2 Pathfinding with Dynamic Obstacles . 157
6.2.3 Neighborhood Selection . 166
6.2.4 Empirical Evaluation . 171

6.3 Combining MAPF-LNS and MAPF-LNS2 . 177
6.3.1 Empirical Evaluation . 179

6.4 Summary . 180
6.5 Extensions . 182

vii

Chapter 7: Conclusions and Future Work 184

Bibliography 190

Appendices 208
A Proof for the CG Heuristic . 208
B Proof for the WDG Heuristic . 212
C Supplement for the Rectangle Reasoning Techniques 213

C.1 Calculating Corner Nodes . 213
C.2 Proof for the Rectangle Reasoning Techniques 215

D Proof for the Generalized Rectangle Reasoning Technique 217
E Proof for the Corridor Reasoning Technique . 219
F Proof for the Corridor-Target Reasoning Technique 220

viii

List of Tables

2.1 Summary of optimal MAPF algorithms. 20

3.1 Average h-values of the root CT node. “Obs” represents the percentage of cells
that are randomly blocked on a 20×20 grid. 43

3.2 Average numbers of expanded CT nodes and average runtimes over instances
solved by all algorithms. 44

3.3 Average h- and h∗-values of the root CT node over instances of which the h∗-value
is known, i.e., instances solved by at least one ICBS algorithm. 46

4.1 Benchmark details. We use 8 maps, each with 6 different numbers of agents. We
have 25 instances for each map and each number of agents, yielding 8×6×25 =
1,200 instances in total. 77

4.2 Numbers of expanded CT nodes to resolve the target conflict shown in Figure 4.9a
for different distances between vertices s1 and g2. 80

4.3 Scalability of None and RTC, i.e., the largest number of agents that each algorithm
can solve with a success rate of 100%. 105

4.4 Percentages of runtimes of RTC spent on generalized rectangle and corridor rea-
soning. The runtime overhead of target reasoning is negligible and thus not re-
ported here. 106

4.5 Conflict distributions of RTC. “Rectangle”, “Target”, “Corridor”, and “Ver-
tex/Edge” represent the percentages of CT nodes expanded by resolving gener-
alized rectangle, target, generalized corridor, and vertex/edge conflicts, respectively. 107

4.6 Numbers of expanded CT nodes of None and RTC when solving two-agent MAPF
instances. The numbers in column > n represent the percentages of instances that
are solved by expanding more than n CT nodes. 108

4.7 Numbers of instances solved by rRCT and RTC within one minute. The total
number of instances for each map is 150 (i.e., 6 different numbers of agents with
25 instances for each number). 109

ix

5.1 Lower-bound improvement ∆lb, i.e., the value of lb(bestlb) when the algorithm
terminates minus the lb-value of the root CT node. “Cleanup%” is the percentage
of expanded CT nodes that are selected from CLEANUP. 122

5.2 Average numbers of accepted bypasses per expanded CT node. 129

5.3 Lower-bound improvement ∆lb, i.e., the minimum (lb+h)-value of the CT nodes
in CLEANUP when EECBS terminates minus the lb-value of the root CT node.
“Cleanup%” is the percentage of expanded CT nodes that are selected from
CLEANUP. “WDG time%” is the percentage of runtime spent on computing the
WDG heuristic. 131

6.1 Performance of MAPF-LNS with various algorithms for replanning. The success
rate for each map and each number of agents is the same as in Figure 6.2. Numbers
in the AUC columns are the ratios of the average AUC of EECBS/CBS over the
average AUC of PP. Numbers in bold correspond to the cases when EECBS/CBS
has a smaller AUC/final sum of delays than PP. 148

6.2 Performance of MAPF-LNS using LNS with various neighborhood selection meth-
ods with respect to MAPF-LNS using ALNS. Numbers in bold correspond to
the cases where LNS with a single neighborhood selection method has a smaller
AUC/final sum of delays than ALNS. 149

6.3 Performance of MAPF-LNS using neighborhood sizes of 2, 4, 8, and 16 (denoted
as N2, N4, N8, and N16, respectively). Numbers in bold correspond to the neigh-
borhood size with the smallest AUC. If no numbers are in bold, N4 has the smallest
AUC. 151

6.4 Solution quality of MAPF-LNS. 152

6.5 Comparison of MAPF-LNS against Anytime BCBS and Anytime EECBS on eas-
ier MAPF instances. The numbers in the “Time to solution” (short for runtime to
the initial MAPF solution) and “Iterations” columns are averaged over all instances
solved by each algorithm. We omit the columns for Anytime EECBS when its val-
ues are always the same as the ones of MAPF-LNS. Numbers in bold correspond
to the largest success rates or the smallest runtimes to the initial MAPF solution. . 153

6.6 Performance of MAPF-LNS2 using different PMDO algorithms on the random

map. “Runtime per call” is the average runtime of a single space-time A* or SIPPS
search. 172

6.7 Performance of MAPF-LNS2 using LNS with various neighborhood selection
methods and MAPF-LNS2 using ALNS on the random map. 173

x

6.8 Comparison of MAPF-LNS2 against PP and PPR on the random map. We omit
the runtime of PP since it is equal to the runtime of PPR and MAPF-LNS2 for
any instance that it was able to solve. “#Single-agent runs” is the average number
of times for which we run SIPP or SIPPS. We omit this result for PP because it
is always equal to the number of agents m. “Initial CP” is the average CP of the
initial plan. 174

6.9 Performance of MAPF-LNS and MAPF-LNS2 on all maps. Results on maps
maze-32-32-2, maze-128-128-1, and maze-128-128-2 are omitted due to their
0% success rates. “Iterations” are the average number of iterations that we run
MAPF-LNS for reducing the solution costs, i.e., the average number of times that
Lines 22 to 30 in Algorithm 6.8 are executed. “Average delay” is the average sum
of delays of the initial/final MAPF solution divided by the number of agents, and
its ratio is the number in the ”Initial” column divided by the number in the ”Final”
column. 179

xi

List of Figures

1.1 Illustration of a sorting center and its layout, with the left figure reproduced from
[94]. 2

1.2 Throughput comparison between a single-agent algorithm from [192] and a MAPF
algorithm from [113] on the map shown in Figure 1.1. 3

1.3 Summary of the focus of the dissertation. 4

1.4 High-level tree of CBS for a two-agent MAPF instance on a 4× 4 four-neighbor
grid. 5

1.5 Numbers of nodes expanded by CBS for resolving a rectangle symmetry between
two agents. 8

1.6 Illustration of LNS for improving MAPF solutions. 9

2.1 Example of using MDDs to identify cardinal and non-cardinal conflicts. We omit
the timesteps of the MDD nodes in the right figure. 26

3.1 Example of a seven-agent MAPF instance. 30

3.2 Cardinal conflict graph of the root CT node for the MAPF instance in Figure 3.1. . 31

3.3 Pairwise dependency graph of the root CT node for the MAPF instance in Figure 3.1. 34

3.4 MDDs and joint MDD for agents a3 and a4 in the MAPF instance in Figure 3.1.
We omit the timesteps of the MDD nodes in the figure. 36

3.5 Weighted pairwise dependency graph of the root CT node for the MAPF instance
in Figure 3.1. 37

3.6 Average runtimes per expanded CT node on the empty and dense maps. We use 6
different numbers of agents for each map, resulting in 300 instances per map. . . . 43

3.7 Success rates on the small maps. 44

3.8 Success rates on the large map. 45

3.9 Results for 100 agents on the large map. 46

xii

3.10 Comparison between ICBS and CBSH. 47

4.1 Example of (cardinal) rectangle conflicts. In (a), each left branch constrains agent
a2, and each right branch constrains agent a1. Each non-leaf CT node is marked
with the cell of the chosen conflict. Each leaf CT node marked “+1” contains an
optimal solution, whose sum of costs is one larger than the sum of costs of the plan
of the root CT node. 56

4.2 Examples of different types of rectangle conflicts. The cells of the start and target
nodes are shown in the figures. The timesteps of the start and target nodes are
S1.t = S2.t and Gi.t = Si.t+ |Gi.x−Si.x|+ |Gi.y−Si.y| for i = 1,2. The conflicting
area is highlighted in yellow. Rs, Rg, R1, and R2 denote the four corner nodes of
the rectangle. 56

4.3 Examples of rectangle conflicts for path segments. The cells of the start and target
nodes are shown in the figures. In (a), the cells of S1 and G2 are indicated by s1
and g2. In (b) and (c), Gi.t = Si.t + |Gi.x−Si.x|+ |Gi.y−Si.y| for i = 1,2. In (b),
S1.t = S2.t−1. In (c), S1.t = S2.t−2. 63

4.4 Example of deriving more than one rectangle conflict from a vertex conflict. Agent
a2 has two constraints that prohibit it from being at cells (2, 4) and (4, 2) at timestep
3. The two conflicting areas of the two rectangle conflicts are highlighted in yellow
and in yellow with shadows, respectively. 64

4.5 Example where we cannot apply the original barrier constraints. 66

4.6 Examples where the reasoning techniques in Section 4.2 fail to identify rectangle
conflicts, reproduced from the MAPF benchmark [163]. The start and target ver-
tices of the agents are shown in the figures. In (a), agent a2 has a barrier constraint
B2 indicated by the red arrow (the timesteps of the leftmost and rightmost nodes
blocked by B2 are also shown in the figure), which forces agent a2 to wait for one
timestep. In both (a) and (b), the vertices of the MDD nodes of the MDDs of the
two agents are highlighted in the corresponding colors. Purple cells represent the
overlapping area. The timesteps when the agents reach every purple cell are the
same for both agents. 69

4.7 Illustrations of generalized rectangle conflicts. The purple area represents the con-
flicting area inside which both agents reach each vertex at the same timestep via
their shortest paths. The solid lines represent where the agents enter the purple area
via their shortest paths and the dotted lines represent where they leave the purple
area via their shortest paths. The positions of R1 and R2 in Figures (a-c) are for
illustration purposes and misleading. Figures (d-f) show their correct positions. . . 71

4.8 Runtime distributions of CBSH with different rectangle reasoning techniques. A
point (x,y) in the figure indicates that there are x instances solved within y seconds. 78

xiii

4.9 Example of a target conflict and the corresponding CT generated by CBS. In (b),
each non-leaf CT node is marked with the vertex of the chosen conflict. The leaf
CT node marked “+3” contains an optimal solution, whose sum of costs is the cost
of the root CT node plus 3. The leaf CT nodes marked “+5” and “+7” contain
suboptimal solutions, whose sums of costs are the cost of the root CT node plus 5
and 7, respectively. The leaf CT node marked “...” contains a plan with conflicts,
whose sum of costs is the cost of the root CT node plus 3, and produces suboptimal
solutions in its descendant CT nodes. 79

4.10 Runtime distributions of CBSH with and without target reasoning. 83

4.11 Example of a corridor conflict and the corresponding CT generated by CBS. In (b),
each non-leaf CT node is marked with the vertex/edge of the chosen conflict. Each
leaf CT node marked “+4” contains an optimal solution, whose sum of costs is the
cost of the root CT node plus 4. Each leaf CT node marked “...” contains a plan
with conflicts and produces suboptimal solutions in its descendant CT nodes. . . . 85

4.12 Illustration of corridor conflicts with and without bypasses. The corridors are high-
lighted in yellow. 86

4.13 Example of a pseudo-corridor conflict and the corresponding CT generated by
CBS. In (b), each non-leaf CT node is marked with the vertex/edge of the cho-
sen conflict. Each leaf CT node marked “+2” contains an optimal solution, whose
sum of costs is the cost of the root CT node plus 2. Each leaf CT node marked “...”
contains a plan with conflicts and eventually produces suboptimal solutions in its
descendant CT nodes. 90

4.14 Examples of corridor conflicts with start vertices inside the corridor. 92

4.15 Examples of corridor-target conflicts. 94

4.16 Examples of cases where the target vertices of agents a1 and a2 are inside corridor
C. Only the cases shown in the first row are classified as corridor-target conflicts
by Function MUSTCROSS(a1,a2,C). 95

4.17 Runtime distributions of CBSH with different corridor reasoning techniques. In
the city-map and two game-map figures, the yellow and purple lines are hidden by
the red lines, and the green lines are hidden by the blue lines. 100

4.18 Runtime distributions of CBSH with different symmetry reasoning techniques. . . 104

4.19 Success rates of CBSH with different pairwise symmetry reasoning techniques. . . 104

xiv

4.20 Numbers of expanded CT nodes of None and RTC. If an instance is not solved
within the runtime limit of one minute, we set the number of its expanded CT
nodes to infinity. Among the 1,200 instances, 310 instances are solved by neither
algorithm; 418 instances are solved by RTC but not by None; and only 3 instances
are solved by None but not by RTC. Among the 469 instances solved by both
algorithms, RTC expands fewer CT nodes than None for 364 instances, the same
number of CT nodes for 84 instances, and more CT nodes for only 21 instances. . 106

4.21 Runtime distributions of CBSH with our symmetry reasoning techniques and mu-
tex propagation. 110

4.22 Runtime distributions of CBSH and CBSH2 with and without RTC. 113

4.23 Numbers of CT nodes expanded by CBSH2 and CBSH2-RTC. If an instance is not
solved within the runtime limit, we set its number of expanded nodes to infinity.
Among the 1,200 instances, 239 instances are solved by neither algorithm; 241
instances are solved by CBSH2-RTC but not by CBSH2; and only 6 instances
are solved by CBSH2 but not by CBSH2-RTC. Among the 714 instances solved
by both algorithms, CBSH2-RTC expands fewer CT nodes than CBSH2 for 572
instances, the same number of CT nodes for 104 instances, and more CT nodes for
only 38 instances. 114

5.1 Performance of ECBS and EECBS with different improvement techniques. BP,
PC, SR, and WDG are short for bypassing conflicts, prioritizing conflicts, symme-
try reasoning, and using the WDG heuristic, respectively. 120

5.2 Performance of ECBS on a hard MAPF instance. 121

5.3 Performance of ECBS, EECBS, ECBS+ (ECBS with all improvements), EECBS+
(EECBS with all improvements), BCP-7, and eMDD-SAT. All results are pre-
sented in the same format as in Figure 5.1. The algorithms are indicated by the
legend with the same color and the same marker style, while the suboptimality
factors of the lines in the success rate figures are indicated by the legend with the
same line style. Since some algorithms solve (almost) zero instances within the
runtime limit, their lines overlap at the top of the runtime figures and the bottom
of the success rate figures: the grey lines are hidden by the blue lines in the run-
time figures of maps warehouse-10-2-10-2-1, den520d, and Pairs 1 256; the
dashed red and green lines are hidden by the dashed yellow line in the success rate
figure of map den312d; and many of the dashed/solid/dotted grey/blue lines are
hidden by other lines at the bottom of many of the success rate figures. 134

5.4 Runtimes of ECBS and EECBS+ on the random map with the number of agents
m ranging from 45 to 150 and the suboptimality factor w ranging from 1.02 to
1.20. If an instance is not solved within the runtime limit of one minute, we set its
runtime to one minute. Among the 2,000 instances, 475 instances are solved by
neither algorithm, 444 instances are solved only by EECBS+, and 0 instances are
solved only by ECBS. 135

xv

6.1 Evolution of the sum of delays over a minute for various algorithms on instance
“random-32-32-20-random-1.scen” with 150 agents. The points for EECBS are
labeled with the corresponding suboptimality factors w. EECBS with w ≤ 1.10
failed to solve the instance within a minute. 146

6.2 Success rates and sums of delays of various algorithms with a runtime limit of 10
seconds for finding initial MAPF solutions. The sum of delays is averaged over all
instances solved by each algorithm. The bars of EECBS in the right bottom figure
are hidden by the line of PPS. Some bars are missing because zero instances are
solved. 147

6.3 Initial and final sums of delays of MAPPF-LNS, Anytime BCBS, and Anytime
EECBS, averaged over all instances solved by each algorithm. Some blue bars are
missing because zero instances are solved. 154

6.4 Evolution of the sum of delays over 10 minutes for the three anytime algorithms
on the first three instances of map den520d with 300 agents that are solved by all
of the algorithms. Each point on the Anytime BCBS/EECBS curves represents
one iteration, except for the last point at 600 seconds. We omit the points on the
MAPF-LNS curves as MAPF-LNS has too many iterations. 155

6.5 Examples when PP fails to find any MAPF solutions. Agent a1 follows the arrow
without waiting. 158

6.6 Illustration of all possible combinations of the relative positions of the safe inter-
vals of two nodes n1 and n2 with the same identity. The timeline is from left to
right. Without loss of generality, we assume that c(n1) < c(n2) in (a), (b), and
(d) and c(n1) ≤ c(n2) in (c), (e), and (f). We do not consider the cases where
c(n1) = c(n2) in (a), (b), and (d) because they are identical to the cases where
c(n1) = c(n2) in (f), (e), and (c), respectively. 163

6.7 Illustrations of maps (a) maze-32-32-2, (b) room-32-32-4, (c)
maze-32-32-4, (d) den312d, (e) room-64-64-8, (f) room-64-64-16,
(g) warehouse-10-20-10-2-1, (h) ht chantry, (i) maze-128-128-1, (j)
ht mansion n, (k) warehouse-10-20-10-2-2, (l) lt gallowstemplar n,
(m) maze-128-128-2, (n) ost003d, (o) lak303d, (p) maze-128-128-10,
(q) warehouse-20-40-10-2-1, (r) den520d, (s) w woundedcoast, (t)
warehouse-20-40-10-2-2, (u) brc202d, (v) Paris 1 256, (w) Berlin 1 256,
(x) Boston 0 256, and (y) orz900d. The caption of each map specifies its grid
size. 172

6.8 Runtimes and solution quality on all maps. 175

6.9 Success rates on all maps. 176

xvi

6.10 Runtimes on the warehouse map with a runtime limit of an hour. Each dot rep-
resents the runtime on one instance, with each line and filled area representing the
mean and 0.1-quantile values over the 25 randomly generated instances for each
number of agents. The runtime of each unsolved instance is set to an hour. 177

6.11 Runtimes and solution quality of MAPF-LNS2 and EECBS* on all maps. MAPF-
LNS2(Initial) represents the results with respect to the first MAPF solution that
MAPF-LNS2 finds, which is identical to MAPF-LNS2 in Figure 6.8. 181

7.1 Success rates (= percentages of solved instances within one minute) on map
Paris 1 256. Solid lines correspond to the MAPF algorithms introduced in this
dissertation and dashed lines to existing MAPF algorithms. EECBS* is EECBS
with SIPPS. The numbers shown on the top and bottom with colors indicate the
largest numbers of agents that the corresponding MAPF algorithm can solve with
a 100% success rate and a non-zero success rate, respectively. The solutions found
by MAPF-LNS2 are, for example, 32% and 44% worse than optimal averaged over
instances with 2,500 agents and 3,800 agents, respectively, where the optimal sum
of cost is underestimated by ∑ai∈A dist(si,gi). 186

7.2 Illustration of constructing a path of length µ+1 for agent ai. The solid and dashed
diamonds include all MDD nodes in MDDµ

i and MDDµ+1
i , respectively. 209

xvii

List of Algorithms

2.1 CBS for solving MAPF optimally. 24

4.1 Rectangle reasoning for path segments. 64

4.2 Pseudo-corridor reasoning. 92

4.3 Identify generalized corridor conflicts. 96

4.4 Generalized corridor reasoning. 99

4.5 Symmetry reasoning. 102

4.6 CBSH2-RTC for solving MAPF optimally. 112

5.1 EECBS for solving MAPF bounded-suboptimally. 128

6.1 Generate an agent-based neighborhood. 141

6.2 Generate a map-based neighborhood. 143

6.3 SIPPS for solving PMDO. 161

6.4 Expand a SIPPS node. 163

6.5 Insert a SIPPS node. 165

6.6 Generate a conflict-based neighborhood. 167

6.7 Generate a failure-based neighborhood. 169

6.8 MAPF-LNS2 for solving MAPF suboptimally and in an anytime manner. 178

xviii

Abbreviations

MAPF Multi-Agent Path Finding; See Definition 2.1.

CBS Conflict-Based Search; See Algorithm 2.1.

PP Prioritized Planning; See Section 2.2.3.

PPR Prioritized Planning with random restarts; See Section 2.2.3.

PPS Parallel-Push-and-Swap; See Section 2.2.3.

CT Constraint Tree; See Section 2.3.1.

ICBS Improved CBS, i.e., CBS with the conflict prioritization technique; See Sec-

tion 2.3.2.1.

MDD Multi-Valued Decision Diagram; See Definition 2.3.

CG Admissible CBS heuristic based on cardinal conflict graphs; See Section 3.1.

CBSH ICBS with the CG heuristic; See Section 3.1.1.

DG Admissible CBS heuristic based on pairwise dependency graphs; See Section 3.2.

WDG Admissible CBS heuristic based on weighted pairwise dependency graphs; See

Section 3.3.

CBSH2 ICBS with the WDG heuristic; See Section 3.3.1.

xix

CBSH2-RTC CBSH2 with all symmetry reasoning techniques (and bypassing conflicts); See

Algorithm 4.6.

ECBS Enhanced CBS; See Section 5.1.

EES Explicit Estimation Search (EES); See Section 5.2.2.

EECBS Explicit Estimation CBS; See Algorithm 5.1.

EECBS(w) EECBS with suboptimality factor w.

LNS Large Neighborhood Search; See Chapter 6.

ALNS Adaptive LNS; See Section 6.1.3.4.

CP Number of colliding pairs; See Section 6.2.1.

PMDO Pathfinding with Dynamic Obstacles; See Section 6.2.2.

SIPPS Safe Interval Path Planing with Soft constraints; See Algorithm 6.3.

EECBS* EECBS with SIPPS.

EECBS*(w) EECBS with SIPPS and suboptimality factor w.

xx

Abstract

Recent advances in robotics have laid the foundation for building large-scale multi-agent systems.

One fundamental task in many multi-agent systems is to navigate agents in a shared environment

to their target locations without colliding with each other or obstacles. Applications include evacu-

ation, formation control, object transportation, traffic management, search and rescue, autonomous

driving, drone swarm coordination, video game character control, and warehouse automation, to

list a few. One well-studied abstract model for this problem is known as Multi-Agent Path Finding

(MAPF). It is defined on a general graph with given start and target vertices for agents on this

graph. Each agent is allowed to wait at its current vertex or move to an adjacent vertex from one

discrete timestep to the next one. We are asked to find a path for each agent such that no two

agents are at the same vertex or cross the same edge at any timestep (because this would result in

a collision) and minimize the sum of the path costs of all agents or similar optimization criteria.

MAPF is NP-hard to solve optimally (and, in some cases, even bounded-suboptimally) in gen-

eral. Existing algorithms for solving MAPF either have limited scalability (such as optimal and

bounded-suboptimal algorithms), generate costly solutions (such as rule-based algorithms), or may

fail to find any solutions for hard MAPF instances (such as prioritized algorithms). In this disserta-

tion, we develop fundamental techniques to overcome the shortcomings of these MAPF algorithms,

namely techniques that reduce the runtimes of optimal and bounded-suboptimal MAPF algorithms

and techniques that improve the solution quality and success rates of rule-based, prioritized, and

other non-optimal MAPF algorithms.

xxi

The state-of-the-art optimal and bounded-suboptimal MAPF algorithms often use the frame-

work of planning paths for each agent independently and systematically resolving collisions af-

terward. Intelligently searching the collision-resolution space often finds good solutions faster

than traditional methods that search the joint-state space of the agents. But still, searching the

collision-resolution space can be computationally expensive for two reasons.

The first reason is due to a phenomenon called pairwise symmetry, which occurs when two

agents have many different paths to their target vertices, all of which appear promising, but every

combination of them results in a collision. So, when we search the collision-resolution space,

we need to enumerate many (or, in most cases, an exponential number of) combinations of such

colliding paths before finding a pair of collision-free paths for the two agents. Therefore, in this

dissertation, we identify a number of different symmetries and show that they arise commonly in

practice and enumerating them often leads to timeout failures. We develop symmetry-breaking

techniques to detect the symmetries during the search and resolve them in a single branching

step while preserving the (bounded-sub)optimality and completeness of the optimal and bounded-

suboptimal MAPF algorithms.

The second reason is due to the blind search in the extremely large size of the collision-

resolution space. Although resolving pairwise symmetries can reduce the size of the collision-

resolution space, when solving MAPF instances with many agents, the space is still too large for the

(bounded-sub)optimal MAPF algorithms to find a solution and prove its (bounded sub)optimality

with a reasonable runtime. On the one hand, in order to prove (bounded sub)optimality, (bounded-

sub)optimal MAPF algorithms have to examine a large number of states (= sets of paths) with small

costs in the collision-resolution space and resolve their collisions. Therefore, in this dissertation,

we develop admissible heuristics for each state, which underestimate the minimum cost increase

of the paths in the state when all their collisions are resolved, to reduce the number of states that

(bounded-sub)optimal MAPF algorithms need to examine and thus speed up their search. On

the other hand, in order to find a solution fast, bounded-suboptimal MAPF algorithms often view

the states with costs within the desired suboptimality bound and small numbers of collisions as

xxii

“promising” states and examine them first. But the identification of such “promising” states can be

misleading because (1) the cost of a state can increase and exceed the desired suboptimality bound

after resolving the collisions in the state, and (2) one might have to resolve more collisions than

the current collisions in the state (because new collisions can appear when resolving the current

ones). Therefore, in this dissertation, we apply an online learning method to learn how the costs

and numbers of collisions change during the search and compute an informed learned heuristic

(that may be inadmissible) based on them to guide the bounded-suboptimal MAPF algorithms to

find a solution within the desired suboptimality bound fast. We also apply a search strategy called

Explicit Estimation Search, which cleverly trades off the effort of proving bounded suboptimality

and finding solutions.

Sometimes, we are interested in a good solution but not necessarily proof of how good the

solution is. For this reason, people often use rule-based algorithms, prioritized algorithms, or

bounded-suboptimal algorithms with large suboptimality factors to rapidly find solutions for chal-

lenging MAPF instances. In order to overcome the shortcomings of these algorithms in terms of

generating costly solutions, we adapt a stochastic local search algorithm, called Large Neighbor-

hood Search (LNS), to improving the quality of a given MAPF solution over time by repeatedly

replanning paths for subsets of agents to reduce the overall path costs. In order to overcome their

shortcomings in terms of failing to find any solutions, we adapt LNS to repairing an infeasible

solution (i.e., a set of paths that contain collisions) by repeatedly replanning paths for subsets of

agents to reduce the overall number of collisions among the paths.

In summary, we develop three types of techniques, namely symmetry reasoning, heuristics,

and LNS, to improve MAPF algorithms. Specifically, in this dissertation, we first introduce three

admissible heuristics and show that they can speed up the optimal MAPF algorithm CBS by up

to 50 times. We then develop three symmetry-reasoning techniques and show that they can speed

up CBS and its variant with the admissible heuristics by up to 4 orders of magnitude. Their com-

bination results in the state-of-the-art optimal MAPF algorithm CBSH2-RTC, which handles up

to thirty times more agents than the previously best variant of CBS. Next, we develop a learned

xxiii

but inadmissible heuristic to speed up a bounded-suboptimal variant of CBS while preserving

its bounded-suboptimality guarantee. We combine the resulting algorithm with many CBS im-

provements, including admissible heuristics and symmetry reasoning, to obtain the state-of-the-

art bounded-suboptimal MAPF algorithm EECBS, which dominates other bounded-suboptimal

MAPF algorithms in all tested scenarios. It can find solutions whose costs are provably at most

2% worse than optimal for MAPF instances with a thousand agents within just a minute, while

state-of-the-art optimal MAPF algorithms can handle no more than two hundred agents under the

same condition. Last but not least, we develop MAPF-LNS and MAPF-LNS2 based on LNS to re-

duce the cost of a (feasible) MAPF solution and repair an infeasible MAPF solution, respectively.

MAPF-LNS significantly outperforms other anytime MAPF algorithms in terms of scalability,

runtime to the initial solution, and speed of improving the solution. It reduces the solution cost of

non-optimal MAPF algorithms by up to 36 times within just a minute and up to 110 times within

five minutes. In comparison to other non-optimal MAPF algorithms (including EECBS with dif-

ferent suboptimality factors), MAPF-LNS2 solves 80% of the most challenging instances in the

MAPF benchmark suite (while none of the other algorithms solve more than 65%) within five

minutes and finds lower-cost solutions than the other algorithms in most cases.

xxiv

Chapter 1

Introduction

Multi-Agent Path Finding (MAPF) [163] is the problem of finding collision-free paths for multiple

agents on a given graph while minimizing the sum of their travel times, their makespan, or similar

optimization criteria. It is NP-hard to solve optimally on general graphs [205], planar graphs [203]

and grids [15]. It is also NP-hard to find feasible solutions on directed graphs [129] and NP-

hard to find solutions of makespans no larger than 4/3 times the optimal makespan on general

graphs [118]. In this dissertation, we mainly focus on minimizing the sum of travel times because

this optimization criterion is widely used in many applications. Nevertheless, most techniques

developed in this dissertation can be easily generalized to other optimization criteria.

MAPF is a core problem in a variety of real-world applications, including (but not limited to)

evacuation [128, 122], automated warehousing and manufacturing [199, 120, 115, 32, 113, 38],

automated valet parking [131], autonomous road intersection management [56], traffic manage-

ment [79, 106, 110], drone swarm coordination [83], search and rescue [143], formation con-

trol [108], and video game character control [121, 156]. Although the number of agents involved

in these applications varies from dozens of agents to thousands of agents, finding high-quality

solutions with small runtimes is important for all of them.

For example, today, in automated warehouses, hundreds of robots already autonomously move

inventory pods or flat packages from one location to another in a known, congested environ-

ment [199]. Fiducial markers are put on the floor to delineate a four-neighbor grid, and the robots

navigate NORTH, SOUTH, WEST, or EAST according to these fiducial markers. Figure 1.1 shows

1

Figure 1.1: Illustration of a sorting center and its layout, with the left figure reproduced from [94].

a visualization and an example layout of an automated sorting center, where robots deliver flat

packages from workstations to designated chutes. Finding low-cost paths for the robots fast is

essential for the effectiveness of such systems because lower-cost paths result in higher through-

puts or lower operating costs (as fewer robots are required) and finding the paths fast prevents

robots from waiting for replanning to finish and thus from being idle. Figure 1.2 compares the

effectiveness of a MAPF algorithm against that of a single-agent algorithm, which plans paths for

each agent independently and resolves collisions as they arise by issuing wait commands during

execution [181]. The MAPF algorithm considers the potential collisions among agents during

planning and thus results in the agents moving along paths of lower costs than the single-agent

algorithm. As a result, the throughput of the single-agent algorithm starts to drop after 600 robots

due to severe traffic congestion, while that of the MAPF algorithm continues to increase until at

least 1,000 robots (= 38.9% empty cells on the map). However, on the other hand, this MAPF

algorithm needs, for example, 21 seconds on average to generate one set of collision-free paths

for 1,000 robots [113], which limits its applicability to real-time systems. Therefore, the focus

of this dissertation is to push the limits of the MAPF algorithms by developing techniques to find

lower-cost paths faster.

The current state-of-the-art MAPF algorithms can be classified into three categories. Opti-

mal algorithms can find optimal solutions for small-sized problems (e.g., with dozens of agents).

Bounded-suboptimal algorithms, i.e., algorithms that find solutions of costs no more than a given

factor away from optimal, can find near-optimal solutions for small to medium-sized problems

(e.g., with a few hundred agents). Unbounded-suboptimal algorithms can solve very large practical

2

Figure 1.2: Throughput comparison between a single-agent algorithm from [192] and a MAPF
algorithm from [113] on the map shown in Figure 1.1.

problems (e.g., with hundreds or even thousands of agents) but usually find low-quality solutions.

As a result, existing algorithms for solving MAPF either have limited scalability (such as optimal

and bounded-suboptimal algorithms), generate costly solutions (such as rule-based algorithms), or

could fail to find any solutions for hard problems (such as prioritized algorithms).

Due to these computational challenges and the substantial interest in MAPF applications, we

develop techniques to improve MAPF algorithms in all categories. Specifically,

• we develop techniques to reduce the runtimes of optimal and bounded-suboptimal MAPF al-

gorithms with a focus on developing heuristics and symmetry reasoning techniques to speed

up the state-of-the-art MAPF algorithm CBS [153] and its variants for small- and medium-

sized problems so that they can scale up to more agents than possible before and still provide

guarantees on the solution quality; and

• we also develop techniques to improve the solution quality and success rates of bounded- and

unbounded-suboptimal MAPF algorithms with a focus on developing large-neighborhood-

search techniques to improve the solutions generated by these algorithms (namely, reducing

the costs of feasible solutions and the numbers of collisions in infeasible solutions) over time

for large-sized problems so that they can find higher-quality solutions with higher success

rates.

Figure 1.3 summarizes the focus of this dissertation. Here, efficiency refers to small runtimes,

and effectiveness refers to small solution costs. We validate the following hypothesis:

3

Figure 1.3: Summary of the focus of the dissertation.

One can improve the efficiency of (bounded-sub)optimal MAPF algorithms via heuris-

tics and symmetry reasoning and the effectiveness and success rates of non-optimal

MAPF algorithms via large neighborhood search.

1.1 Motivations

In this section, we first explain why we choose CBS to represent the optimal and bounded-

suboptimal MAPF algorithms. We then explain why we choose heuristics and symmetry reasoning

to reduce the runtimes of optimal and bounded-suboptimal variants of CBS. We last explain why

we choose large neighborhood search to improve the success rates and solution quality of bounded-

and unbounded-suboptimal MAPF algorithms.

1.1.1 Why CBS

In terms of reducing the runtimes of optimal and bounded-suboptimal algorithms, we focus on

the popular optimal algorithm Conflict-Based Search (CBS) [153] and its optimal and bounded-

suboptimal variants. CBS is a two-level search-based MAPF algorithm that resolves collisions by

adding constraints on the high level and computing paths consistent with those constraints on the

low level. Its central idea is to plan paths for each agent independently by ignoring the other agents

4

(a) Two-agent MAPF instance. At every
timestep, an agent can either wait at its current
cell or move to the up, down, left, or right cell. (b) CBS tree.

Figure 1.4: High-level tree of CBS for a two-agent MAPF instance on a 4×4 four-neighbor grid.

initially and then resolving collisions by branching. Each branch is a new candidate plan wherein

one agent or the other is forced to find a new path that avoids the chosen collision. Below is an

example.

Example 1.1. In order to solve the MAPF instance shown in Figure 1.4a, CBS first plans a shortest

path for each agent by ignoring the other agent, e.g., [A2, B2, C2, D2, D3] for agent 1 and [B1, B2,

B3, B4, C4] for agent 2. It then checks for collisions and finds a collision at vertex B2 at timestep

1. It tries two ways to resolve the collision, namely by prohibiting either agent 1 or agent 2 from

being at vertex B2 at timestep 1. In each case, it replans the paths and repeats the procedure by

checking for collisions again. Figure 1.4b shows the resulting high-level search tree of CBS. CBS

traverses the tree in a best-first manner and terminates when it expands a node whose paths have

no collisions.

We focus on CBS, instead of other optimal or bounded-suboptimal MAPF algorithms, for the

following two reasons:

• CBS is efficient. CBS represents the class of the state-of-the-art optimal and bounded-

suboptimal MAPF algorithms. The state-of-the-art optimal MAPF algorithms are either

variants of CBS or deploy strategies similar to CBS, such as lazy CBS [67], BCP [95], and

5

SMT-CBS [168]. The bounded-suboptimal variants of CBS, such as ECBS [16], also rep-

resent the state-of-the-art bounded-suboptimal MAPF algorithms. So, the techniques that

we develop to speed up CBS have the potential to speed up a variety of the state-of-the-art

optimal and bounded-suboptimal MAPF algorithms.

• CBS is flexible. CBS uses a simple and flexible framework that can be easily adapted to

many generalized MAPF problems. For instance, we can replace the single-agent pathfinder

on the low level of CBS with a domain-specific one (such as a single-robot motion planner)

to handle agent with different navigation constraints [49, 37, 158] and redefine the colli-

sions to take into account the shapes of the agents and their robustness requirement [105, 8].

More examples are listed in Section 2.3.4. So, the techniques that we develop to speed up

CBS have the potential to speed up its variants for solving a variety of generalized MAPF

problems.

In fact, as presented in the extension sections of Chapters 3 to 5, our techniques developed

for CBS have already been shown effective in improving the efficiency for some state-of-the-art

MAPF algorithms other than CBS and some generalized MAPF problems.

1.1.2 Why Heuristic Search and Symmetry Reasoning

The high level of CBS solves a state-space search problem at its core, where the state space is the

collision-resolution space, as each branching operator resolves one collision between two agents.

Verifying that a solution to a state-space search problem is optimal requires expanding every node

whose f -value is less than the optimal solution cost C∗. Therefore, the larger admissible heuristics

we use, the fewer nodes we are required to expand. Existing variants of CBS do not use any

admissible heuristics that estimate future work. Therefore, we develop admissible heuristics for

CBS nodes, motivated by cost partitioning and pattern databases from the AI planning community,

to find provably optimal solutions with fewer node expansions and (thus) faster.

6

Cost partitioning [91, 201] is a general and principled approach for constructing informed

admissible heuristics for optimal classic planning by combining information from multiple ad-

missible heuristics. It distributes operator costs among the heuristics, allowing to add up the

heuristic estimates admissibly. A popular way to obtain such additive heuristics is to use pattern

databases [138], a technique that pre-computes and stores perfect cost estimates for sub-problems

in a lookup table. We apply such ideas to CBS and treat the problem of finding collision-free paths

for pairs of agents as the sub-problems. However, since the state space of the high-level search

of CBS is infinitely large, it is impractical to construct pattern databases a priori. Therefore, we

either analyze the collisions between each pair of agents on the fly to quickly obtain an admissi-

ble estimate (instead of a perfect estimate) or construct the pattern databases on the fly by finding

the optimal collision-free paths for each pair of agents seen so far. The former method has lower

runtime overhead but produces less-informed admissible heuristics than the latter method.

The issue of symmetry is widely recognized as of fundamental importance in constraint satis-

faction problems and, in general, many combinatorial problems [44]. Symmetry breaking [20, 188]

is a powerful and successful technique in the constraint programming community to reduce the

search space exponentially. This is important for a state-space search problem because a smaller

search space usually results in a smaller number of nodes with f -values less than C∗. In pathfind-

ing problems, symmetries have so far been studied only for single agents, e.g., by exploiting grid

symmetries [76]. In MAPF, the situation is more complicated: Agents have to cooperate to avoid

collisions, and this gives rise to collision symmetries, which occur when two agents have many

paths to their target vertices, but every combination of them results in a collision. Below is an

example of rectangle symmetry.

Example 1.2. Figure 1.5a enumerates 4 possible combinations of the shortest paths of agents 1

and 2 in the MAPF instance shown in Figure 1.4a. Every combination has a collision inside the

yellow rectangular area. CBS has to try many such combinations before realizing that the optimal

resolution is to let one of the agents wait for one timestep. Figure 1.5b shows that the size of the

CBS tree grows exponentially with the size of the yellow rectangular area.

7

(a) Rectangle symmetry example. (b) Numbers of nodes expanded by CBS.

Figure 1.5: Numbers of nodes expanded by CBS for resolving a rectangle symmetry between two
agents.

There are many other classes of collision symmetries. Each of them arises commonly in prac-

tice and can produce an exponential explosion in the collision-resolution space, leading to unac-

ceptable runtimes for CBS. These collision symmetries are conceptually different from the sym-

metries in the literature (for solving other problems), which all focus on problem/state/solution

symmetries in the sense that permuting some variables, values, propositions, or operators results in

identical problems/states/solutions. Therefore, we develop a variety of new reasoning techniques

that detect the collision symmetries efficiently as they arise and resolve them using specialized

symmetry-breaking constraints to eliminate all permutations of pairwise colliding paths in a single

branching step.

For many problems of practical interest, even after we apply admissible heuristics and sym-

metry reasoning techniques, there are still too many nodes with f -values less than C∗ to allow the

search to complete with a reasonable runtime. A third way to speed up a state-space search algo-

rithm is to trade off solution quality with runtime by finding a bounded-suboptimal solution, i.e.,

a solution whose cost is at most w ·C∗, where w is a user-specified suboptimality factor. In gen-

eral, finding bounded-suboptimal solutions involves two sub-tasks, namely providing proof that

solutions of cost less than C1 (with C1 ≤ C∗) do not exist and finding a solution that is of cost

C2 (with C∗ ≤C2 ≤ w ·C1). Therefore, we study three methods to speed up bounded-suboptimal

8

Figure 1.6: Illustration of LNS for improving MAPF solutions.

variants of CBS. First, we reuse the aforementioned admissible heuristics and symmetry reasoning

to speed up the procedure of providing proof. Second, we develop informed (but not necessarily

admissible) heuristics to guide the search to find a solution whose cost is sufficiently small (but not

necessarily optimal). Third, we deploy a clever strategy to trade off the efforts of providing proof

and finding a solution.

1.1.3 Why Large Neighborhood Search

Unlike optimal and bounded-suboptimal MAPF algorithms, whose state-of-the-art variants all em-

ploy similar structures, unbounded-suboptimal MAPF algorithms employ ideas and structures of

various kinds. Therefore, we are interested in developing algorithm-independent techniques to

improve the solution quality and success rates of bounded- and unbounded-suboptimal MAPF al-

gorithms. Large Neighborhood Search (LNS) [154], a well-known meta-heuristic framework from

the constraint programming and operations research communities, is a good fit for this purpose.

Starting from a given solution, LNS destroys part of the solution, called a neighborhood, and treats

the remaining part of the solution as fixed. What results is a simpler form of the original problem

to solve. It then repairs the solution and replaces the old solution with the repaired solution if

the repaired solution is better. LNS repeats this procedure until it meets some stopping criterion.

Figure 1.6 shows an illustration of our LNS-based MAPF framework.

9

In Case 1, starting from an initial solution obtained from any bounded- or unbounded-

suboptimal MAPF algorithm, we reduce the solution cost as time progresses by repeatedly re-

planning the paths for subsets of agents using LNS. The benefits of this framework are two-fold.

First, the initial solution can be obtained from any existing non-optimal MAPF algorithm, so any

improvements to these non-optimal MAPF algorithms improve the performance of our framework

as well. Second, the anytime behavior allows us to find an initial MAPF solution fast so that a fea-

sible solution is usually available, even for extremely challenging MAPF problems, and make full

use of the runtime budget by keeping to reduce the solution cost until it converges to near-optimal

or we timeout.

In Case 2, the existing MAPF algorithm fails to find collision-free paths (within the given

runtime limit) due to its incompleteness or large runtime. Therefore, starting from an infeasible

solution (i.e., a set of paths that contain collisions) obtained from any existing MAPF algorithm,

we reduce the number of collisions in the infeasible solution as time progresses by repeatedly

replanning the paths for subsets of agents using LNS. The procedure terminates when the number

of collisions is zero. Since the modified MAPF algorithm in this framework solves MAPF instances

with only a small subset of agents at a time, this framework empirically scales to a larger number

of agents than existing MAPF algorithms.

1.2 Contributions

In this dissertation, we make the following contributions to improving MAPF algorithms:

1. We design three admissible heuristics for CBS: The cardinal conflict graph (CG) heuristic

is based on cardinal collisions (i.e., collisions where, if they are resolved, the length of the

shortest path of at least one of the two agents involved in the collision increases by at least

one); the dependency graph (DG) heuristic is based on whether two agents have a pairwise

dependency (i.e., whether all combinations of the shortest paths of the two agents are in

collision); and the weighted dependency graph (WDG) heuristic is based on the minimum

10

cost increase that is required to resolve all collisions between two agents. The WDG heuristic

is guaranteed to be at least as informative as the DG heuristic, which in turn is guaranteed

to be at least as informative as the CG heuristic. We empirically show that the addition of

admissible heuristics can reduce the number of expanded nodes and runtime of CBS by up

to a factor of fifty. More details are given in Chapter 3.

2. We develop efficient symmetry reasoning techniques to reason about three classes of colli-

sion symmetries: Rectangle symmetry arises when two agents attempt to cross each other in

an open area and repeatedly collide with each other along many different shortest paths; tar-

get symmetry arises when one moving agent repeatedly collides with another stopped agent

at its target vertex along many different paths of increasing lengths; and corridor symmetry

arises when two agents moving in opposite directions repeatedly collide with each other in-

side a narrow passage along many different paths of increasing lengths. These symmetries

are common in practice and produce an exponential explosion in the collision-resolution

space. We develop reasoning techniques to detect each class of symmetries efficiently and

resolve them by specialized constraints that can eliminate, in a single step, all combinations

of colliding paths. We empirically show that the addition of symmetry reasoning can reduce

the number of nodes expanded by CBS by up to four orders of magnitude and improve its

scalability (in terms of the number of agents) by up to thirty times. We also show that the

combination of the symmetry reasoning and the WDG heuristic can further speed up CBS,

resulting in the best performing optimal MAPF algorithm CBSH2-RTC. More details are

given in Chapter 4.

3. We use an online learning framework to learn one-step errors of the hand-crafted heuristics

used in ECBS [16], a bounded-suboptimal variant of CBS, and compute a learned, well-

informed, but not necessarily admissible heuristic based on the learned errors to help ECBS

focus on promising search directions. ECBS uses focal search [134] to determine which

node to expand next. Focal search uses an admissible heuristic for bounding the solution

cost and another heuristic for determining which nodes are closer to goal nodes. It can be

11

hindered when these heuristics are negatively correlated. We overcome this issue by us-

ing online learning to inadmissibly estimate the cost of the solution under each CBS node

and Explicit Estimation Search (EES) [174], an improved variant of focal search, to choose

which node to expand next. While ECBS uses focal search that commits all the search efforts

to finding solutions, we use EES that cleverly trades off the effort of finding solutions and

proving bounded suboptimality. We also investigate recent improvements in CBS and adapt

them to our proposed version of bounded-suboptimal CBS, including the admissible heuris-

tics and the symmetry reasoning techniques that we developed for CBS. We find that all

three techniques, namely admissible heuristics, symmetry reasoning, and learned inadmissi-

ble heuristics with EES, can speed up ECBS. Their combination works the best and can solve

MAPF instances with up to a thousand agents within just one minute.1 The resulting algo-

rithm EECBS runs significantly faster than the state-of-the-art bounded-suboptimal MAPF

algorithms ECBS, BCP-7 [95], and eMDD-SAT [172] on a variety of MAPF instances. More

details are given in Chapter 5.

4. We build two MAPF frameworks based on Large Neighborhood Search (LNS) for solving

challenging MAPF problems. We first build an anytime MAPF framework MAPF-LNS that

quickly finds an initial solution via an existing non-optimal MAPF algorithm and then sub-

sequently improves the solution to near-optimal as time progresses. Starting from an initial

solution, MAPF-LNS repeatedly selects subsets of agents and replans their paths to reduce

the overall solution cost. We then build a MAPF framework MAPF-LNS2 to find the initial

solution fast. Starting from an initial infeasible solution, MAPF-LNS2 repeatedly selects

subsets of agents and replans their paths to reduce the overall number of collisions. For both

MAPF-LNS and MAPF-LNS2, we develop three different methods for selecting subsets of

agents and use adaptive LNS [146] to determine which method to use at each LNS itera-

tion. Empirically, we compare MAPF-LNS to the state-of-the-art anytime MAPF algorithm

Anytime BCBS [47] and report significant gains in scalability (in terms of the number of

1The state-of-the-art optimal MAPF algorithms can handle no more than 200 agents [95].

12

agents), runtime to the first solution, and speed of improving solutions. We compare MAPF-

LNS2 to state-of-the-art non-optimal MAPF algorithms, including prioritized planning with

random restarts [157] and Parallel Push and Swap [149] as well as EECBS as proposed in

Chapter 5. MAPF-LNS2 solves 80% of the random-scenario instances with the largest num-

ber of agents from the MAPF benchmark suite with a runtime limit of just five minutes,

significantly outperforming these existing algorithms. More details are given in Chapter 6.

13

Chapter 2

Background

In this chapter, we first present a formal definition of MAPF in Section 2.1. We then review existing

algorithms for solving MAPF in Section 2.2. We finally provide a survey on CBS and its variants

in Section 2.3.

2.1 Definition of Multi-Agent Path Finding (MAPF)

MAPF is a broad family of problems with many variants [163]. In this dissertation, we use a classic

formulation that considers: (i) vertex and swapping conflicts, (ii) the “stay at target” assumption,

and (iii) the objective of minimizing the sum of (individual path) costs.

Definition 2.1 (Multi-Agent Path Finding). The Multi-Agent Path Finding (MAPF) problem takes

as input a graph (or, synonymously, map) G = (V,E) and a set of m agents A = {a1, . . . ,am}. Each

agent ai has a start vertex si ∈ V and a target vertex gi ∈ V . Time is discretized into timesteps.

At each timestep, every agent either moves to an adjacent vertex or waits at its current vertex.

Both types of actions have unit costs. A path pi for agent ai is a sequence of vertices which are

adjacent, i.e., (pi[t], pi[t+1])∈E, with pi[t] = pi[t+1]∈V indicating a wait action. The length (or,

synonymously, cost or travel time) of path pi is the number of constituent edges or actions, which

we measure as length(pi) = |pi|−1. Meanwhile, dist(x,y) indicates the distance from vertex x to

vertex y, i.e., the length of the shortest path from vertex x to vertex y. Each agent begins at its start

vertex si and must end at its target vertex gi. Agents arrive at their target vertices if they can wait

14

conflict-free until the arrival time of the last agent. Agents waiting at their target vertices without

leaving them again have zero costs. There are two types of conflicts: A vertex conflict ⟨ai,a j,v, t⟩

occurs when agents ai and a j attempt to occupy vertex v ∈ V at the same timestep t; and an edge

conflict ⟨ai,a j,u,v, t⟩ occurs when agents ai and a j attempt to traverse the same edge (u,v) ∈ E in

opposite directions at the same timestep t (or, more precisely, from timestep t−1 to timestep t). A

plan is a set of paths, one for each agent. A solution is a conflict-free plan. Our task is to find a

solution P = {pi | ai ∈ A} while minimizing its sum of costs ∑ai∈A length(pi).

MAPF is an idealized abstraction of multi-agent navigation problems in many real-world ap-

plications. Different applications have different practical constraints and challenges, and much

research has been done to bridge the gap. We list three examples below.

• Motion constraints. MAPF solutions are discretized both in time and space, while robots

need to navigate in continuous time and space satisfying their motion constraints, e.g., speed

and acceleration limits. This issue can be addressed by (1) adding a post-processing step

that transfers discrete MAPF solutions to robust, persistent, and executable commands for

robots [81, 84, 208], (2) modifying the single-agent pathfinding solver inside MAPF algo-

rithms to directly generate dynamically feasible trajectories for robots [49, 4, 37, 158, 197],

or (3) using MAPF solutions as heuristics to guide motion planners to generate dynamically

feasible trajectories for robots [100].

• Task assignment. Before solving a MAPF problem, one needs to assign target vertices to

robots. This issue can be addressed by (1) inserting task-assignment algorithms into MAPF

algorithms to solve task assignment and pathfinding simultaneously [117, 82, 78, 170, 215]

or (2) developing frameworks that interleave the execution of task-assignment algorithms

with that of MAPF algorithms [120, 115, 108].

• Uncertainty. When executing commands, the travel times of robots are usually non-

deterministic. This issue can be addressed by (1) modifying the cost and conflict-detection

15

functions of MAPF algorithms to generate MAPF solutions that minimize the conflict prob-

ability and/or the expected solution cost [185, 106, 11, 164, 10, 151, 135] or (2) using exe-

cution policies and fast replan mechanisms to execute MAPF solutions with robustness and

deadlock-freeness guarantees [34, 119, 50, 23].

Despite the various approaches for handling the various practical constraints, all these works

either directly use MAPF algorithms to generate MAPF solutions and then post-process them or

modify some parts of the MAPF algorithms to take the practical constraints into account. So,

developing efficient and effective MAPF algorithms is crucial for all of them. Therefore, although

we demonstrate the techniques only in the context of the simple, classic MAPF formulation, similar

ideas can be, or have already been, applied to more complicated, realistic MAPF formulations.

2.1.1 MAPF Instances Used in the Experiments in This Dissertation

In the examples and experiments of this dissertation, we always use four-neighbor grids as graphs.

In our experiments, the maps are from three sources:

• Map lak503d from the 2D pathfinding benchmarks1 [165] (used in Chapter 3);

• all 33 maps from the MAPF benchmarks2 [163] (used in Chapters 4 to 7); and

• empty and random maps that we generate, where empty maps are four-neighbor grids with

no blocked cells, and random maps are four-neighbor grids with randomly blocked cells

(both used in Chapter 3).

If the map is not from the MAPF benchmarks, we generate random start and target vertices for

the agents. Otherwise, we use the “random” scenarios from the MAPF benchmark, in which the

start and target vertices of the agents are also generated randomly. Given the number of agents m,

we always use the start and target vertices listed in the first m rows in each “random” scenario file.

1https://movingai.com/benchmarks/grids.html
2https://movingai.com/benchmarks/mapf.html

16

https://movingai.com/benchmarks/grids.html
https://movingai.com/benchmarks/mapf.html

In case the number of agents in the “random” scenarios is smaller than what we need, we generate

random start and target vertices for the agents.

The experimental setup (such as the computer, the MAPF instances, and the codebase) used

within each chapter is always the same. However, the experimental setup is slightly different in

different chapters. To allow us to compare the algorithms developed in different chapters, we

always bring the best variant of the algorithms from one chapter to the next and compare (and,

when possible, even combine) it with the new algorithms developed in the next chapter in its

empirical sections. Moreover, we also run all the best variants using with the same experimental

setup in Chapter 7.

We implemented all algorithms in C++. More details on the experimental setup can be found

in the empirical evaluation sections in each chapter.

2.2 Overview of MAPF Algorithms

In this section, we review representative optimal, bounded-suboptimal, and unbounded-suboptimal

MAPF algorithms. We show that the state-of-the-art optimal MAPF algorithms are either CBS

variants or deploy strategies similar to CBS. The bounded-suboptimal variants of CBS also repre-

sent the state-of-the-art with respect to bounded-suboptimal MAPF algorithms. So, the heuristics

and symmetry reasoning techniques that we develop to speed up CBS have the potential to speed

up a variety of state-of-the-art optimal and bounded-suboptimal MAPF algorithms. We also show

that unbounded-suboptimal MAPF algorithms suffer from either incompleteness or poor solution

quality, which our Large Neighborhood Search technique can overcome.

2.2.1 Optimal MAPF Algorithms

Optimal MAPF algorithms include search-based algorithms (that either search the joint-state space

or are variants of CBS that search the conflict-resolution space) and compilation-based algorithms

(that reduce MAPF to other well-studied combinatorial optimization problems, such as integer

17

linear programming problems, Boolean satisfiability problems, and constraint programming prob-

lems, and use off-the-shelf solvers to find optimal solutions for them).

2.2.1.1 Search-Based Algorithms

A* A straightforward way of solving MAPF optimally is to use A* in the joint-state space,

where the joint states are different ways of placing all m agents in m out of |V | vertices, one

agent per vertex, and the operators between joint states are non-conflicting combinations of ac-

tions that the agents can take. Since the size of the joint-state space grows exponentially with the

number of agents, numerous techniques have been developed to speed up A* for solving MAPF,

such as independence detection [161], operator decomposition [161], partial expansion [71],

and sub-dimensional expansion [184]. Their different combinations result in representative A*-

based MAPF algorithms, such as OD [161], OD+ID [161], EPEA* [71], M* [184], rM* [184],

ODrM* [63], and EPERM* [16].

ICTS Increasing Cost Tree Search (ICTS) [152] is a two-level optimal MAPF algorithm that

is conceptually different from A* but still searches the joint-state space. Its high level searches

the increasing cost tree, where each node corresponds to a set of costs, one for each agent, and a

child node differs from its parent node by increasing the cost of one of the agents by one. When

expanding a node, its low level searches the joint-state space to determine whether there exists a

MAPF solution such that the cost of the path for each agent is equal to the corresponding cost in the

node. A number of pruning techniques have been developed to speed up the low-level search [152].

CBS Conflict-Based Search (CBS) [153] is a two-level optimal MAPF algorithm that resolves

conflicts by adding constraints on the high level and computing paths consistent with those con-

straints on the low level. Its central idea is to plan paths for each agent independently by ignoring

other agents and then resolve conflicts by branching. More details on CBS are described in Sec-

tion 2.3.

18

Summary Empirically, in terms of runtimes, although many of the A* and ICTS variants are

competitive with (vanilla) CBS [61], they are worse than some advanced variants of CBS [104, 90].

This is not surprising because, as the number of agents and the congestion level increase, the

effectiveness of the speedup techniques mentioned in the A* and ICTS paragraphs is limited. Thus

they all suffer from the exponential explosion of the joint-state space.

2.2.1.2 Compilation-Based Algorithms

ILP MAPF can be encoded as an integer multi-commodity flow problem [206] and then solved

by Integer Linear Programming (ILP) solvers. Such methods are competitive with and sometimes

even outperform search-based optimal MAPF algorithms on small maps. However, they do not

scale well on large maps because the ILP encoding requires a Boolean variable for each agent

being at each vertex at each timestep. Branch-and-Cut-and-Price (BCP) [96, 95, 97] is a more

efficient ILP-based optimal MAPF algorithm based on branch-and-price and one of the current

state-of-the-art optimal MAPF algorithms. Like CBS, BCP is a two-level algorithm whose low

level uses search algorithms to solve single-agent pathfinding problems and whose high level uses

ILP to assign paths to agents and resolve conflicts.

SAT MAPF can also be encoded as a Boolean satisfiability problem (SAT) [171]. Like the basic

ILP encoding, the basic SAT encoding requires a Boolean variable for each agent being at each

vertex at each timestep, and thus its efficiency drops as the size of the map grows. SMT-CBS [167]

is a more efficient SAT-based algorithm based on satisfiability modulo theories. Like CBS, SMT-

CBS ignores all conflicts initially and adds conflict-resolution constraints only when necessary.

CP Like the basic ILP- and SAT-based MAPF solvers,one can also directly encode MAPF as a

constraint satisfaction problem and then solve it by an off-the-shelf Constraint Programming (CP)

solver [148, 17]. But, again, there is a more efficient CP-based algorithm, called lazy CBS [67],

that uses the CBS framework. It uses the same high-level search tree as CBS but traverses it using

19

Joint-state space Conflict-resolution space

Search-based algorithms
OD+ID [161], ICTS [152], CBS [153], ICBS [28],

EPEA* [71], M* [184] MA-CBS [153]
ILP-based algorithms ILP [206] BCP [96, 95]
SAT-based algorithms SAT-MDD [171] SMT-CBS [167]
CP-based algorithms CSP [148], SM-OPT [17] Lazy CBS [67]

ASP-based algorithms ASP [58, 130, 68, 72] -

Table 2.1: Summary of optimal MAPF algorithms.

iterative deepening depth-first search with lazy clause generation instead of best-first search. Lazy

CBS is also one of the state-of-the-art optimal MAPF algorithms.

Summary Although the formulations of different compilation-based optimal MAPF algorithms

are different, the ones based on the direct encoding of the joint-state space (i.e., one variable per

agent per vertex per timestep) do not scale to large maps. The leading compilation-based optimal

MAPF algorithms, although deploying different techniques from different disciplines, all reason

about the conflict-resolution space, like CBS.3 A summary of optimal MAPF algorithms is shown

in Table 2.1.

2.2.2 Bounded-Suboptimal MAPF Algorithms

Bounded-suboptimal MAPF algorithms trade off solution quality and runtime by finding a solution

whose cost is at most w times the optimal cost, where w is a user-specified suboptimality factor. In

the current literature, bounded-suboptimal MAPF algorithms are always variants of optimal MAPF

algorithms. Examples include

• the A* variants weighted OD [16], weighted EPEA* [16], inflated M* [184], and inflated

ODrM* [63],

• the ICTS variant suboptimal ICTS [2],

3In addition to ILP, SAT, and CP, MAPF can also be encoded as an Answer Set Programming (ASP) problem [58,
130, 68, 72]. However, the focus of most of these works is to build a general ASP model that can solve not only classic
MAPF but also many of its variants. There does not exist any ASP-based optimal MAPF algorithm that reasons about
the conflict-resolution space.

20

• the CBS variants Weighted CBS (WCBS) [16], Bounded CBS (BCBS) [16], and Enhanced

CBS (ECBS) [16], and

• the SAT variants eMDD-SAT [172] and eSMT-CBS [169].

Although bounded-suboptimal MAPF algorithms are not as well explored as optimal MAPF al-

gorithms, similar performance differences are observed, i.e., the current state-of-the-art bounded-

suboptimal MAPF algorithms are CBS variants or employ ideas similar to CBS.

2.2.3 Unbounded-Suboptimal MAPF Algorithms

Unbounded-suboptimal MAPF algorithms include variants of bounded-suboptimal algorithms

with infinite suboptimality factors (such as GCBS [16] and uMDD-SAT [169]), prioritized al-

gorithms, and rule-based algorithms. We provide additional details on prioritized and rule-based

algorithms in the following.

Prioritized Algorithms Prioritized algorithms (or, sometimes, people call them prioritized plan-

ning) [59] plan conflict-free paths based on a priority ordering of the agents. They plan the path

for each agent individually in the order from high priority to low priority while avoiding conflicts

with the (already-planned) paths of higher-priority agents. Priorities can be pre-assigned in many

ways [59, 195, 179, 191, 191, 198, 213] or determined on the fly via hill climbing [22] or systematic

search [180, 123]. Agents can also exchange priorities for different path segments [157]. Although

prioritized algorithms can scale to MAPF instances with large numbers of agents on large maps,

they do not provide completeness or solution quality guarantees and thus can find costly solutions

or fail to find any solutions for MAPF instances with high agent density. In this dissertation, we

use PP to represent prioritized planning with a random priority ordering. PPR describes prioritized

planning with random restarts, that repeatedly runs PP until a MAPF solution is found.

Rule-Based Algorithms Rule-based MAPF algorithms use pre-determined movement rules to

coordinate agents, and many of them guarantee to find solutions in polynomial time under some

21

(weak) assumptions. For example, the algorithms in [13, 124] guarantee to find solutions in linear

time for MAPF instances on trees. MAPP [193] guarantees to find solutions in polynomial time for

“slidable” MAPF instances on grids. BIBOX [166] guarantees to find solutions in polynomial time

for MAPF instances on bi-connected graphs with at least two more vertices than agents. Push-and-

Swap [116] and Parallel-Push-and-Swap [149] guarantee to find solutions in polynomial time for

MAPF instances on general graphs with at least two more vertices than agents. PIBT [132] and

winPIBT [133] guarantee to find solutions in polynomial time for MAPF instances on bi-connected

graphs if agents are allowed to leave their target vertices after completing their paths. Although

no existing rule-based MAPF algorithms guarantee to find bounded-suboptimal solutions, some

recent ones, such as Partition-and-Flow [204] and Walk-Stop-Count-and-Swap [190], guarantee to

find solutions for MAPF instances on grids whose suboptimality (= the solution cost divided by the

optimal cost) does not increase as the instance size increases, i.e., the solutions are provably O(1)-

suboptimal, for some optimization criteria. In general, although rule-based MAPF algorithms run

in polynomial time and can scale to very challenging instances, their solution quality is usually

substantially worse than that of other types of MAPF algorithms. In this dissertation, PPS stands

for Parallel-Push-and-Swap and represents the class of rule-based MAPF algorithms since it is one

of the best performing rule-based MAPF algorithms empirically.

2.3 Overview of Conflict-Based Search (CBS) and Its Variants

We now introduce CBS in detail and present its improvement techniques and variants for both

classic and generalized MAPF problems.

2.3.1 Vanilla CBS

Conflict-Based Search (CBS) [153] is a two-level search algorithm for solving MAPF optimally.

On the low level, CBS invokes space-time A* [157] (i.e., A* that searches the space-time space,

whose states are vertex-timestep pairs) to find a shortest path for a single agent that satisfies the

22

constraints added by the high level, breaking ties in favor of the path that has the fewest conflicts

with the (already planned) paths of the other agents. A constraint is a space-time restriction in-

troduced by the high level to resolve conflicts. Specifically, a vertex constraint ⟨ai,v, t⟩ prohibits

agent ai from being at vertex v ∈V at timestep t. Similarly, an edge constraint ⟨ai,u,v, t⟩ prohibits

agent ai from traversing edge (u,v) ∈ E from vertex u to vertex v at timestep t (or, more precisely,

from timestep t−1 to timestep t).

On the high level, CBS performs a best-first search on a binary constraint tree (CT). Each CT

node N contains a set of constraints N.constraints and a plan N.plan, which is a set of short-

est paths, one N.plan[ai] for each agent ai ∈ A, that satisfy the constraints in N.constraints but

are not necessarily conflict-free. The root CT node contains an empty set of constraints. The

cost of a CT node N is defined as the sum of costs of the paths in N.plan, i.e., cost(N) =

∑ai∈A length(N.plan[ai]). CBS always expands the CT node with the smallest cost, breaking ties

in favor of the CT node that has the fewest conflicts in its plan, and terminates when the plan of

the CT node chosen for expansion is conflict-free and thus corresponds to an optimal solution.

When expanding a CT node, CBS checks for conflicts in its plan. It chooses one of the conflicts

(by default, arbitrarily) and resolves it by branching, i.e., by splitting the CT node into two child

CT nodes. In each child CT node, CBS adds a constraint to prohibit one agent from the conflict

from using the conflicting vertex or edge at the conflicting timestep. The path of this agent does

not satisfy the new constraint and is replanned by the low-level search. All other paths remain

unchanged. If the low-level search cannot find any path, then there does not exist any solution that

satisfies the constraints of this child CT node, and CBS thus prune the node.

Algorithm 2.1 presents the pseudo-code of CBS. On Line 10, if the conflict is a vertex conflict

⟨ai,a j,v, t⟩, then the constraints are ⟨ai,v, t⟩ and ⟨a j,v, t⟩; otherwise, i.e., the conflict is an edge

conflict ⟨ai,a j,v,u, t⟩, then the constraints are ⟨ai,v,u, t⟩ and ⟨a j,u,v, t⟩.

Theorem 2.1. CBS is guaranteed to terminate with an optimal solution for a given MAPF instance

if one exists.

23

Algorithm 2.1: CBS for solving MAPF optimally.
Input: MAPF instance (G,A)

1 Generate root CT node R with an empty set of constraints;
2 for ai ∈ A do R.plan[ai]← LOWLEVELSEARCH(ai,G,R);
3 R.conflicts← all conflicts in R.plan;
4 OPEN←{R};
5 while OPEN ̸= /0 do
6 N← argminN∈OPEN cost(N); // Break ties by CT nodes with fewer conflicts
7 OPEN← OPEN \{N};
8 if N.conflicts = /0 then return N.plan;
9 conflict← a conflict in N.conflicts;

10 Generate the two constraints constraint1 and constraint2 for resolving conflict;
11 for i = 1,2 do
12 N′← a copy of N;
13 N′.constraints← N.constraints∪ constrainti;
14 a j← the agent on the agent on which constrainti is imposed;
15 N′.plan[a j]← LOWLEVELSEARCH(a j,G,N′);
16 if N′.plan[a j] does not exist then continue;
17 N′.conflicts← all conflicts in N′.plan;
18 OPEN← OPEN∪{N′};

19 return “No Solution”;

Proof Sketch. CBS guarantees its completeness by exploring both ways of resolving every conflict.

In other words, when CBS expands a CT node, any solution that satisfies the constraints of the CT

node must satisfy the constraints of at least one of its child CT nodes. So, branching excludes only

plans with conflicts. CBS guarantees optimality by performing best-first searches on both its high

and low levels. Please refer to [153] for a detailed proof.

In this dissertation, the completeness of CBS means that CBS is guaranteed to terminate with

a solution for a given MAPF instance if one exists. It does not mean that CBS is guaranteed to

terminate and return failure if no solution exists. In fact, if a given MAPF instance is unsolvable,

CBS may not terminate. However, there exist linear-time algorithms, such as [207], to determine

the solvability of MAPF instances. So, if solvability is an issue, one can run such an algorithm

before CBS.

24

2.3.2 CBS Improvements

Researchers have proposed many techniques in the past few years to improve CBS, such as disjoint

splitting [103], merge and restart [29], and iterative deepening [30], and temporal jump point

search [85]. We discuss two such techniques in detail below, namely prioritizing conflicts and

bypassing conflicts, as they will be used in Chapters 3 to 5.

2.3.2.1 Prioritizing Conflicts

Prioritizing conflicts [29] determines which conflict to resolve first. It classifies conflicts into

three types, and, here, we provide a generalized definition that applies to not only vertex and edge

conflicts but also the symmetric conflicts that will be introduced in Chapter 3.

Definition 2.2 (Cardinal, Semi-Cardinal, and Non-Cardinal Conflicts). A conflict is cardinal iff

replanning for any of the two agents involved in the conflict (with the corresponding constraint)

increases the sum of costs. A conflict is semi-cardinal iff replanning for one agent involved in the

conflict increases the sum of costs while replanning for the other agent does not. Finally, a conflict

is non-cardinal iff replanning for any of the two agents involved in the conflict does not increase

the sum of costs.

We can significantly improve the efficiency of CBS by letting it resolve cardinal conflicts first,

then semi-cardinal conflicts, and finally non-cardinal conflicts because generating child CT nodes

with larger costs first can improve the lower bound of the CT, i.e., the minimum cost of the leaf CT

nodes, faster and thus produce smaller CTs (since an optimal solution can be found only after the

lower bound of the CT is equal to the optimal cost). We refer to CBS with the conflict prioritization

technique as Improved CBS (ICBS).

ICBS builds MDDs to classify conflicts.

Definition 2.3 (MDD). A Multi-Valued Decision Diagram (MDD) [152] MDDi of agent ai at a

CT node is a directed acyclic graph that consists of all shortest paths of agent ai that satisfy the

25

Figure 2.1: Example of using MDDs to identify cardinal and non-cardinal conflicts. We omit the
timesteps of the MDD nodes in the right figure.

constraints of the CT node. The MDD nodes at depth t in MDDi correspond to all vertices at

timestep t in these paths.

Definition 2.4 (Singleton). If MDDi has only one MDD node (v, t) at depth t, then we call this

MDD node a singleton, and all shortest paths of agent ai are at vertex v at timestep t.

So, a vertex conflict ⟨ai,a j,v, t⟩ is cardinal iff the MDDs of both agents have singletons at depth

t, and an edge conflict ⟨ai,a j,u,v, t⟩ is cardinal iff the MDDs of both agents have singletons at both

depths t−1 and t. Semi-/non-cardinal vertex/edge conflicts can be identified analogously.

Example 2.1. Consider the MAPF instance shown in Figure 2.1. Agents a1 and a2 have two vertex

conflicts, one at vertex B2 at timestep 1 and the other one at vertex C3 at timestep 3. According to

the MDD of each agent, MDD node (B2, 1) is not a singleton for either MDD, while MDD node

(C3, 3) is one for both MDDs. As a result, the conflict at vertex B2 at timestep 1 is non-cardinal,

while the conflict at vertex C3 at timestep 3 is cardinal.

2.3.2.2 Bypassing Conflicts

Bypassing conflicts [27] is a conflict-resolution technique that, instead of splitting a CT node,

modifies the paths of the agents involved in the chosen conflict in the CT node. When expanding a

CT node N and generating its child CT nodes, if the cost of a child CT node N′ is equal to cost(N)

and the number of conflicts in N′.plan is smaller than that in N.plan, then CBS replaces the paths

26

in N with the paths in N′ and discards all generated child CT nodes. Otherwise, it splits CT node

N as before. Bypassing conflicts often produces smaller CTs and decreases the runtime of CBS.

2.3.3 Suboptimal Variants of CBS

Barer et al. [16] extend CBS to its bounded-suboptimal variants. The bounded suboptimality is

achieved by using focal search [134], instead of best-first search, on both the high and low levels

of CBS. A focal search maintains a FOCAL list that consists of a subset of the nodes in the OPEN

list, namely those nodes whose costs are within a constant factor of the lowest cost of any node

in OPEN. The focal search always expands a node with the best user-provided heuristic value

in FOCAL. Barer et al. [16] use the number of conflicts as heuristics in both the high- and low-

level focal searches. They propose two bounded-suboptimal variants of CBS, namely Bounded

CBS (BCBS), that takes two suboptimality factors as input parameters, one used for its high-level

focal search and one used for its low-level focal search, and Enhanced CBS (ECBS), that takes

one suboptimality factor as input parameter, used for both its high- and low-level focal searches.

Empirically, the efficiency of ECBS dominates that of BCBS. ECBS runs substantially faster than

CBS and can be further sped up by techniques like node selection [86], merge and restarts [48, 35],

highways [46], and flex distribution [36]. More details of ECBS will be introduced in Section 5.1.

There are also some unbounded-suboptimal variants of CBS. Greedy CBS (GCBS) [16] uses

the number of conflicts, instead of the sum of costs/path cost, as the optimization objective in both

its high- and low-level best-first searches. Priority-Based Search (PBS) [123] combines CBS with

prioritized planning. Its high level is similar to the high level of CBS, except that the constraint

added to each child CT node is that one agent from the conflict has a higher priority than the

other. Its low level is similar to prioritized planning, i.e., it plans a shortest path for each agent

that is consistent with the partial priority ordering generated by the high level. PBS empirically

outperforms many variants of prioritized planning solvers in terms of success rates and solution

quality, despite being still incomplete and suboptimal in theory.

27

2.3.4 Variants of CBS for Generalized MAPF Problems

CBS is such a simple and flexible framework that it can be adapted to solving a large variety of

generalized MAPF problems. We roughly divide these problems into four categories.

• Generalized agent models: MAPF with agents of different shapes [177, 105, 9], MAPF with

agents of different priorities [131], and MAPF with payload transfer [118].

• Generalized task models: MAPF with temporally-constrained target vertices [122, 127, 210],

MAPF with target assignment [117, 82, 78, 170, 215], and MAPF with streams of target

vertices [189].

• Generalized navigation constraints: MAPF with formation control [121, 108, 143], MAPF

with transit networks [43], MAPF with non-unit/continuous/stochastic traversal time [119,

8, 5, 186, 10, 187, 151], and MAPF with kinematic constraints/motion planning [49, 4, 158,

93].

• Other generalized MAPF problems: MAPF with multiple objectives [144], MAPF with

meeting requirements [12, 73], MAPF with layout design [18], and explainable MAPF via

segmentation [92].

In addition to modifying CBS directly, some researchers design hierarchical frameworks for

generalized MAPF problems and use CBS as a sub-solver. Examples include MAPF with mo-

tion planning [83, 37], spatially-partitioned MAPF systems [209, 101], and MAPF for warehouse

applications [120, 115, 32, 113, 74, 88].

CBS and its variants can even be extended to solving problems that are not directly related to

MAPF, such as task assignment with time window constraints [42], pipe routing [19], and virtual

network embedding [214].

28

Chapter 3

Speeding up Optimal CBS via Admissible Heuristics

The best-first search of the high level of all existing CBS variants uses only the cost of a CT node as

its priority. (Recall that the cost of a CT node is the sum of costs of the paths in its plan.) This value

can be regarded as the g-value of the node. We want to add an admissible (i.e., non-overestimating)

h-value to its priority to make it more informed. We introduce three different admissible heuristics

for CBS by aggregating potential cost increases between pairs of agents:

• Cardinal conflict Graph (CG) heuristic, which makes use of information about whether re-

solving the current conflicts (i.e., the conflicts in the plan of the current CT node) increases

the sum of costs of the paths of the agents.

• Dependency Graph (DG) heuristic, which makes use of information about whether resolving

the future as well as current conflicts increases the sum of costs of the paths of the agents.

• Weighted Dependency Graph (WDG) heuristic, which makes use of information about how

much resolving the current and future conflicts increases the sum of costs of the paths of the

agents.

Among the three heuristics, CG has the smallest runtime overhead but also the smallest h-values,

while WDG has the largest runtime overhead but also the largest h-values. Overall, WDG results

in a better efficiency than DG in most cases, which in turn results in a better efficiency than CG in

most cases. The addition of admissible heuristics can reduce the number of expanded nodes and

the runtime of CBS (or, more precisely, ICBS) by up to a factor of fifty.

29

Figure 3.1: Example of a seven-agent MAPF instance.

This chapter closely follows [62, 102].

3.1 The CG Heuristic

Recall the definition of cardinal conflicts in Definition 2.2. If the plan of a CT node N contains one

or more cardinal conflicts, then an h-value of one is admissible for CT node N because the cost of

any of its descendants in the CT with a conflict-free plan is at least N.cost +1. The reason is that

the paths in their solutions cannot be shorter than the ones in the plan of CT node N since the same

and perhaps more constraints are imposed on the agents, and the length of the path of at least one

of the conflicting agents has to increase by at least one.

However, if the plan of a CT node contains x cardinal conflicts, then an h-value of x is not

necessarily admissible for the CT node because, for example, if both agents a1 and a2 have a

cardinal conflict with agent a3, then we might be able to resolve both cardinal conflicts by finding

a new path for agent a3 that is only one unit longer than its shortest path. We therefore need to

reason about the dependencies among the cardinal conflicts to calculate admissible h-values. We

achieve this by aggregating cardinal conflicts via cardinal conflict graphs.

3.1.1 Cardinal Conflict Graphs

We use a Cardinal Conflict Graph GC = (VC,EC) of CT node N. Each vertex vi ∈VC corresponds

to an agent ai that is involved in at least one cardinal conflict. Each edge e = (vi,v j)∈ EC expresses

that there is at least one cardinal conflict between agents ai and a j. Figure 3.2 shows the cardinal

30

Figure 3.2: Cardinal conflict graph of the root CT node for the MAPF instance in Figure 3.1.

conflict graph of the root CT node for the MAPF instance in Figure 3.1. Similar conflict graphs

have been used in the context of heuristic search for sliding tile puzzles [60] and cost-optimal

planning [139].

The path length of at least one agent of each conflicting agent pair in a cardinal conflict has to

increase by at least one. Thus, a Minimum Vertex Cover (MVC) (i.e., a set of vertices such that

each edge is incident on at least one vertex in the set) of the cardinal conflict graph represents

a minimum set of agents that takes non-shortest paths to resolve all cardinal conflicts. In other

words, the size of a MVC of the cardinal conflict graph of CT node N is an admissible h-value.

We refer to this heuristic as the CG heuristic hCG. For example, the size of the MVC of the graph

in Figure 3.2 is 3. That is, hCG = 3 is an admissible h-value for the root CT node of CBS for the

MAPF instance in Figure 3.1. We refer to ICBS with the CG heuristic as CBSH, which will be

used as a sub-solver in Section 3.3.3 and a baseline optimal MAPF algorithm in Chapter 4.

Finding the MVC of a general graph is NP-hard [200]. However, we can update the MVC

incrementally by utilizing some properties of the high-level search of CBS.

Property 3.1. The size of the MVC of the cardinal conflict graph of a CT node N is either one unit

larger than, the same as, or one unit smaller than that of its parent CT node.

Proof. When CBS generates a CT node N, it replans the path of only one agent. Consequently,

only edges incident on the vertex corresponding to this agent can appear in or disappear from the

cardinal conflict graph. Let v be this vertex and V and V ′ be the MVC of the cardinal conflict

graph of CT node N and its parent CT node, respectively. V ′ ∪{v} is guaranteed to be a vertex

cover of the cardinal conflict graph of CT node N, which indicates that |V | ≤ |V ′|+1. Similarly,

31

V ∪{v} is guaranteed to be a vertex cover of the cardinal conflict graph of the parent CT node of

CT node N, which indicates that |V ′| ≤ |V |+1. Therefore, |V ′|−1≤ |V | ≤ |V ′|+1.

Property 3.1 can be exploited to calculate the h-value of CT node N with an algorithm that

determines in time O(2qn) whether a given graph with n vertices has a vertex cover of size q [55],

by executing it at most twice (namely for q = h− 1 and, if that is unsuccessful and h < m− 1,

also for q = h, where h is the h-value of the parent of CT node N). Recall that m is the number

of agents, so m− 1 is an upper bound on the h-values since the size of the MVC of the cardinal

conflict graph with at most m vertices is at most m−1.

Since the runtime of the above algorithm grows exponentially in the size of the MVC, we

propose a greedy method for calculating a weaker admissible heuristic based on cardinal conflict

graphs in polynomial time. Disjoint cardinal conflicts are cardinal conflicts between disjoint pairs

of agents, i.e., pairs of agents that do not contain common agents. If the plan of a CT node N

contains x disjoint cardinal conflicts, then h = x is admissible for CT node N since the path length

of at least one agent of each agent pair has to increase by at least one. Thus, we can use the size

of a matching (i.e., a set of edges without common vertices) in the cardinal conflict graph of node

N as its admissible h-value. We find a maximal matching in linear time as follows: We repeatedly

choose an arbitrary edge (representing a cardinal conflict) in the conflict graph, increase the h-value

of CT node N by one and then delete all edges that are incident on both vertices of the chosen edge

from the conflict graph, until no edge remains. We refer to the resulting heuristic as the greedy

CG heuristic h′CG. For example, the size of a greedy matching on the graph in Figure 3.2 is 2.

That is, h′CG = 2 is an admissible h-value for the root CT node of CBS for the MAPF instance

in Figure 3.1. From the relationship between minimum vertex cover and maximal matching, we

know that h′CG ≤ hCG ≤ 2h′CG.

3.1.2 Constructing Cardinal Conflict Graphs

The construction of a cardinal conflict graph is straightforward. For every conflict in the plan of a

CT node N, we check whether it is cardinal by building the MDDs (defined in Definition 2.3) for

32

both conflicting agents. Since conflict prioritization (introduced in Section 2.3.2.1) also needs to

classify conflicts, building cardinal conflict graphs incurs almost no runtime overhead if we already

use the conflict-prioritization technique in CBS.

3.1.3 Properties of Cardinal Conflict Graphs

We have argued above that an h-value of 1 for one cardinal conflict is admissible. The following

theorem answers the question whether it is possible to find a larger h-value for a cardinal conflict.

The proof of this theorem is given in Appendix A.

Theorem 3.1. Suppose that CBS chooses to resolve a conflict between agents ai and a j at timestep

t at a CT node N and successfully generates two child CT nodes N1 (with an additional constraint

imposed on ai) and N2 (with an additional constraint imposed on a j). If the conflict occurs after one

of the agents, say ai, completes its path, i.e., t ≥ length(N.plan[ai]), then cost(N1) = cost(N)+ t+

1− length(N.plan[ai]) and cost(N2) ∈ {cost(N),cost(N)+1}. Otherwise (i.e., the conflict occurs

before both agents have completed their paths), cost(N1),cost(N2) ∈ {cost(N),cost(N)+1}.

Therefore, if both child CT nodes of CT node N are successfully generated (which always

happens in practice), a conflict can be regarded as an admissible h-value of at most 1. Then, the

CG heuristic is the best admissible heuristic for N that can be obtained from the cardinal conflict

graph. So, new directions need to be explored if we want to obtain better heuristics.

3.2 The DG Heuristic

The CG heuristic considers cardinal conflicts only in N.plan. To improve on that, we also need

to consider conflicts in future plans, i.e., plans of the descendants of CT node N. For example,

in Figure 3.1, if CBS resolves the non-cardinal conflict ⟨a3,a4,G2,1⟩ by adding a constraint for

one of the agents, a new conflict will occur no matter which new shortest path CBS picks. In fact,

any two shortest paths of agents a3 and a4 conflict in one of the four vertices {G2, G3, H2, H3}.

Therefore, an h-value of 1 is admissible here. This is not captured by CG because the conflicts

33

Figure 3.3: Pairwise dependency graph of the root CT node for the MAPF instance in Figure 3.1.

are initially non-cardinal. Inspired by this example, we generalize the cardinal conflict graph to a

pairwise dependency graph, whose edges reflect that all pairs of shortest paths of the corresponding

two agents have conflicts.

3.2.1 Pairwise Dependency Graphs

In a pairwise dependency graph GD = (VD,ED) of CT node N, each agent ai induces a vertex

vi ∈VD. An edge (vi,v j) is in ED iff agents ai and a j are dependent, i.e., all pairs of their shortest

paths that satisfy the constraints in N.constraints have conflicts. Similarly to the cardinal conflict

graph, for each edge (vi,v j) ∈ ED, the path length of at least one agent, ai or a j, has to increase by

at least 1 in any solution that can be found under CT node N. Hence, the size of the MVC of GD

is an admissible h-value for CT node N. We refer to this heuristic as the DG heuristic hDG. We

use the same algorithm as before to determine an MVC. Its complexity is O(2q|VD|), where q is

the size of the MVC. Figure 3.3 shows the pairwise dependency graph of the root CT node for the

MAPF instance in Figure 3.1, and thus hDG = 4.

Property 3.2. The DG heuristic strictly dominates the CG heuristic.

Proof. This is true because the cardinal conflict graph is a sub-graph of the pairwise dependency

graph.

Like for the CG heuristic, we can also calculate a lower bound on the DG heuristic using the

greedy matching method, resulting in the greedy DG heuristic h′DG.

34

3.2.2 Constructing Pairwise Dependency Graphs

To construct the pairwise dependency graph GD of CT node N, we analyze the dependencies

between all pairs of agents. We first classify all pairs of agents into three categories based on their

conflicts in N.plan:

(1) The two agents do not have any conflicts.

(2) They have at least one cardinal conflict.

(3) They have only semi-cardinal or non-cardinal conflicts.

If agents ai and a j are in Category (1), then they are independent as their paths in N.plan are

conflict-free. Hence, (vi,v j) /∈ED. If they are in Category (2), by the definition of cardinal conflicts

in Definition 2.2, then they are surely dependent. Hence, (vi,v j) ∈ ED. If they are in Category (3),

then we do not know whether they are dependent or independent. To provide an answer, we try

to merge the MDDs of the two agents into a joint MDD using the method described in [152].

The two agents are dependent iff their joint MDD is empty. Details of the merging are given in

Section 3.2.3.

Since each CT node has an additional constraint imposed on only one agent, we only need to

look at the dependencies between this agent and all other agents and can copy the edges for the

other pairs of agents from the pairwise dependency graph of the parent CT node. Of course, at the

root CT node, we still need to look at the dependencies for all pairs of agents. CG already builds

MDDs to classify conflicts. So, for DG, we get these MDDs for free. The only runtime overhead

of DG over CG comes from merging MDDs.

3.2.3 Merging MDDs

The joint MDD of the MDDs of agents ai and a j at CT node N consists of all combinations

of conflict-free shortest paths of agents ai and a j that satisfy the constraints in N.constraints.

Nodes at depth t of the joint MDD correspond to all joint states (where a joint state is a tu-

ple of two vertices and a timestep) where agents ai and a j can be at timestep t along such a

35

Figure 3.4: MDDs and joint MDD for agents a3 and a4 in the MAPF instance in Figure 3.1. We
omit the timesteps of the MDD nodes in the figure.

pair of shortest paths without conflicts. If length(N.plan[ai]) ̸= length(N.plan[a j]), a path of

|length(N.plan[ai])− length(N.plan[a j])| dummy target vertices is added to the sink node of the

shallower MDD (representing the agent waiting at its target vertex) so that both MDDs have the

same depth. The joint MDD is built level by level. The merging procedure starts at the joint state

(si,s j) at level 0. Suppose that we already have a joint state (vi,v j) at level t and want to add its

child nodes at level t +1. Each pair in the cross product of the child nodes of vertex vi at level t in

the MDD of agent ai and the child nodes of vertex v j at level t in the MDD of agent a j should be

examined (i.e., to check if it leads to vertex or edge conflicts). Only conflict-free pairs are added.

Agents ai and a j are dependent iff their joint MDD is empty, i.e., does not contain state (gi,g j) at

level max{length(N.plan[ai]), length(N.plan[a j])}.

Example 3.1. Figure 3.4 shows an example of merging MDDs. The joint MDD of agents a3 and

a4 starts at (F2, G1) at level 0. At level 1, we try all combinations of vertices at level 1 in both

MDDs and add them to the joint MDD except for the pair (G2, G2), which represents a conflict

state. We repeat this procedure at levels 2 and 3 until all branches of the joint MDD reach conflict

states and cannot be further developed. Therefore, in this example, the joint MDD is empty, and

thus agents a3 and a4 are dependent.

36

Figure 3.5: Weighted pairwise dependency graph of the root CT node for the MAPF instance in
Figure 3.1.

3.3 The WDG Heuristic

For a CT node N and two agents ai and a j, we refer to the difference between the minimum sum

of costs of their conflict-free paths that satisfy N.constraints and the sum of costs of their paths in

N.plan as ∆i j (∆i j ≥ 0). Agents ai and a j are dependent iff ∆i j > 0.

Although GD captures the information whether ∆i j > 0 for any pair of agents ai and a j, it does

not capture the information how large the value of ∆i j is. When ∆i j > 0, the DG heuristic uses

only 1 (a lower bound on ∆i j) as an admissible h-value. However, ∆i j can be larger than 1. For

instance, ∆56 = 4 in Figure 3.1 because one of the agents must wait for 4 timesteps at its start vertex.

Therefore, we introduce the WDG heuristic, which captures not only the pairwise dependencies

between agents but also the extra cost that each pair of dependent agents will contribute to the total

cost.

3.3.1 Weighted Pairwise Dependency Graphs

We generalize the pairwise dependency graph to a weighted pairwise dependency graph GWD =

(VD,ED,WD) for CT node N, where WD represents the weights of the edges. It uses the same

vertices and edges as pairwise dependency graph GD. The weight on each edge (vi,v j) ∈ ED

equals ∆i j. Here, ∆i j ≥ 1 since agents ai and a j are dependent. We also generalize the MVC to an

edge-weighted minimum vertex cover.

37

Definition 3.1 (Edge-Weighted Minimum Vertex Cover). Edge-Weighted Minimum Vertex Cover

(EWMVC) is an assignment of non-negative integers {xi ∈ N | vi ∈ VD}, one to each vertex, that

minimizes their sum ∑vi∈VD xi subject to the constraints that xi + x j ≥ ∆i j for all (vi,v j) ∈ ED.

xi can be interpreted as the increase in the length of the path of agent ai. The sum ∑vi∈VD xi of

the EWMVC of GWD is an admissible h-value for CT node N since, for each edge (vi,v j) ∈ ED,

the sum of costs of the paths of agents ai and a j has to increase by at least ∆i j. We refer to this

heuristic as the WDG heuristic hWDG.

Property 3.3. The WDG heuristic strictly dominates the DG heuristic.

Proof. This is true because the value of the WDG heuristic is equal to the sum ∑vi∈VD xi of the

EWMVC of GWD when the weights of all edges are one.

Figure 3.5 shows the weighted pairwise dependency graph of the root CT node of CBS for the

MAPF instance in Figure 3.1. An example EWMVC for it is x1 = x3 = x5 = 1, x2 = x4 = x7 = 0,

and x6 = 4, which results in hWDG = 7. We refer to ICBS with the WDG heuristic as CBSH2,

which will be used as a baseline optimal MAPF algorithm in Chapter 4.

Calculating a EWMVC is NP-hard since calculating a MVC is NP-hard and a special case of

calculating EWMVC when the weights of all edges are one. To calculate a EWMVC, we partition

GWD into its connected components and calculate the EWMVC for each component with a branch-

and-bound algorithm that branches on the possible values of each xi in the component and prunes

nodes using the cost of the best result so far. The EWMVC of GWD is the union of the EWMVCs

of all components. Similar dependency graphs and EWMVCs for heuristic search have been used

in the context of sliding tile puzzles [60] and cost-optimal planning [138].

As for the CG and DG heuristics, we can also calculate a lower bound on the WDG heuristic

using a greedy weighted matching method, resulting in the greedy WDG heuristic h′WDG. We find

a greedy weighted matching in near-linear time as follows: We repeatedly choose the edge with

the largest edge weight in GWD, increase the h-value of node N by the weight of the chosen edge,

38

and then delete all edges from GWD that are incident on both vertices of the chosen edge, until no

edge remains.

Property 3.4. The WDG heuristic strictly dominates the greedy WDG heuristic.

See Appendix B for the proof. From Property 3.4 and the fact that the WDG heuristic is

admissible, we know that the greedy WDG heuristic is also admissible. For example, the size of a

greedy weighted matching for the graph in Figure 3.5 is 4+1+1 = 6. That is, h′WDG = 6 can be

used as an admissible h-value for the root CT node of CBS for the MAPF instance in Figure 3.1.

3.3.2 Constructing Weighted Pairwise Dependency Graphs

We first construct the vertices and edges of GWD for CT node N using the same method as in

Section 3.2.2. To calculate the weight ∆i j of every edge (vi,v j) ∈ ED, we then run an optimal

MAPF algorithm to find the minimum sum of costs of the conflict-free paths for agents ai and a j

that satisfy N.constraints (ignoring the other agents). Here, the pathfinding problem is a two-agent

MAPF problem with the constraints from N.constraints imposed on the two agents. Most optimal

MAPF algorithms can be adapted to satisfy these constraints.

Similar to Section 3.2.2, for each non-root CT node, we need to find the edges and calculate

the weights for only the agent that the new constraint is imposed on and can copy the rest of the

edges and their weights from the parent CT node.

3.3.3 The Two-Agent MAPF Problem

We tried three search-based optimal MAPF algorithms for solving the two-agent MAPF problem

in our experiments, namely CBSH, EPEA* [71] (i.e., A* with partial expansion introduced in Sec-

tion 2.2.1.1), and ICTS [152] (introduced in Section 2.2.1.1). CBSH turned out to be significantly

faster than the other two MAPF algorithms.

One enhancement that we use in CBSH for the two-agent MAPF problem is that we set the h-

value of the root CT node to 1. This h-value is admissible because ∆i j is at least 1. It can help CBSH

39

to resolve cardinal rectangle conflicts or other symmetric conflicts more efficiently. We further use

pathmax to ensure that the f -values of the CT nodes along a branch are non-decreasing. Recall

the cardinal rectangle conflict discussed in Example 1.2. The number of CT nodes expanded by

CBS grows exponentially with the size of the yellow rectangular area. CBSH performs slightly

better, but its number of expanded CT nodes still grows exponentially (see Figure 4.1b) because

most of the conflicts in the CT nodes are not cardinal. In such two-agent instances, the cost C∗

of the optimal solution is always one unit larger than the cost of the root CT node. Since CBSH

searches in a best-first manner, it has to expand all CT nodes of f -value C∗− 1, even if it has

already generated a CT node of f -value C∗ with an optimal solution. However, if the h-value of

the root CT node is 1, all CT nodes generated by CBSH have an f -value of C∗. So, CBSH with

a good tie-breaking rule (such as preferring the latest generated CT node) can quickly generate a

CT node with an optimal solution and return this solution immediately. In our experiments, this

speeds up CBSH for the two-agent MAPF problem by up to three orders of magnitude.

3.4 Runtime Reduction Techniques

Computing the CG, DG, and WDG heuristics incurs runtime overhead per CT node. In this section,

we introduce a number of simple techniques to reduce the runtime overhead for the calculation of

the heuristics.

3.4.1 Lazy Computation of Heuristics

The high-level search of CBS with admissible heuristics resembles an A* search, so techniques

for speeding up A* can be applied here. Lazy A* [178] improves A* by evaluating expensive

heuristics lazily. Instead of computing the expensive h-value h2(N) immediately after generating

a new CT node N, lazy A* first computes a cheaper but less informed h-value h1(N) (or even uses

zero) and inserts CT node N into OPEN. Only when lazy A* receives CT node N from OPEN,

it computes h2(N) for CT node N and re-inserts it into OPEN. Empirically, the runtime overhead

40

of the operations on OPEN (e.g., inserting or popping a CT node) is negligible for CBS with

admissible heuristics.

Here, for simplicity, we view both the cardinal conflict graph and the pairwise dependency

graph as an edge-weighted pairwise dependency graph all of whose edges have weight one. We

use GWD(N) = (VD(N),ED(N),WD(N)) to denote the edge-weighted pairwise dependency graph

of CT node N and EWMVC(GWD(N)) to denote the sum ∑vi∈VD(N)
xi of the EWMVC of graph

GWD(N). Each of the CG, DG, or WDG heuristics is treated as h2, and we define h1 for a child CT

node N′ of CT node N as

h1(N′) = max{h(N)− max
j:(i, j)∈ED(N)

∆i j,cost(N)+h(N)− cost(N′),0}, (3.1)

where i is the index of the agent whose path gets replanned at CT node N′. The first term h(N)−

max j:(i, j)∈ED(N)∆i j is a lower bound on EWMVC(G′WD), where

G′WD = (VD(N)\{i},{(u,v) ∈ ED(N) | u ̸= i∧ v ̸= i},{w(u,v) ∈WD(N) | u ̸= i∧ v ̸= i}), (3.2)

and thus a lower bound on EWMVC(GWD(N′)) because

G′WD = (VD(N′)\{i},{(u,v) ∈ ED(N′) | u ̸= i∧ v ̸= i},{w(u,v) ∈WD(N′) | u ̸= i∧ v ̸= i}). (3.3)

Since EWMVC(GWD(N′)) is our admissible WDG heuristic of CT node N′, the first term is ad-

missible. The second term cost(N) + h(N)− cost(N′) is admissible because the f -value (i.e.,

cost(N)+ h(N)) is non-decreasing from CT node N to CT node N′ (known as the pathmax strat-

egy).

3.4.2 Memoization

Memoization is an optimization technique for speeding up algorithms by caching the results of

expensive function calls and returning the cached results when the same inputs occur again. Here,

41

we use memoization to store the results of merging the MDDs and solving the two-agent MAPF

problems. The inputs are the indices of two agents and the set of constraints imposed on them.

The output is the existence of the corresponding edge and, if it exists, its edge weight. Empirically,

both the memory overhead of caching and the runtime overhead of storing and retrieving the results

are negligible, and the cached results are used frequently. This is so because CBS often resolves

the same conflict in different branches, and many CT nodes thus have the same set of constraints

imposed on the same pair of agents.

We also use memoization for the MDDs of each agent, where the inputs are the index of the

agent and the set of constraints imposed on it, and the output is the MDD.

3.5 Empirical Evaluation

We experiment with ICBS (with the zero heuristic) and ICBS with the CG, DG, and WDG heuris-

tics on four-neighbor grids. All ICBS algorithms use the two improvements discussed in Sec-

tion 3.4, and the WDG heuristic uses the CBSH algorithm discussed in Section 3.3.3 to solve the

two-agent MAPF problem. We generate 50 instances with random start and target vertices for each

map and each number of agents. Our code is written in C++, and our experiments are conducted

on a 2.80 GHz Intel Core i7-7700 laptop with 8 GB RAM.

Empirically, since the cardinal conflict graph, the pairwise dependency graph, and the weighted

pairwise dependency graph are always small and sparse, the runtime overhead of solving the NP-

hard MVC and EWMVC problems are reasonable (as shown in Figure 3.6). A similar phenomenon

was reported in [60]. We therefore always use the CG, DG, and WDG heuristics instead of their

greedy versions.

42

Empty map Dense map 20 agents
Agents CG DG WDG Agents CG DG WDG Obs CG DG WDG

30 0.2 1.0 1.2 16 3.9 3.9 11.6 0 0.1 0.5 0.5
40 0.5 1.7 2.0 20 4.8 4.8 15.2 10 1.0 1.3 2.1
50 0.6 2.3 2.8 24 6.9 7.0 22.2 20 3.0 3.1 6.2

Table 3.1: Average h-values of the root CT node. “Obs” represents the percentage of cells that are
randomly blocked on a 20×20 grid.

(a) Empty map with 10, 20, 30, 40, 50, and 60 agents.(b) Dense map with 10, 15, 18, 20, 22, and 24 agents.

Figure 3.6: Average runtimes per expanded CT node on the empty and dense maps. We use 6
different numbers of agents for each map, resulting in 300 instances per map.

3.5.1 Small Maps

First, we test the algorithms on two 20×20 grids, namely an empty map, which is a 20×20 grid

with no blocked cells, and a dense map, which is a 20×20 grid with 30% randomly blocked cells.

We use a runtime limit of one minute for each algorithm on each instance.

h-values of the root CT node. Table 3.1 shows the h-values of the root CT node. On the empty

map, DG is much larger than CG while WDG is only slightly larger than DG because agents on

the empty map usually have many shortest paths, and thus ∆i j is 0 or 1 in most cases. However, on

the dense map, DG is only slightly larger than CG while WDG is much larger than both of them

because most conflicts are cardinal, and the map contains many narrow passages, which induce a

large ∆i j. The last four columns show the results for 20 agents on grids with increasing obstacle

densities to provide more details on the transition from empty grids to dense grids.

Runtime overhead of calculating the h-values. Figure 3.6 shows the breakdown of the runtimes

per CT node. The CBS runtimes (yellow) of the three algorithms are slightly different because the

43

(a) Empty map. (b) Dense map.

Figure 3.7: Success rates on the small maps.

m Instances ICBS CG DG WDG
Number of expanded CT nodes (×1000)

30 44 3.6 2.6 0.5 0.5
40 39 8.9 7.0 0.2 0.2
50 23 12.4 10.1 2.9 2.9

Runtime (s)
30 44 0.5 0.4 0.1 0.1
40 39 1.0 0.9 0.1 0.1
50 23 1.7 1.5 0.6 0.7

(a) Empty map.

m Instances ICBS CG DG WDG
Number of expanded CT nodes (×1000)

16 47 20.2 9.6 7.8 6.1
20 29 20.2 13.6 10.7 8.9
24 7 79.6 47.4 33.2 15.2

Runtime (s)
16 47 7.0 2.4 2.4 2.4
20 29 4.0 3.3 2.1 1.9
24 7 17.9 9.6 5.4 3.0

(b) Dense map.

Table 3.2: Average numbers of expanded CT nodes and average runtimes over instances solved by
all algorithms.

different heuristics cause CBS to expand different sets of CT nodes. The runtimes of constructing

GD and GWD (blue) are small due to the memoization technique, which saves more than 90% of the

edge and weight computation time. Although we use simple algorithms for solving the NP-hard

MVC and EWMVC problems, their runtimes (red) are also small due to the small sizes of GD and

GWD. The lazy computation of heuristics also contributes to the reduction in the runtime overhead

as the expensive heuristics are computed for only 65% of the generated CT nodes.

Overall performance. Figure 3.7 and Table 3.2 show the success rates (i.e., the percentages of

solved instances within the runtime limit), the average numbers of expanded CT nodes, and the

average runtimes of the algorithms. The numbers of expanded CT nodes are consistent with the

computed h-values of the root CT node. That is, larger h-values usually lead to smaller numbers

44

Figure 3.8: Success rates on the large map.

of expanded CT nodes. In terms of the success rates and runtimes, both DG and WDG outperform

CG. In particular, DG runs slightly faster than WDG on the empty map as it has a smaller runtime

overhead than WDG, while WDG runs much faster than DG on the dense map as it leads to a larger

CT node reduction than DG. The usefulness of CG heavily depends on the particular instance.

CG has almost the same efficiency as ICBS on the empty map where cardinal conflicts are rare.

Overall, WDG improves the success rate of ICBS by up to 2 times (e.g., for 60 agents on the empty

map). It also reduces the number of expanded CT nodes and the runtime of ICBS by up to 45 times

and 10 times (e.g., for 40 agents on the empty map), respectively, for the instances solved by all

algorithms (which are relatively easy).

3.5.2 Large Maps

Next, we test the algorithms on a large map, namely the benchmark game map lak503d

from [165], which is a 192×192 grid with 51% blocked cells, see Figure 3.8(left).

Success rates. Figure 3.8 shows the success rates of ICBS with different heuristics with a runtime

limit of one minute. As before, all heuristics improve the success rates of ICBS, and WDG has the

largest improvements.

Results with longer runtime limits. Figure 3.9a shows the success rates on 50 instances with

100 agents on the large map for different runtime limits. As the runtime limits increase, the benefits

45

(a) Different runtime limits.

CG DG WDG
All 50 instances

h-value of the root CT node 9.4 10.1 17.0
Runtime per CT node expansion (ms) 16.1 21.7 21.9

Success rate 0.32 0.58 0.76
16 instances solved by all three algorithms

Number of expanded CT nodes (×1000) 19.9 6.9 0.4
Runtime (s) 319 141 6

(b) Runtime limit of thirty minutes.

Figure 3.9: Results for 100 agents on the large map.

Empty map Dense map Large map
m CG DG WDG h∗ m CG DG WDG h∗ m CG DG WDG h∗

30 0.2 1.0 1.2 1.7 16 3.9 3.9 11.5 18.6 60 3.6 4.0 6.7 7.6
40 0.5 1.6 2.0 3.3 20 4.7 4.7 14.0 23.2 80 5.7 6.5 10.9 12.2
50 0.5 2.2 2.6 4.7 24 6.5 6.5 18.9 28.5 100 8.6 9.2 15.6 18.0

Table 3.3: Average h- and h∗-values of the root CT node over instances of which the h∗-value is
known, i.e., instances solved by at least one ICBS algorithm.

of our admissible heuristics increase. It is generally worth spending some extra runtime per CT

node expansion to obtain a larger h-value since a larger h-value usually leads to an exponential

reduction in the number of expanded CT nodes. Figure 3.9b shows the results for a runtime limit

of thirty minutes. Although DG and WDG have a larger runtime overhead on this large map than

on the small maps, WDG significantly outperforms DG, which - in turn - significantly outperforms

CG in terms of both success rate and runtime. For example, compared with CG, WDG increases

the success rate by a factor of 2 and runs faster by a factor of 50.

3.5.3 Comparison with the Perfect Heuristic

Table 3.3 compares the average h-values of the root CT node by ICBS algorithms using different

heuristics with the average h∗-values of the root CT node (i.e., the optimal solution cost minus

the cost of the root CT node). On the dense map, WDG is significantly smaller than h∗ because

agents are deeply coupled, and reasoning about only the pairwise dependencies between agents

is insufficient. However, on the empty or large map, WDG is close to h∗ because agents are less

46

(a) Illustration of a CT. (b) Number of expanded CT nodes.

Figure 3.10: Comparison between ICBS and CBSH.

coupled, and reasoning about the pairwise dependencies between them is sufficient in many cases.

In other words, h/h∗ is closer to 1 on the empty map or the large map than the dense map. This

explains why the h-values of WDG are much larger than those of CG on the dense map (as shown

in Tables 3.1 and 3.3), but they reduce the numbers of expanded CT nodes only slightly over CG

(as shown in Table 3.2).

3.5.4 Possible Slowdown

Depending on tie breaking, A* with admissible h-values can expand more nodes than with zero

h-values if the admissible h-values of some non-goal nodes are zero. Zero h-values for non-goal

nodes must exist if zero-cost edges are allowed and connected to goal CT nodes.

When a CT node N is split based on a semi-cardinal or non-cardinal conflict, at least one of

its child CT nodes have the same cost as CT node N. That is, the corresponding CT edge can

be regarded as a zero-cost edge. Admissible h-values of non-goal CT nodes have to be zero in

case they are connected to goal CT nodes via one zero-cost edge or a sequence of zero-cost edges.

Thus, ICBS with admissible heuristics can expand more CT nodes than ICBS. Figure 3.10a shows

an example CT. The expressions inside the CT nodes are the sums of their g-values and h-values.

CT nodes G1 and G2 are goal CT nodes. ICBS first expands CT node S. It then expands CT node

B since it has a smaller g-value (and thus cost and priority) than CT node A. Finally, it expands

CT node G1 (at which point it terminates) since it has the same g-value as CT node A but fewer

47

conflicts (since the plans in goal CT nodes are conflict-free while the ones in non-goal CT nodes

are not). ICBS with admissible heuristics first expands CT node S as well. It then expands node

CT A if it has fewer conflicts than CT node B since it has the same sum of g- and h-values (and

thus priority) as CT node B. (It would also expand CT node A in case it broke ties in favor of CT

nodes with smaller h-values.) It can then expand the entire subtree T rooted at CT node A and

finally CT node G2 (at which point it terminates). In this case, ICBS with admissible heuristics

expands more CT nodes than ICBS. If the h-values of non-goal CT nodes were strictly larger than

zero, then ICBS with admissible heuristics would avoid this issue since it would expand CT node

B (instead of CT node A) and finally CT node G1 (at which point it would terminate).

However, in our experiments, CBSH expands more CT nodes than ICBS for fewer than 5% of

the instances, and these cases do not significantly contribute to the average number of expanded

CT nodes. Figure 3.10b shows the ratio of the number of expanded CT nodes by CBSH and ICBS

(as a function of the number of expanded CT nodes by ICBS) on instances with 10 agents on

8×8 grids with 10% to 35% randomly blocked cells that ICBS solves with a runtime limit of five

minutes. ICBS expands fewer CT nodes than CBSH for only 22 out of 447 instances.

3.6 Summary

In this chapter, we provided first evidence that admissible h-values are beneficial for CBS. We pro-

posed three admissible heuristics, namely CG, DG, and WDG, by reasoning about the conflicts and

pairwise dependencies between agents. Theoretically, the WDG heuristic is provably no smaller

than the DG heuristic, which in turn is provably no smaller than the CG heuristic. Empirically,

they all incur a small runtime overhead per expanded CT node, with the CG heuristic incurring the

smallest and the WDG heuristic incurring the largest runtime overhead. They increase the success

rates and efficiency of ICBS by up to a factor of fifty.

48

3.7 Extensions

The three heuristics are beneficial for CBS for the classic MAPF problem and have been further

improved by us and other researchers. For example, Boyarski et al. [30] show that, when facing

large MAPF instances, solving MVCs with integer linear programming solvers in an incremental

way can calculate the CG heuristic faster. Boyarski et al. [31] improve the CG, DG, and WDG

heuristics by using information about the cost changes when resolving certain conflicts. Mogali

et al. [126] improve the DG heuristic by reasoning about groups of three (instead of two) agents

using the Lagrangian Relax-and-Cut scheme.

The three heuristics are beneficial not only for using CBS to solve the classic MAPF problem

but also for using CBS variants to solve generalized MAPF problems. For example, Andreychuk

et al. [6] use the greedy CG heuristic to speed up a CBS variant for solving MAPF with continuous

traversal time. Chen et al. [39] use the CG heuristic to speed up a CBS variant for solving MAPF

with robustness guarantees in terms of navigation delays. Chen et al. [40] use the CG heuristic

to speed up a CBS variant for solving MAPF with agents of different lengths. Li et al. [105] use

a combination of the CG and WDG heuristics to speed up a CBS variant for solving MAPF with

agents of different shapes. Zhong et al. [215] use the CG, DG, and WDG heuristics to speed up a

CBS variant for solving MAPF with target assignment.

In Chapter 5, we will show that such admissible heuristics are also beneficial for bounded-

suboptimal CBS variants.

49

Chapter 4

Speeding up Optimal CBS via Symmetry Reasoning

In this chapter, we show that one of the reasons why MAPF is so difficult to solve is a phenomenon

called pairwise symmetry, which occurs when two agents have many different paths to their target

vertices, all of which appear promising, but every combination of them results in a conflict. We

identify several classes of pairwise symmetries, namely

• rectangle symmetry, which arises when two agents attempt to cross each other in an open

area and repeatedly conflict with each other along many different shortest paths.

• target symmetry, which arises when one moving agent repeatedly conflicts with another

agent waiting at its target vertex along many different paths of increasing lengths.

• corridor symmetry, which arises when two agents moving in opposite directions repeatedly

conflict with each other inside a narrow passage along many different paths of increasing

lengths.

We show that each symmetry arises commonly in practice and can produce an exponential explo-

sion in the conflict-resolution space, leading to unacceptable runtimes for optimal MAPF algo-

rithms.1

For each type of symmetry, we propose algorithmic reasoning techniques that can identify the

situation at hand and resolve it in a single branching step by adding symmetry-breaking constraints.

1In Section 5.3.3, we will show that this issue also occurs for bounded-suboptimal MAPF algorithms.

50

We explore these ideas in the context of CBS (or, more precisely, CBSH). On the one hand, we

provide a theoretical analysis that shows that our symmetry-reasoning techniques preserve the

completeness and optimality of CBS. On the other hand, we evaluate the impact of these symmetry-

reasoning techniques empirically and show that the symmetry-reasoning techniques can lead to

an exponential reduction in the number of expanded CT nodes. We show that CBSH with our

symmetry-reasoning techniques resolves most two-agent conflicts in just a single branching step.

We also show that our symmetry-reasoning techniques substantially improve the runtimes and

success rates of CBSH and CBSH2. For example, adding the symmetry-reasoning techniques to

CBSH can reduce the number of CT nodes expanded CBSH by up to four orders of magnitude

and increase its scalability up to thirty times. Combining the WDG heuristic and the symmetry-

reasoning techniques leads to the best CBS-based optimal MAPF algorithm CBSH2-RTC.

In this chapter, we refer to a pair of a vertex v ∈ V and a timestep t ∈ N as a space-time node

(or node for short) (v, t). A MDD node (see Definition 2.3) is a space-time node. We say that a

path (or agent) visits node (v, t) iff it visits vertex v at timestep t. We say that two paths (or agents)

conflict at node (v, t) iff they conflict at vertex v at timestep t and refer to the node as the conflicting

node. We say that a constraint blocks a path iff the path does not satisfy the constraint.

This chapter closely follows [104, 107, 111].

4.1 Background

We first explain how to design constraints to resolve conflicts in CBS without losing its complete-

ness (and optimality) guarantees. We then review existing work that reasons about symmetries in

MAPF and other areas of AI.

51

4.1.1 Principle of Designing Constraints for CBS

CBS is complete and optimal (recall Theorem 2.1). Since we will introduce new types of con-

straints to resolve symmetry conflicts in this chapter, we here provide the principle of designing

constraints for CBS without losing its completeness or optimality guarantees.

Definition 4.1 (Mutually Disjunctive Constraints). Two constraints are mutually disjunctive iff any

pair of conflict-free paths satisfies at least one of the two constraints, i.e., there does not exist a pair

of conflict-free paths that violates both constraints. Moreover, two sets of constraints are mutually

disjunctive iff each constraint in one set is mutually disjunctive with each constraint in the other

set, i.e., any pair of conflict-free paths satisfies at least one set of constraints.

In our previous work [105], we prove that using two sets of mutually disjunctive constraints to

resolve a conflict at a CT node preserves the completeness and optimality of CBS. The key idea of

the proof is to show that any solution that satisfies the constraints of a CT node also satisfies the

constraints of at least one of its child CT nodes, as stated in Lemma 4.1.

Lemma 4.1. For a given CT node N with constraint set C, if two constraint sets C1 and C2 are

mutually disjunctive, any solution that satisfy C also satisfy at least one of the constraint sets

C∪C1 and C∪C2.

Proof. This is true because, otherwise, there would exist a pair of conflict-free paths that does not

satisfy all constraints in C1 and does not satisfy all constraints in C2. That is, one of the paths

violates a constraint c1 ∈C1, and one of the paths violates a constraint c2 ∈C2. Then, c1 and c2 are

not mutually disjunctive, contradicting the assumption.

By reusing the proof of Theorem 2.1, we have the following theorem.

Theorem 4.1. Using two constraint sets to split a CT node preserves the completeness and opti-

mality of CBS if the two constraint sets are mutually disjunctive and each of them blocks at least

one path in the plan of the CT node.

52

Hence, the principle of designing constraints for CBS is to ensure that the two constraints (or

constraint sets) that we use to split a CT node are mutually disjunctive and block some paths in the

plan of the CT node.

4.1.2 Related Work on Symmetry Reasoning

We review existing methods that can eliminate (some) symmetries in MAPF and existing

symmetry-reasoning work done in the context of other problems.

4.1.2.1 Existing Approaches for Eliminating Symmetries in MAPF

In pathfinding problems, symmetries have so far been studied only for single agents, e.g., by ex-

ploiting grid symmetries [76]. Some prior work can eliminate some symmetries in MAPF (but

loses optimality or completeness guarantees) by preprocessing the input graphs. We describe two

of them below.

Graph decomposition. Ryan [147] proposes several graph decomposition approaches for solv-

ing MAPF. Like our work, he detects special graph structures, including stacks, cliques, and halls.

Unlike our work, he builds an abstract graph by merging each such sub-graph into a meta-vertex

during preprocessing in order to reduce the search space. His work preserves completeness but not

optimality. Our work, by comparison, focuses on exploiting the sub-graphs to break symmetries

without preprocessing or sacrificing optimality.

Highways. Cohen et al. [46] propose highways to reduce the number of corridor conflicts (de-

fined in Section 4.5). They assign directions to some corridor vertices (resulting in one or more

highways) and make moving against highways more expensive than other movements. They show

that highways can speed up ECBS, a bounded-suboptimal variant of CBS and introduced in Sec-

tion 2.3.3. However, the utility of highways for optimal CBS is limited because they can only

be used to break ties among multiple shortest paths and are not guaranteed to resolve all corridor

53

conflicts. Similar ideas of introducing directions to the graph edges are also explored in flow an-

notation replanning [192], direction maps [89], and optimized directed roadmap graphs [77], none

of which guarantee optimality.

4.1.2.2 Symmetry Reasoning in Other Areas of AI

Symmetry is a widely-used concept that has been studied in many AI communities.

For example, symmetry reasoning is a successful technique in planning [65, 66, 137, 53, 54,

155, 196, 69, 145]. Here, symmetries usually refer to state symmetries [137], which are defined

as the automorphisms2 of the state transition graph, i.e., a directed multigraph, where the set of

vertices contains a vertex for every state and the set of edges contains a directed edge for every op-

erator that leads from one state to another. However, the state transition graph is usually extremely

large in practice, so existing work usually infers state symmetries from a compact description of it,

such as a semantic description of the planning task [137] or a factored representation of the plan-

ning task [155]. State symmetries take the form of symmetry groups across states. If several states

from a group are encountered, only one of them is explored. In addition, information obtained

during the search at different symmetric states can also be used to improve heuristics [54].

Symmetry reasoning is also a successful technique in constraint programming [140, 20, 14,

64, 141, 142, 150, 188, 44, 99, 125]. Cohen et al. [44] propose a microstructure for constraint

satisfaction problems, i.e., a hypergraph, where the set of vertices contains a vertex for every lit-

eral (i.e., variable-value pair) and the set of edges contains a (hyper-)edge among a set of literals

that corresponds to either an assignment allowed by a specific constraint or an assignment allowed

because there is no constraint between the associated variables. Then, they define a constraint

symmetry as an automorphism of the microstructure, which is conceptually similar to the automor-

phism of the state transition graph used in planning. As for detecting symmetries in planning, for

the sake of computational efficiency, existing work in constraint programming usually infers (sub-

sets of) constraint symmetries from, for example, variable symmetries [188], i.e., the variables are

2An automorphism of a graph is a bijection on the vertices that preserves the edges (and hence also the non-edges).

54

interchangeable, or value symmetries [188, 99], i.e., the values are interchangeable. The detected

symmetries can then be eliminated by adding symmetry-breaking constraints [64] or performing

symmetry breaking during search [14].

Similar symmetries have also been studied in propositional satisfiability problems [51, 3],

model checking [57, 26], path and motion planning for single agents [41, 76], etc. Although

symmetries have been widely studied in the literature, existing work always focuses on prob-

lem/state/solution symmetries in the sense that “renaming” (permuting somehow) some variables,

values, propositions, or operators results in identical problems/states/solutions. However, we focus

on conflict symmetries in this chapter instead. It is unclear how to translate knowledge in symme-

try reasoning in these domains to improvements to CBS or other similar MAPF algorithms because

they search the conflict-resolution space as opposed to the problem/state/solution space.

4.2 Rectangle Symmetry

We start with some examples to show the motivation behind rectangle reasoning. Formal defini-

tions of rectangle conflicts are introduced later. In this section, we focus on four-neighbor grids, as

required by rectangle-reasoning techniques. In particular, for a space-time node S, we use (S.x,S.y)

to denote its cell and S.t to denote its timestep.

Recall the MAPF instance discussed in Examples 1.1 and 1.2. Figure 4.1a shows the corre-

sponding CT of CBS. Figure 4.1b shows the number of CT nodes expanded by CBSH when the

yellow rectangular area in the MAPF instance in Figure 1.5a is larger, indicating that the size of

the CT grows exponentially with the size of the rectangular area. So, even for a two-agent MAPF

instance, CBSH can time out if the rectangle conflict is not detected. According to Definition 2.2,

these rectangle conflicts are cardinal. However, reasoning about cardinal rectangle conflicts does

not eliminate all rectangle symmetries in the conflict-resolution space.

Example 4.1. Consider the MAPF instances shown in Figure 4.2 and ignore Rs, Rg, R1, and R2 for

now. Suppose that S1.t = S2.t = 0. The conflict in Figure 4.2b is not a cardinal rectangle conflict

55

(a) CT generated by CBS for solving
the two-agent MAPF instance in Fig-
ure 1.5a.

(b) Number of CT nodes expanded by CBSH empirically for the
two-agent MAPF instance in Figure 1.5a with different (yellow)
rectangle sizes.

Figure 4.1: Example of (cardinal) rectangle conflicts. In (a), each left branch constrains agent a2,
and each right branch constrains agent a1. Each non-leaf CT node is marked with the cell of the
chosen conflict. Each leaf CT node marked “+1” contains an optimal solution, whose sum of costs
is one larger than the sum of costs of the plan of the root CT node.

(a) Cardinal conflict. (b) Semi-cardinal conflict. (c) Non-cardinal conflict.

Figure 4.2: Examples of different types of rectangle conflicts. The cells of the start and target
nodes are shown in the figures. The timesteps of the start and target nodes are S1.t = S2.t and
Gi.t = Si.t + |Gi.x−Si.x|+ |Gi.y−Si.y| for i = 1,2. The conflicting area is highlighted in yellow.
Rs, Rg, R1, and R2 denote the four corner nodes of the rectangle.

because agent a2 has optimal bypasses, i.e., shortest paths that do not traverse the rectangular area

(e.g., path [(2, 1), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3), (5, 4)]). However, if cell (5, 2) at timestep 4

and cell (5, 3) at timestep 5 are occupied by other agents, then the low-level search of CBS always

finds a path for agent a2 that conflicts with the path of agent a1, because the low-level search uses

the number of conflicts with other agents to break ties. Therefore, CBS generates again many CT

nodes before finally finding conflict-free paths.

56

We refer to the conflict in Figure 4.2b as a semi-cardinal rectangle conflict. Similarly, we

refer to the conflict in Figure 4.2c, where both agents have optimal bypasses, as a non-cardinal

rectangle conflict. Together with cardinal rectangle conflicts, we refer to these types of conflicts

as rectangle conflicts. In Section 4.2.1, we introduce a rectangle-reasoning technique that can

efficiently identify and resolve rectangle conflicts between entire paths. Then, in Section 4.2.2, we

generalize the reasoning technique to rectangle conflicts between path segments. Both techniques

are applicable only on four-neighbor grids. In Section 4.3, we generalize rectangle conflicts to

cases where the conflicting area (i.e., the yellow area in Figure 1.5a) is not necessarily rectangular

and propose a more general reasoning technique that can work on planar graphs. We evaluate the

performance of all three rectangle-reasoning techniques in Section 4.3.4.

4.2.1 Rectangle Reasoning Technique I: For Entire Paths

Consider two agents a1 and a2. Let nodes S1, S2, G1 and G2 be their start and target nodes, respec-

tively. For now, we assume that the start node is at the start vertex at timestep 0 and the target node

is at the target vertex at the timestep when the agent completes its path. But, in the next subsection,

we will relax this assumption to allow our method to detect rectangle symmetries between path

segments. Below are the formal definitions of the conflicting area (i.e., yellow rectangular area)

and the rectangle conflicts, with some examples shown in Figure 4.2.

Definition 4.2 (Conflicting Area). Given start and target nodes S1, S2, G1, and G2 for agents a1

and a2, respectively, we define the conflicting area as the intersection cells of the rectangular area

with diagonal corners (S1.x,S1.y) and (G1.x,G1.y) and the rectangular area with diagonal corners

(S2.x,S2.y) and (G2.x,G2.y).

Definition 4.3 (Rectangle Conflict). Two agents are involved in a rectangle conflict iff

1. they have at least one vertex conflict along their paths,

2. both paths are Manhattan-optimal, i.e., for each agent, the length of its path is equal to the

Manhattan distance between the cells of its start and target nodes, and

57

3. both paths move in the same x-direction and the same y-direction.

Property 4.1. Given a rectangle conflict between two agents, the distances from the cell of the

start node of one agent to any cell x inside the conflicting area is equal to the distance from the

cell of the start node of the other agent to cell x.

Proof. Suppose that the vertex conflict in Condition 1 is ⟨a1,a2,v, t⟩. From Condition 2, we know

that t = dist(s1,v) = dist(s2,v). Then, from Conditions 2 and 3 and a simple geometric analysis,

we know that dist(s1,x) = dist(s2,x) holds for every cell x inside the conflicting area.

From Property 4.1, we know that, if two agents have a rectangle conflict, all their paths from

their start nodes to their target nodes reach the same cell inside the conflicting area at the same

timestep. We therefore define the rectangle, which is a set of nodes located inside the conflicting

area, for a rectangle conflict as follows. Please refer to Figure 4.2 for illustration.

Definition 4.4 (Rectangle). Given start and target nodes S1, S2, G1, and G2 for agents a1 and a2

with a rectangle conflict, respectively, we define the rectangle as a set of nodes whose cells are the

cells in the conflicting area and whose timesteps are the timesteps when a shortest path of agent

a1 or agent a2 reaches the cell of the node. The four corner nodes of the rectangle are referred to

as Rs, Rg, R1, and R2, where Rs and Rg are the corner nodes whose cells are closest to the cells of

the start and target nodes, respectively, and R1 and R2 are the other corner nodes whose cells are

on the borders opposite of the cells of S1 and S2, respectively. The border from R1 to Rg and the

border from R2 to Rg (or, more precisely, the nodes in the rectangle whose cells are on the straight

line segment from the cell of R1 to the cell of Rg and from the cell of R2 to the cell of Rg), are called

the exit borders of agents a1 and a2 and denoted by R1Rg and R2Rg, respectively.

The mathematical equations for computing the corner nodes are shown in Appendix C.1. In-

tuitively, every path for agent a1 that moves from node S1 to a node on border R1Rg conflicts

with every path for agent a2 that moves from node S2 to a node on border R2Rg. We want to de-

sign branching methods that eliminate all such conflicting paths in a single branching step. In the

58

following three subsections, we present in detail how to efficiently identify, classify, and resolve

rectangle conflicts.

4.2.1.1 Identifying Rectangle Conflicts

Rectangle conflicts occur only when two agents have one or more vertex conflicts. Assume that

agents a1 and a2 have a semi-/non-cardinal vertex conflict (which ensures that Condition 1 in Def-

inition 4.3 holds). Here, we do not consider cardinal vertex conflicts because resolving a cardinal

vertex conflict with vertex constraints can already increase the path cost of one of the agents in the

child CT nodes and thus eliminate the rectangle symmetry. They have a rectangle conflict iff

|S1.x−G1.x|+ |S1.y−G1.y|= G1.t−S1.t > 0 (4.1)

|S2.x−G2.x|+ |S2.y−G2.y|= G2.t−S2.t > 0 (4.2)

(S1.x−G1.x)(S2.x−G2.x)≥ 0 (4.3)

(S1.y−G1.y)(S2.y−G2.y)≥ 0. (4.4)

Equations (4.1) and (4.2) ensure that Condition 2 in Definition 4.3 holds. Equations (4.3) and (4.4)

ensure that Condition 3 in Definition 4.3 holds.

4.2.1.2 Resolving Rectangle Conflicts

Consider the examples in Figure 4.2. For cardinal rectangle conflicts, all pairs of the shortest paths

have conflicts. For semi- and non-cardinal rectangle conflicts, although agents have shortest paths

that are conflict-free, all pairs of the shortest paths that visit the corresponding exit borders of the

agents have conflicts. We therefore propose to resolve a rectangle conflict by forcing one of the

agents to leave its exit border later or take a detour. Formally, we introduce the barrier constraint

B(ai,Ri,Rg) = {⟨ai,(x,y), t⟩ | ((x,y), t)∈ RiRg} for i = 1,2, which is a set of vertex constraints that

prohibits agent ai from occupying any node along its exit border RiRg. When resolving a rectangle

59

conflict, we generate two child CT nodes and add B(a1,R1,Rg) to one of them and B(a2,R2,Rg) to

the other one.

For instance, for the cardinal rectangle conflict in Figure 4.2a, the two barrier constraints are

B(a1,R1,Rg) = {⟨a1,(4,2+ n),3+ n⟩ | n = 0,1} and B(a2,R2,Rg) = {⟨a2,(2+ n,3),2+ n⟩ | n =

0,1,2}. Barrier constraint B(ai,Ri,Rg) for i = 1,2 blocks all shortest paths for agent ai that reach

its target node Gi via the rectangle. Thus, agent ai for i = 1,2 is replanned with a longer path

that does not conflict with the current path for the other agent (recall that the low-level search of

CBS breaks ties in favor of the path that has the minimum number of conflicts with the paths of

the other agents). The rectangle conflict is thus resolved in a single branching step. For the semi-

cardinal rectangle conflict in Figure 4.2b, the barrier constraints are the same. So, one of the barrier

constraints B(a1,R1,Rg) forces agent a1 to take a longer path and very likely leads to conflict-free

paths. The other barrier constraint B(a2,R2,Rg) blocks only some of the shortest paths of agent

a2 and forces agent a2 to not use its exit border, which increases the chances for agent a2 to find

a shortest path that does not conflict with agent a1. The analysis for resolving the non-cardinal

rectangle conflict in Figure 4.2c is analogous.

We use barrier constraints to resolve a rectangle conflict at a CT node N only if B(ai,Ri,Rg)

for i = 1,2 blocks the path for agent ai in the plan of CT node N because, otherwise, the child CT

node may have the same plan as CT node N. If this condition does not hold, we do not regard the

conflict as a rectangle conflict. For example, given the instance shown in Figure 4.2c, if the paths

of the two agents are [(1, 2), (2, 2), (2, 3), (2, 4), (3, 4), (4, 4)] and [(2, 1), (2, 2), (3, 2), (4, 2), (5,

2), (5, 3)], respectively, then we regard the conflict ⟨a1,a2,(2,2),1⟩ as a regular vertex conflict and

resolve it by vertex constraints ⟨a1,(2,2),1⟩ and ⟨a2,(2,2),1⟩.

We add barrier constraints on the exit borders of the agents instead of their entry borders be-

cause there might be an optimal solution that violates both “entry-border” barrier constraints. For

instance, given the rectangle conflict shown in Figure 4.2a, if we use “entry-border” barrier con-

straints B(a1,Rs,R2) = {⟨a1,(2,2+n),1+n⟩ | n= 0,1} and B(a2,Rs,R1) = {⟨a2,(2+n,2),1+n⟩ |

n = 0,1,2}, then the pair of paths [(1, 2), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3)] for agent a1 and [(2,

60

1), (2, 2), (2, 2), (2, 3), (2, 4), (3, 4), (4, 4)] for agent a2 is an optimal solution that violates both

“entry-border” barrier constraints.

4.2.1.3 Classifying Rectangle Conflicts

To classify a rectangle conflict, we need to know whether the path length of agent ai for i = 1,2

would increase after adding barrier constraint B(ai,Ri,Rg). Because of Condition 2 in Defini-

tion 4.3, all paths between the start and target nodes of agent ai are within the Si-Gi rectangle. We

thus only need to compare the length and width of the rectangle with those of the S1-G1 and S2-G2

rectangles. Consider the two equations

Ri.x−Rg.x = Si.x−Gi.x (4.5)

Ri.y−Rg.y = Si.y−Gi.y. (4.6)

Equation (4.5) holds when the length of the rectangle is equal to the length of the Si-Gi rectangle

for i = 1,2, and Equation (4.6) holds when the width of the rectangle is equal to the width of

the Si-Gi rectangle for i = 1,2. Also, since the rectangle is the intersection of the S1-G1 and S2-

G2 rectangles, its length and width cannot be larger than the lengths and widths, respectively, of

the S1-G1 and S2-G2 rectangles. Therefore, if one of Equations (4.5) and (4.6) holds for i = 1

and the other one holds for i = 2, the rectangle conflict is cardinal; if only one of them holds

for i = 1 or i = 2, it is semi-cardinal; otherwise, it is non-cardinal. For example, in Figure 4.2a,

R2.x−Rg.x = S2.x−G2.x =−2 and R1.y−Rg.y = S1.y−G1.y =−1, so the conflict is cardinal.

4.2.1.4 Theoretical Analysis

Now, we present a sequence of properties of Rectangle Reasoning Technique I and prove its com-

pleteness and optimality.

Property 4.2. If Rectangle Reasoning Technique I identifies a rectangle conflict between agents

a1 and a2, then any path of agent a1 that visits a node on its exit border R1Rg also visits a node on

61

its entry border RsR2, and any path of agent a2 that visits a node on its exit border R2Rg also visits

a node on its entry border RsR1.

Property 4.2 is straightforward to prove, but the proof is lengthy. We thus include the formal

proof only in Appendix C.2.

Property 4.3. For all combinations of paths of agents a1 and a2 with a rectangle conflict found

by Rectangle Reasoning Technique I, if one path violates barrier constraint B(a1,R1,Rg) and the

other path violates barrier constraint B(a2,R2,Rg), then the two paths have one or more vertex

conflicts where the conflicting node is within the rectangle.

Proof. According to Property 4.2, any path that violates B(a1,R1,Rg) must visit a node on border

RsR2 and a node on border R1Rg, and any path that violates B(a1,R1,Rg) must visit a node on

border RsR1 and a node on border R2Rg. Since RsR2 and RsR1 are the opposite sides of R1Rg and

R2Rg of the conflicting area, respectively, such two paths must cross each other, i.e., they visit a

common cell within the conflicting area. According to Property 4.1, they must visit this cell at the

same timestep. Therefore, the property holds.

Property 4.3 implies that barrier constraints B(a1,R1,Rg) and B(a2,R2,Rg) are mutually dis-

junctive (recall Definition 4.1). According to Theorem 4.1 and the fact that B(ai,Ri,Rg) for i = 1,2

blocks the current path for agent ai, using them to split a CT node preserves the completeness and

optimality of CBS.

Theorem 4.2. Using Rectangle Reasoning Technique I preserves the completeness and optimality

of CBS.

4.2.2 Rectangle Reasoning Technique II: For Path Segments

Rectangle Reasoning Technique I does not reason about obstacles and constraints, so it applies only

to rectangle conflicts for entire paths. In some cases, however, rectangle conflicts exist for path

segments but not for entire paths, such as the cardinal rectangle conflict in Figure 4.3a. Since the

62

(a) Cardinal conflict. (b) Semi-cardinal conflict. (c) No rectangle conflict.

Figure 4.3: Examples of rectangle conflicts for path segments. The cells of the start and target
nodes are shown in the figures. In (a), the cells of S1 and G2 are indicated by s1 and g2. In (b) and
(c), Gi.t = Si.t+ |Gi.x−Si.x|+ |Gi.y−Si.y| for i= 1,2. In (b), S1.t = S2.t−1. In (c), S1.t = S2.t−2.

paths are not Manhattan-optimal, Rectangle Reasoning Technique I fails to identify this rectangle

conflict. Therefore, we extend the rectangle reasoning technique to reasoning about rectangle

conflicts between two path segments, each of which starts at a singleton (recall Definition 2.4) and

ends at another singleton. Since all shortest paths of an agent must visit all of its singletons, we can

regard the two singletons as the start and target nodes and reuse Rectangle Reasoning Technique I

with minor modifications.

Algorithm 4.1 shows the pseudo-code. It first treats all singletons as start and target node can-

didates (Lines 1 to 3) and then tries all combinations of them to find rectangle conflicts. If multiple

rectangle conflicts are identified (see Example 4.2), it chooses the one of the highest priority type

(i.e., cardinal > semi-cardinal > non-cardinal) and breaks ties in favor of the one with the largest

rectangle area (Lines 11 and 12). It returns the pair of barrier constraints only if they block the

current paths of the agents (Line 15), otherwise it would generate a child CT node whose paths

and conflicts are exactly the same as those of the current CT node (see Example 4.3). We discuss

details of the three functions on Lines 7,14, and 9 in Sections 4.2.2.1 to 4.2.2.3. The equations for

computing the corner nodes (i.e., for the function on Line 8) are shown in Appendix C.1.

Example 4.2. When running Algorithm 4.1 for the vertex conflict ⟨a1,a2,(3,2),2⟩ shown in Fig-

ure 4.4, Lines 2 and 3 assign one singleton S1 = ((1,2),0), S2 = ((2,1),0), and G1 = ((6,4),7)

to NS
1 , NS

2 , and NG
1 , respectively, and two singletons G2 = ((5,5),7) and G′2 = ((3,3),3) to NG

2 .

63

Algorithm 4.1: Rectangle reasoning for path segments.
Input: Semi/non-cardinal vertex conflict ⟨a1,a2,v, t⟩ at a CT node N with two MDDs

MDD1 and MDD2

1 foreach i = 1,2 do // Collect start and target node candidates.
2 NS

i ← singletons in MDDi no later than timestep t;
3 NG

i ← singletons in MDDi no earlier than timestep t;

4 type′← Not-Rectangle;
5 area′← 0;
6 foreach S1 ∈ NS

1 ,S2 ∈ NS
2 ,G1 ∈ NG

1 ,G2 ∈ NG
2 do // Try all combinations.

7 if ISRECTANGLE(S1,S2,G1,G2) then
8 {R1,R2,Rs,Rg}← GETINTERSECTION(S1,S2,G1,G2);
9 type← CLASSIFYRECTANGLE(R1,R2,Rg,S1,S2,G1,G2);

10 area← |R1.x−R2.x|× |R1.y−R2.y|;
11 if type′ = Not-Rectangle ∨ type > type′∨ (type = type′∧area > area′) then
12 type′,area′,R′1,R

′
2,R
′
s,R
′
g← type,area,R1,R2,Rs,Rg;

13 if type′ ̸= Not-Rectangle then
14 B1,B2←GENERATEBARRIERS(MDD1,MDD2,R′1,R

′
2,R
′
g);

15 if B1 blocks N.plan[a1]∧B2 blocks N.plan[a2] then return B1 and B2;

16 return Not-Rectangle;

Figure 4.4: Example of deriving more than one rectangle conflict from a vertex conflict. Agent
a2 has two constraints that prohibit it from being at cells (2, 4) and (4, 2) at timestep 3. The
two conflicting areas of the two rectangle conflicts are highlighted in yellow and in yellow with
shadows, respectively.

Therefore, Lines 7-10 in Algorithm 4.1 find two rectangle conflicts, namely a cardinal rectangle

conflict with the conflicting area highlighted in yellow (i.e., the rectangular area with corner cells

(2, 2) and (5, 4)) and a semi-cardinal rectangle conflict with the conflicting area highlighted in

64

yellow with shadows (i.e., the rectangular area with corner cells (2, 2) and (3, 3)). Line 11 in

Algorithm 4.1 prefers the cardinal rectangle conflict.

Example 4.3. Consider the MAPF instance shown in Figure 4.2b and assume that the paths for

agent a1 and a2 are [(1, 2), (2, 2), (3, 2), (4, 2), (4, 3)] and [(2, 1), (3, 1), (4, 1), (4, 2), (5, 2), (5, 3),

(5, 4)], respectively. Algorithm 4.1 (before Line 15) identifies the vertex conflict ⟨a1,a2,(4,2),3⟩

as a rectangle conflict with the conflicting area highlighted in yellow. The cells of the four corner

nodes are shown in the figure. However, the resulting barrier constraint B2 = B(a2,R2,Rg) does

not block the path of agent a2. So, Algorithm 4.1 eventually discards this rectangle conflict.

4.2.2.1 Identifying Rectangle Conflicts

We reuse the definition of rectangle conflicts from Definition 4.3 by replacing “paths” with “path

segments”. Since the start nodes of a rectangle conflict may not be at the same timestep (such as

for the rectangle conflict in Figure 4.3b), the start and target nodes of a rectangle conflict have to

satisfy not only Equations (4.1) to (4.4) but also

(S1.x−S2.x)(S1.y−S2.y)(S1.x−G1.x)(S1.y−G1.y)≤ 0. (4.7)

This inequality guarantees that the start nodes are on different sides of the rectangle since, oth-

erwise, adding barrier constraints might disallow a pair of paths that move both agents to the

constrained border without waiting, such as in the example of Figure 4.3c.3 We also require that

S1 ̸= S2 because, otherwise, the two agents have a cardinal vertex conflict at node S1 (recall that S1

and S2 are singletons) that can be resolved with vertex constraints in a single branching step.

4.2.2.2 Resolving Rectangle Conflicts

When reasoning about entire paths, all paths of agent a1 visit its start node S1 as node S1 is at its

start vertex at timestep 0. However, when reasoning about path segments, only the shortest paths

3We do not check Equation (4.7) in Rectangle Reasoning Technique I because, when the start nodes are at the same
timestep, situations like Figure 4.3c cannot occur.

65

(a) Two-agent MAPF instance, where agent
a2 follows the green solid arrow but waits
at cell (4, 1) or cell (4, 2) for one timestep
because of the constraints listed in (b). (b) Constraints. (c) Corresponding MDD for agent a2.

Figure 4.5: Example where we cannot apply the original barrier constraints.

of agent a1 are guaranteed to visit node S1 as node S1 is a singleton. Its non-shortest paths do not

necessarily visit node S1. In this case, using barrier constraints may block pairs of conflict-free

paths and thus lose the completeness guarantee.

Example 4.4. Figure 4.5 provides a counterexample, where a CT node N has the set of constraints

listed in Figure 4.5b. The constraints force agent a2 to wait for at least one timestep before reaching

its target vertex. It can either wait before entering the conflicting area, which leads to a conflict with

agent a1, or enter the conflicting area without waiting and wait later, which might avoid conflicts

with agent a1. However, all shortest paths (of length 6) of agent a2 that satisfy the constraints in

CT node N have to wait for one timestep before entering the conflicting area, see MDD2 shown in

Figure 4.5c. Therefore, node S2 = ((4,2),2) is a singleton, and agents a1 and a2 have a cardinal

rectangle conflict. If this conflict is resolved using barrier constraints, then the pair of conflict-free

paths where agent a1 directly follows the blue arrow (which visits node ((5,3),4) constrained by

B(a1,R1,Rg)) and agent a2 follows the green dashed arrow but waits at cell (4,4) for two timesteps

(which visits node ((4,4),4) constrained by B(a2,R2,Rg)) satisfies neither of the child CT nodes of

CT node N. Barrier constraints fail here because the constrained node ((4,4),4) is not in MDD2,

and thus agent a2 could have a longer path that does not visit node S2 but visits node ((4,4),4).

66

Therefore, we redefine barrier constraints by considering only the border nodes that are in the

MDD of the agent. That is, B(ai,Ri,Rg) = {⟨ai,(x,y), t⟩ | ((x,y), t) ∈ RiRg∩MDDi} for i = 1,2.4

When resolving a rectangle conflict for path segments, we generate two child CT nodes and add

B(a1,R1,Rg) to one of them and B(a2,R2,Rg) to the other one.

4.2.2.3 Classifying Rectangle Conflicts

We reuse the method in Section 4.2.1.3 to classify rectangle conflicts.

4.2.2.4 Theoretical Analysis

We first present a property of MDDs.

Property 4.4. Given a MDD MDDi for agent ai and a MDD node (v, t) ∈MDDi, for any path p

for agent ai that visits node (v, t), all nodes that path p visits before timestep t are also in MDDi.

Proof. Since (v, t) ∈ MDDi, there exists a sub-path p′ that moves agent ai from node (v, t) to

node (gi, length(N.plan[ai])). So, a path that follows first the prefix of path p from node (si,0)

to node (v, t) and then sub-path p′ to node (gi, length(N.plan[ai])) is a path for agent ai of length

length(N.plan[ai]). That is, it is a shortest path for agent ai, which indicates that all nodes visited

by this path (including all nodes visited by path p before timestep t) are in MDDi.

We next present three properties of barrier constraints.

Property 4.5. If Rectangle Reasoning Technique II finds a rectangle conflict between agents a1

and a2, then any path of agent ai for i = 1,2 that visits a node constrained by B(ai,Ri,Rg) also

visits its start node Si.

Proof. Let (v, t) be a node constrained by B(ai,Ri,Rg). By definition, (v, t) ∈MDDi. Since node Si

is a singleton of MDDi and the timestep of Si is no larger than t (due to Line 2 in Algorithm 4.1),

from Property 4.4, any path of agent ai that visits node (v, t) also visits its start node Si.
4In our implementation, a barrier constraint is encoded as a set of vertex constraints.

67

Property 4.6. If Rectangle Reasoning Technique II identifies a rectangle conflict between agents

a1 and a2, then any path of agent a1 that visits a node constrained by B(a1,R1,Rg) also visits a

node on its entry border RsR2, and any path for agent a2 that also visits a node constrained by

B(a2,R2,Rg) visits a node on its entry border RsR1.

Property 4.6 is straightforward to prove by reusing the proof of Property 4.2. Thus, we provide

the proof only in Appendix C.2.

Property 4.7. For all combinations of paths of agents a1 and a2 with a rectangle conflict found

by Rectangle Reasoning Technique II, if one path violates B(a1,R1,Rg) and the other path violates

B(a2,R2,Rg), then the two paths have one or more vertex conflicts within the rectangle.

Proof. We apply the proof of Property 4.3 here by replacing Property 4.2 with Property 4.6.

Property 4.7 implies that barrier constraints B(a1,R1,Rg) and B(a2,R2,Rg) are mutually dis-

junctive, and thus, based on Theorem 4.1 and the fact that B(ai,Ri,Rg) for i = 1,2 blocks the

current path for agent ai, using them to split a CT node preserves the completeness and optimality

of CBS.

Theorem 4.3. Using Rectangle Reasoning Technique II preserves the completeness and optimality

of CBS.

4.3 Generalized Rectangle Symmetry

Let us first look at two examples.

Example 4.5. Figure 4.6a shows a MAPF sub-instance with two agents on a 32×32 empty map

with dist(s1,g1) = 32 and dist(s2,g2) = 34. Agent a1 has no constraints, and thus all its shortest

paths are Manhattan-optimal and of length 32. Agent a2 has a barrier constraint B2 that forces it to

first take a wait action at one of the cells in the top yellow row and then follow a Manhattan-optimal

path to its target vertex. Its shortest paths are thus of length 35. Due to this wait action, both agents

68

(a) Rectangular-shaped cardinal rectangle conflict. (b) Non-rectangular-shaped cardinal rectangle conflict.

Figure 4.6: Examples where the reasoning techniques in Section 4.2 fail to identify rectangle
conflicts, reproduced from the MAPF benchmark [163]. The start and target vertices of the agents
are shown in the figures. In (a), agent a2 has a barrier constraint B2 indicated by the red arrow (the
timesteps of the leftmost and rightmost nodes blocked by B2 are also shown in the figure), which
forces agent a2 to wait for one timestep. In both (a) and (b), the vertices of the MDD nodes of
the MDDs of the two agents are highlighted in the corresponding colors. Purple cells represent
the overlapping area. The timesteps when the agents reach every purple cell are the same for both
agents.

reach every purple cell at the same timestep and thus have a conflict if they both visit the same

purple cell following their shortest paths. Since the two agents need to cross each other to reach

their target vertices, there is no way for them to reach their target vertices without visiting some

common purple cell via their shortest paths. Therefore, the optimal resolution is for either agent

a1 to wait for one timestep (resulting in a path of length 33) or agent a2 to wait for two timesteps

or take a detour (resulting in a path of length 36).

This looks like a cardinal rectangle conflict described in Section 4.2. However, the only two

singletons in MDD2 are (s2,0) and (g2,35), which do not satisfy Equations (4.1) and (4.2) since

no path of agent a2 is Manhattan-optimal due to its wait action. Therefore, the rectangle reasoning

techniques in Section 4.2 fail to identify it as a rectangle conflict, and, as a result, CBS needs to

spend exponential time on solving it.

Example 4.6. Figure 4.6b shows a 2-agent MAPF instance on a 32× 32 map with randomly

blocked cells. Both agents reach every purple cell at the same timestep if they follow their shortest

paths and need to cross each other to reach their target vertices (or, formally, the line segments

69

between their start and target vertices need to cross each other). Therefore, the optimal resolution

is for one of the agents to wait for one timestep.

However, the rectangle reasoning techniques in Section 4.2 fail to identify this as a rectangle

conflict because they cannot find a pair of singletons around the purple area of agent a2 whose

corresponding sub-path is Manhattan-optimal. The conflicting area here is not rectangular.

Example 4.5 behaves like a cardinal rectangle conflict, but there do not exist any appropriate

singletons. Example 4.6 behaves like a cardinal rectangle conflict as well, but the conflicting area

is not rectangular. They motivate us to define a more general cardinal rectangle conflict between

two agents. These cardinal generalized rectangle conflicts have the following properties: (1) There

is a purple area that both agents reach at the same timestep if they follow their shortest paths, and

(2) the two agents have to cross each other inside the purple area. We further generalize the idea

to generalized rectangle conflicts which also include semi- and non-cardinal generalized rectangle

conflicts.

In Section 4.3.1, we present the high-level idea behind our generalized rectangle reasoning

technique. Then, in Section 4.3.2, we present the algorithm in detail. We provide a proof sketch

of the soundness of the proposed technique in Section 4.3.3 and formal proof in Appendix D. We

empirically evaluate our generalized rectangle reasoning technique in Section 4.3.4 together with

our rectangle reasoning techniques introduced in Section 4.2.

The generalized rectangle reasoning technique can be applied not only to four-neighbor grids

but also other planar graphs, which covers most ways of representing 2D (or even 2.5D) environ-

ments for MAPF.

4.3.1 High-Level Idea

Consider the conflict in Figure 4.6b. Figure 4.7a shows an abstract illustration of it. Agent a1

enters the purple area from (one of) the solid blue lines and leaves it from (one of) the dotted blue

lines. Similarly, agent a2 enters the purple area from one of the solid yellow lines and leaves it

from one of the dotted yellow lines. If we scan the border of the purple area anticlockwise, we

70

(a) Cardinal generalized
rectangle conflict.

(b) Semi-cardinal general-
ized rectangle conflict.

(c) Not generalized rectan-
gle conflict.

(d) Generalized rectangle
conflict.

(e) Generalized rectangle
conflict with holes.

(f) No generalized rectan-
gle conflict.

Figure 4.7: Illustrations of generalized rectangle conflicts. The purple area represents the conflict-
ing area inside which both agents reach each vertex at the same timestep via their shortest paths.
The solid lines represent where the agents enter the purple area via their shortest paths and the
dotted lines represent where they leave the purple area via their shortest paths. The positions of
R1 and R2 in Figures (a-c) are for illustration purposes and misleading. Figures (d-f) show their
correct positions.

find a pattern of “solid blue lines→ dotted yellow lines→ dotted blue lines→ solid yellow lines”.

So, from geometry, any line that connects a point on one of the solid blue lines with a point on

one of the dotted blue lines without going outside the purple area must intersect with any line that

connects a point on one of the solid yellow lines with a point on one of the dotted yellow lines

without going outside the purple area. If the two agents follow such two lines, they must have

a vertex conflict. Therefore, any path of agent a1 that visits (one of) the dotted blue lines must

conflict with any path of agent a2 that visits (one of) the dotted yellow lines.

71

Following the idea in Section 4.2, we generate two barrier constraints B(a1,R1,Rg) and

B(a2,R2,Rg), where the vertices of R1, R2 and Rg are marked in Figure 4.7a, and B(ai,Ri,Rg)

for i = 1,2 is a set of vertex constraints that prohibits agent ai from occupying all vertices along

the border from Ri to Rg at the timestep when ai would optimally reach the vertex. This pair of

barrier constraints gives one of the agents priority within the purple area over the other agent and

forces the other agent to leave it later or take a detour.

Figure 4.7b shows a slightly different example where agent a1 can leave the purple area also

from the dotted blue line on the right. Therefore, the two agents can traverse the purple area

without conflicts, for instance, by following the dotted arrows. However, just like for Example 4.1,

CBS may not find such a pair of conflict-free paths efficiently. And, in fact, this example is a

semi-cardinal generalized rectangle conflict as we can use barrier constraints B(a1,R1,Rg) and

B(a2,R2,Rg) to resolve it. This is so because, for the child CT node with constraint B(a1,R1,Rg),

CBS can find a path for agent a1 of the same length, such as the path indicated by the dotted blue

line, while, for the other child CT node, all shortest paths are blocked by B(a2,R2,Rg), and thus

CBS has to find a longer path for agent a2.

Figure 4.7c shows an example where agent a1 can enter the purple area also from the solid

blue line on the right. However, this time, we cannot use barrier constraints B(a1,R1,Rg) and

B(a2,R2,Rg) because there is a pair of conflict-free paths that violates both barrier constraints,

indicated by the two arrows in the figure. Therefore, this example is no generalized rectangle

conflict.

To sum up, how the solid lines of different colors distribute determines whether the conflict is

a generalized rectangle conflict, and how the dotted lines of different colors distribute only affects

the cardinality of the conflict. Therefore, when we identify generalized rectangle conflicts, we only

focus on the solid lines, see Figure 4.7d. We denote the nodes on the border with the smallest and

largest timesteps as Rs and Rg, respectively. Nodes Rs and Rg divide the border into two segments.

If all solid blue lines belong only to one of the segments and all solid yellow lines belong only to

the other segment, then the conflict is a generalized rectangle conflict. We denote the node on the

72

solid blue and yellow lines that are furthest from node Rs (i.e., closest to node Rg) as R2 and R1,

respectively. Then, we can prove that using the barrier constraints B(a1,R1,Rg) and B(a2,R2,Rg)

to resolve this conflict preserves the completeness and optimality of CBS.

Now, let us consider the case when the purple area has holes. The holes can be caused by,

for example, constraints. The key point is to exclude the cases when the lines can cross each

other within the hole because the agents might cross the intersection point in the hole at different

timesteps and thus have conflict-free paths. Therefore, we also draw blue and solid yellow lines

on the border of each hole to indicate where the agents can enter the purple area from the hole. If

every hole inside the purple area has solid lines of at most one color, such as in Figure 4.7e, then

this is still a generalized rectangle conflict. Otherwise, as in Figure 4.7f, such a conflict is not a

generalized rectangle conflict.

As for classifying conflicts, we simply check whether barrier constraint B(ai,Ri,Rg) for i = 1,2

blocks all shortest paths of agent ai by looking at MDDi. The conflict is cardinal iff both barrier

constraints block all shortest paths; it is semi-cardinal iff only one of them blocks all shortest paths;

it is non-cardinal iff neither of them blocks all shortest paths.

4.3.2 Algorithm

We now provide a methodology for identifying, classifying, and resolving generalized rectangle

conflicts. There are five key steps:

1. finding the generalized rectangle (i.e., the purple area in Figure 4.7),

2. scanning the border,

3. checking the holes,

4. generating the barrier constraints, and

5. classifying the conflict,

73

which correspond to the following five subsections, respectively. Given a semi- or non-cardinal

vertex conflict between two agents, the generalized rectangle reasoning algorithm returns either a

pair of barrier constraints or “Not-Rectangle”.

4.3.2.1 Step 1: Finding the Generalized Rectangle

Definition 4.5 (Generalized Rectangle). Given a vertex conflict ⟨a1,a2,v, t⟩, the generalized rect-

angle is a connected directed acyclic graph G = (V ,E) such that

1. G ⊆MDD1∩MDD2,

2. (v, t) ∈ V , and

3. for every node (u, tu) ∈ V , any shortest path of either agent that visits vertex u visits it only

at timestep tu.

We use the term conflicting area to denote the vertices (e.g., cells in four-neighbor grids) of the

nodes in V , which represent a connected area on the plane to which graph G is mapped.

Condition 3 is important because it ensures that, if the shortest paths of agents a1 and a2 visit

a common vertex in the conflicting area, they must have a vertex conflict. From Conditions 1 and

3, we know that (u, tu) ∈ V only if ∀i ∈ {1,2}∀t ′u ∈ [0, tu)∪ [tu +1,+∞)(u, tu) ∈MDDi∧ (u, t ′u) /∈

MDDi.

Formally, to find a generalized rectangle, we first project the MDD nodes of the MDDs of both

agents to the vertices in V . Let Mi for i = 1,2 be such a mapping, where Mi[u] for u ∈ V is a list

of MDD nodes in MDDi whose vertices are u. Then, we run a search starting from the conflicting

vertex v to generate G whose nodes (u, tu) are always the only nodes in both M1[u] and M2[u]. If

V is empty or contains only one node (which implies a cardinal vertex conflict), we terminate and

report “Not-Rectangle”.

During the search, we also collect the entry edges E1 and E2 for the conflicting area (corre-

sponding to the solid blue and yellow lines in Figure 4.7).

74

Definition 4.6 (Entry Edge). The set of entry edges Ei for i = 1,2 is a set of directed MDD edges

of MDDi whose “from” node is not in V and whose “to” node is in V .

Since the start nodes (s1,0) and (s2,0) of agents a1 and a2 are different, they must be located

outside of the conflicting area, and, thus, both E1 and E2 contain at least one entry edge.

4.3.2.2 Step 2: Scanning the Border

Let Rs and Rg denote the nodes with the smallest and largest timesteps on the border, respectively.

Scan the border from node Rs to node Rg on both sides and check whether the entry edges of one

agent are all on one side of RsRg and the entry edges of the other agent are all on the other side of

RsRg. If not, we terminate and report “Not-Rectangle”.

Recall that the underlying graph is a planar graph. So, we embed the graph into the plane and

then scan the border clockwise and counterclockwise from Rs to Rg. During the scanning, we mark

the “to” nodes of the last-seen entry edges of E1 and E2 as R2 and R1, respectively. We also remove

every visited entry edge from E1 or E2 so that all remaining edges in E1 and E2 are entry edges

on the borders of the holes, which will be used in the next step. For clarification, we use Eb
i to

denote the removed edges from Ei, i.e., entry edges on the outer border of the conflicting area and

Eh
i = Ei \Eb

i to denote the remaining edges in Ei for i = 1,2, i.e., entry edges for the holes.

4.3.2.3 Step 3: Checking the Holes

For each entry edge in Eh
1 , we scan the border of its corresponding hole and check whether the “to”

node of any edge in Eh
2 is on the border. If so, then this hole contains entry edges of both agents,

so we terminate and report “Not-Rectangle”. If we succeed in examining every edge in Eh
1 without

terminating, then there is no hole in the conflicting area that contains an entry edge of both agents.

We thus move to the next step.

75

4.3.2.4 Step 4: Generating the Barrier Constraints

We generate barrier constraints B(a1,R1,Rg) and B(a2,R2,Rg), where B(ai,Ri,Rg) for i = 1,2 is a

set of vertex constraints that prohibits agent ai from occupying all nodes along the border from Ri to

Rg. All prohibited nodes are in the MDDs of the agents, so we do not need to worry about situations

where, like in Example 4.4, the two agents might have conflict-free paths that visit the prohibited

nodes. As on Line 15 in Algorithm 4.1, we check whether the generated barrier constraints block

the current paths of both agents. If not, we terminate and report “Not-Rectangle”.

4.3.2.5 Step 5: Classifying the Conflict

From Figures 4.7a and 4.7b, it seems that we can classify conflicts by checking whether the border

segment RiRg covers all dotted lines of the color corresponding to agent ai. However, this would be

incorrect because the agent might have a shortest path that does not visit the purple area. Therefore,

we run a search on the MDD of each agent and check whether the barrier constraint B(ai,Ri,Rg)

for i= 1,2 blocks all paths in MDDi from its start node to its target node, i.e., the nodes constrained

by the barrier constraint form a cut of the MDD. The generalized rectangle conflict is cardinal iff

both barrier constraints block all paths in the corresponding MDD; it is semi-cardinal iff only one

of the barrier constraints blocks all paths in the corresponding MDD; and it is non-cardinal iff

neither barrier constraint blocks all paths in the corresponding MDD.

4.3.3 Theoretical Analysis

Property 4.8. For all combinations of paths of agents a1 and a2 with a generalized rectangle

conflict, if one path violates B(a1,R1,Rg) and the other path violates B(a2,R2,Rg), then the two

paths have one or more vertex conflicts within the generalized rectangle.

Proof Sketch. We provide a proof sketch here and a formal proof in Appendix D:

1. All paths of agent ai for i = 1,2 that visit a node constrained by B(ai,Ri,Rg) must traverse

an entry edge in Eb
i .

76

Table 4.1: Benchmark details. We use 8 maps, each with 6 different numbers of agents. We have
25 instances for each map and each number of agents, yielding 8× 6× 25 = 1,200 instances in
total.

Map Map name Map size #Empty cells #Agents
Random random-32-32-20 32×32 819 20, 30, ..., 70
Empty empty-32-32 32×32 1,024 30, 50, ..., 130

Warehouse warehouse-10-20-10-2-1 161×63 5,699 30, 50, ..., 130
Game1 den520d 256×257 28,178 40, 60, ..., 140
Room room-64-64-8 64×64 3,232 15, 20, ..., 40
Maze maze-128-128-1 128×128 8,191 3, 6, ..., 18
City Paris 1 256 256×256 47,240 30, 60, ..., 180
Game2 brc202d 530×481 43,151 20, 30, ..., 70

2. Any sub-path from an entry edge in Eb
1 to a node constrained by B(a1,R1,Rg) must visit at

least one common vertex with any sub-path from an entry edge in Eb
2 to a node constrained

by B(a2,R2,Rg).

3. The common vertex must be inside the conflicting area, i.e., not inside one of the holes.

4. Following the two sub-paths, agents a1 and a2 must conflict at the common vertex in the

conflicting area.

Property 4.8 implies that barrier constraints B(a1,R1,Rg) and B(a2,R2,Rg) are mutually dis-

junctive, and thus, based on Theorem 4.1 and the fact that B(ai,Ri,Rg) for i = 1,2 blocks the

current path for agent ai, using them to split a CT node preserves the completeness and optimality

of CBS.

Theorem 4.4. Using the generalized rectangle reasoning technique preserves the completeness

and optimality of CBS.

4.3.4 Empirical Evaluation

In this and future subsections of this chapter, we evaluate the algorithms on eight maps of different

sizes and structures from the MAPF benchmark suite [163]. We test six different numbers of agents

per map. We use the “random” scenarios from the benchmark suite, yielding 25 instances for each

77

Figure 4.8: Runtime distributions of CBSH with different rectangle reasoning techniques. A point
(x,y) in the figure indicates that there are x instances solved within y seconds.

map and each number of agents. Details of the benchmark instances are shown in Table 4.1, and a

visualization of the maps is shown in Figure 4.8. The experiments are conducted on Ubuntu 20.04

LTS on an Intel Xeon 8260 CPU with a memory limit of 16 GB and a time limit of 1 minute.

In this subsection, we compare CBSH (denoted None), CBSH with rectangle reasoning for

entire paths (denoted R), CBSH with rectangle reasoning for path segments (denoted RM), and

CBSH with generalized rectangle reasoning (denoted GR).5 The results are reported in Figure 4.8.

As expected, the improvements due to our rectangle reasoning techniques depend on the struc-

ture of the maps. On maps with little open space, such as Random, Room, Maze, and Game2, rect-

angle reasoning techniques do not improve the performance. But fortunately, due to their small

runtime overhead, they do not deteriorate the performance either. On the other maps with large

open spaces, some or even all of the rectangle reasoning techniques speed up CBSH, and GR is

always the best. Specifically, on map Empty, the shortest path of an agent (ignoring other agents)

5We demonstrate the symmetry reasoning techniques on top of CBSH instead of CBSH2 here (and in the following
several subsections) because, for CBSH2, the symmetry reasoning techniques can be applied to both the main CBSH2
and the two-agent sub-MAPF solver CBSH, which makes it non-trivial to analyze the effectiveness of the techniques.
Nevertheless, after we have presented all symmetry-reasoning techniques, we will show their effectiveness on top of
CBSH2 in Section 4.8.

78

(a) Two-agent MAPF instance with a target conflict.
Agent a2 arrives at vertex D2 at timestep 1. Two
timesteps later, agent a1 visits the same vertex, lead-
ing to a vertex conflict at vertex D2 at timestep 3.

(b) CT generated by CBS when solving the two-
agent MAPF instance in (a). Each left branch con-
strains agent a2, and each right branch constrains
agent a1.

Figure 4.9: Example of a target conflict and the corresponding CT generated by CBS. In (b), each
non-leaf CT node is marked with the vertex of the chosen conflict. The leaf CT node marked “+3”
contains an optimal solution, whose sum of costs is the cost of the root CT node plus 3. The leaf
CT nodes marked “+5” and “+7” contain suboptimal solutions, whose sums of costs are the cost
of the root CT node plus 5 and 7, respectively. The leaf CT node marked “...” contains a plan
with conflicts, whose sum of costs is the cost of the root CT node plus 3, and produces suboptimal
solutions in its descendant CT nodes.

is always Manhattan-optimal, so R significantly speeds up CBSH, while RM and GR further speed

it up, but only by a little bit. The performance on map Warehouse is similar, as the obstacles

on this map are all of rectangular shape. Maps Game1 and City, however, contain obstacles of

various shapes, so the shortest path of an agent is not necessarily Manhattan-optimal, and the con-

flicting area is not necessarily of rectangular shape. Thus, R performs similarly to None, but GR

significantly outperforms RM, which in turn significantly outperforms R.

4.4 Target Symmetry

A target symmetry occurs when one agent visits the target vertex of a second agent after the second

agent has already arrived at it and stays there forever. We refer to the corresponding conflict as a

target conflict.

Definition 4.7 (Target Conflict). Two agents are involved in a target conflict iff they have a vertex

conflict that happens after one agent has arrived at its target vertex and stays there forever.

Example 4.7. In Figure 4.9a, agent a2 arrives at its target vertex D2 at timestep 1, but then a vertex

conflict occurs with agent a1 at vertex D2 at timestep 3. When CBS resolves this vertex conflict,

79

Table 4.2: Numbers of expanded CT nodes to resolve the target conflict shown in Figure 4.9a for
different distances between vertices s1 and g2.

dist(s1,g2) 10 20 30 40 50
Number of expanded CT nodes for two-agent instances 10 20 30 40 50
Number of expanded CT nodes for four-agent instances 50 150 300 500 750

it generates two child CT nodes, as shown in Figure 4.9b. In the left child CT node, CBS adds

a vertex constraint that prohibits agent a2 from being at vertex D2 at timestep 3. The low-level

search finds a new path [C2, C3, C3, C2, D2] for agent a2, which does not conflict with agent a1.

The cost of this CT node is three larger than the cost of the root CT node. In the right child CT

node, CBS adds a vertex constraint that prohibits agent a1 from being at vertex D2 at timestep 3.

Thus, agent a1 arrives at vertex D2 at timestep 4, and the cost of this CT node is one larger than

the cost of the root CT node. There are several alternative paths for agent a1 where it waits at

different vertices for the requisite timestep, e.g., path [A2, A2, B2, C2, D2, E2]. However, each

such path produces a conflict with agent a2 at vertex D2 at timestep 4. Although the left child CT

node contains conflict-free paths, CBS has to split the right child CT nodes repeatedly to constrain

agent a1 (because it performs a best-first search) before eventually proving that the solution of the

left child CT node is optimal.

Target symmetry has the same pernicious characteristics as rectangle symmetry since, if un-

detected, it can explode the size of the CT and lead to unacceptable runtimes. Table 4.2 shows

how many CT nodes CBS expands to resolve a target conflict of the type shown in Figure 4.9a

for different distances between vertices s1 and g2. While the increase in CT nodes is linear in the

distance, which may seem not too problematic, only one of the leaf CT nodes contains the optimal

solution for the two agents. Later, when other conflicts occur, each leaf CT node might be further

fruitlessly expanded. With two copies of the problem (resulting in four-agent instances), Table 4.2

shows already a quadratic increase in the number of CT nodes. For m-agent instances, the increases

become exponential in m. Hence, we propose a target reasoning technique that efficiently detects

and resolves all target symmetries. We introduce this technique in detail in the following four

80

subsections and present its empirical performance in Section 4.4.5. Our target reasoning technique

works for general graphs.

4.4.1 Identifying Target Conflicts

The detection of target conflicts is straightforward. For every vertex conflict, we compare the

conflicting timestep with the path lengths of the agents and regard it as a target conflict iff the

conflicting timestep is no smaller than the path length of one of the agents.

4.4.2 Resolving Target Conflicts

The key to resolving target conflicts is to reason about the path length of an agent. Suppose that

agent a1 visits the target vertex g2 of agent a2 at timestep t after agent a2 has completed its path,

i.e., t ≥ length(N.plan[a2]). We resolve this target conflict by branching on the path length l2 of

agent a2 using the following two length constraints, one for each child CT node:

• l2 > t, i.e., agent a2 can complete its path only after timestep t, or

• l2 ≤ t, i.e., agent a2 must arrive at vertex g2 and stay there forever before or at timestep t,

which also requires that any other agent cannot visit vertex g2 at or after timestep t.

The first constraint l2 > t affects only the path of agent a2, while the second constraint l2 ≤ t could

affect the paths of all agents.

The advantage of this branching method is immediate. In the first case, agent a2 cannot finish

before timestep t + 1, so its path length increases from its current value length(N.plan[a2]) to at

least t +1. In the second case, agent a1 is prohibited from being at vertex g2 at or after timestep t.

If agent a1 has no alternative paths to its target vertex that do not use vertex g2 at or after timestep t,

then the CT node with this constraint has no solution and is thus pruned. If agent a1 has alternative

paths and the shortest one among them is longer than its current path, then its path length increases.

We do not need to replan for agent a2 since its current path is no longer than t. Nevertheless, we

have to replan the paths for all other agents that visit vertex g2 at or after timestep t. This is a very

81

strong constraint as vertex g2 can be viewed as an obstacle after timestep t for all agents except for

agent a2.

In order to handle the length constraints, we need the low-level search to take into account

given bounds on the path length. This is fairly straightforward for given bounds e≤ l2 ≤ u on the

path length l2 of agent a2: If the low-level search reaches target vertex g2 before timestep e, then

it cannot terminate but must continue searching; if it reaches the target vertex between timesteps e

and u (and the agent was not at the target vertex at the previous timestep), then it terminates and

returns the corresponding path; if it reaches the target vertex after timestep u, then it terminates

and prunes the corresponding CT node since the CT node has no solution. We require the agent to

not be at the target vertex at the previous timestep because, otherwise, the agent could simply take

its current path to the target vertex and wait there until timestep e is reached, which does not help

to resolve the conflict.

For example, to resolve the target conflict in Figure 4.9a, we split the root CT node and add the

length constraints l2 > 3 and l2 ≤ 3. In the left child CT node, we replan the path of agent a2 and

find a new path [C2, C3, C3, C2, D2], which does not conflict with the path of agent a1. In the

right child CT node, agent a1 cannot visit vertex D2 at or after timestep 3. We thus fail to find a

path for it and prune the right child CT node. Therefore, the target symmetry is resolved in a single

branching step.

4.4.3 Classifying Target Conflicts

Target conflicts are classified based on the vertex conflict at the target vertex: A target conflict is

cardinal iff the corresponding vertex conflict is cardinal, and it is semi-cardinal iff the correspond-

ing vertex conflict is semi-cardinal. It can never be non-cardinal because the cost of the child CT

node with the additional length constraint l2 > t is always larger than the cost of the parent CT

node. This is an approximate way of classifying target conflicts since the costs of both child CT

nodes may increase when we branch on a semi-cardinal target conflict.

82

Figure 4.10: Runtime distributions of CBSH with and without target reasoning.

4.4.4 Theoretical Analysis

Proving the completeness and optimality of CBS when using length constraints for target conflicts

is straightforward. Therefore, we omit the proof of the following theorem.

Theorem 4.5. Resolving target conflicts with length constraints preserves the completeness and

optimality of CBS.

4.4.5 Empirical Evaluation

In this subsection, we compare CBSH (denoted None) with CBSH with target reasoning (denoted

T). Since we might need to replan paths for more than one agent for adding a length constraint l2 ≤

t, we cannot use the incremental method described in Section 3.1.1 for solving the Minimum Vertex

Cover (MVC) problem for computing the CG heuristic. We thus use the following method instead.

We partition GD into its connected components and calculate the MVC for each component with a

branch-and-bound algorithm that enumerates the possible vertex cover sets and prunes nodes using

the best result so far. The MVC of GD is the union of the MVCs of all components.

83

As shown in Figure 4.10, on all maps except for Maze, target reasoning speeds up CBSH, and

the improvement is usually larger on maps with more obstacles. The performance on Maze is an

exception due to the long runtime of the low-level space-time A* search when replanning results

in extremely long or non-existing paths. On the one hand, the length constraint li > t is powerful

since it can substantially increase the path length of agent ai. However, finding a long path is time-

consuming for space-time A*. On the other hand, the length constraint li ≤ t is powerful since it

prohibits all agents other than agent ai from being at vertex gi for all timesteps at and after timestep

t. However, this might make it impossible for some agents to reach their target vertices. To realize

that such a path does not exist, space-time A* has to enumerate all reachable pairs of a vertex and

timestep, which is again time-consuming.

4.5 Corridor Symmetry

Definition 4.8 (Corridor). A corridor C =C0∪{e1,e2} of graph G = (V,E) is a chain of connected

vertices C0 ⊆ V , each of degree 2, together with two endpoints {e1,e2} ∈ V connected to C0. Its

length is defined as dist(e1,e2). In this and the next subsections, we abuse the notion of dist(x,y)

for x ∈C and y ∈C and use it to represent the length of the shortest path between vertices x and y

that uses only vertices inside the corridor even if it is not the shortest path between them.

Figure 4.11a shows a corridor of length 3 made up of C0 = {B3,C3}, e1 = A3, and e2 = D3.

A corridor symmetry occurs when two agents attempt to traverse a corridor in opposite directions

at the same time. We refer to the corresponding conflict as a corridor conflict.

Definition 4.9 (Corridor Conflict). Two agents are involved in a corridor conflict iff they traverse

the same corridor in opposite directions and have one or more vertex or edge conflicts that occur

inside the corridor.

Example 4.8. In Figure 4.11a, CBS detects the edge conflict ⟨a1,a2,B3,C3,3⟩ and branches,

thereby generating two child CT nodes. There are many shortest paths for each agent that avoid

edge (B3, C3) at timestep 3 (e.g., path [A4, A3, B3, B3, C3, D3, D4] for agent a1 and path [D2, D2,

84

(a) Two-agent MAPF instance with a corridor con-
flict. The shortest paths of agents a1 and a2 have an
edge conflict inside the corridor at edge (B3, C3) at
timestep 3.

(b) CT generated by CBS when solving the two-
agent MAPF instance in (a). Each left branch con-
strains agent a2, and each right branch constrains
agent a1.

Figure 4.11: Example of a corridor conflict and the corresponding CT generated by CBS. In (b),
each non-leaf CT node is marked with the vertex/edge of the chosen conflict. Each leaf CT node
marked “+4” contains an optimal solution, whose sum of costs is the cost of the root CT node plus
4. Each leaf CT node marked “...” contains a plan with conflicts and produces suboptimal solutions
in its descendant CT nodes.

D3, C3, B3, A3, A2] for agent a2), all of which involve one wait action and differ only in where the

wait action is taken. However, each of these single-wait paths remains in conflict with the path of

the other agent. CBS has to branch at least four times to find conflict-free paths in such a situation

and branch even more times to prove their optimality. Figure 4.11b shows the corresponding CT.

Only two of the sixteen leaf CT nodes contain optimal solutions.

This example highlights an especially pernicious characteristic of corridor symmetry: CBS

may be forced to continue branching and exploring irrelevant and suboptimal resolutions of a

corridor conflict to compute an optimal solution eventually. As the corridor length k increases, the

number of expanded CT nodes grows exponentially as 2k+1 (because, when resolving a corridor

conflict, the cost of a CT node at depth d is d plus the cost of the root CT node, and the cost of

an optimal solution is k plus the cost of the root CT node). We therefore propose a new reasoning

technique that identifies and resolves corridor conflicts efficiently. We present this technique in the

following four subsections. We then extend it to handle several special corridor symmetries more

efficiently and evaluate its empirical performance in the next section.

85

(a) Without bypasses. (b) With bypasses.

Figure 4.12: Illustration of corridor conflicts with and without bypasses. The corridors are high-
lighted in yellow.

4.5.1 Identifying Corridor Conflicts

Detecting corridor conflicts is straightforward by checking every vertex and edge conflict. We find

the corridor on-the-fly by checking whether the conflicting vertex (or an endpoint of the conflicting

edge) is of degree 2. To find the endpoints of the corridor, we check the degree of each of the two

adjacent vertices and repeat the procedure until we find either a vertex whose degree is not 2 or the

start or target vertex of one of the two agents.

4.5.2 Resolving Corridor Conflicts

Consider a corridor C of length k with endpoints e1 and e2, see Figure 4.12. Assume that the path

of agent a1 traverses the corridor from vertex e2 to vertex e1 and the path of agent a2 traverses the

corridor from vertex e1 to vertex e2. They conflict with each other inside the corridor. Let ti(ei) for

i = 1,2 be the earliest timestep when agent ai can reach its exit endpoint ei.

We first assume that there are no bypasses (i.e., paths that move agent ai for i = 1,2 from

its start vertex si to its exit endpoint ei without going through corridor C) for either agent (see

Figure 4.12a). Therefore, one of the agents must wait until the other one has fully traversed the

corridor. If we prioritize agent a1 and let agent a2 wait, then the earliest timestep when agent a2

can start to traverse the corridor from vertex e1 is t1(e1)+1. Therefore, the earliest timestep when

86

agent a2 can reach e2 is t1(e1)+ 1+ k. Similarly, if we prioritize agent a2 and let agent a1 wait,

then the earliest timestep when agent a1 can reach e1 is t2(e2)+ 1+ k. Therefore, any paths of

agent a1 that reach vertex e1 before or at timestep t2(e2)+ k must conflict with any paths of agent

a2 that reach vertex e2 before or at timestep t1(e1)+ k.

Now, we consider bypasses (see Figure 4.12b). Assume that agent ai for i = 1,2 has bypasses

to reach its exit endpoint ei without traversing corridor C and the earliest timestep when it can reach

vertex ei using a bypass is t ′i(ei). If we prioritize agent a1, then agent a2 can either wait or use a

bypass. Thus, the earliest timestep when agent a2 can reach vertex e2 is min(t ′2(e2), t1(e1)+1+k).

Similarly, if we prioritize agent a2, then the earliest timestep when agent a1 can reach vertex e1

is min(t ′1(e1), t2(e2)+ 1+ k). Therefore, any paths of agent a1 that reach vertex e1 before or at

timestep min(t ′1(e1)− 1, t2(e2)+ k) must conflict with any paths of agent a2 that reach vertex e2

before or at timestep min(t ′2(e2)−1, t1(e1)+ k). In other words, the following two constraints are

mutually disjunctive:

• ⟨a1,e1, [0,min(t ′1(e1)−1, t2(e2)+ k)]⟩ and

• ⟨a2,e2, [0,min(t ′2(e2)−1, t1(e1)+ k)]⟩,

where ⟨ai,v, [tmin, tmax]⟩ is a range constraint [8] that prohibits agent ai from being at vertex v at any

timestep t ∈ [tmin, tmax]. Thus, to resolve a corridor conflict, we split the CT node N with two range

constraints. We use state-time A* (recall Section 2.3.1) to compute ti(ei) and t ′i(ei) for i = 1,2. We

cannot simply use the timesteps when the paths N.plan[a1] and N.plan[a2] visit vertices e1 and

e2, respectively, for t1(e1) and t2(e2) because these paths minimize only the number of timesteps

needed to reach the target vertices and do not necessarily minimize the number of timesteps needed

to reach vertices e1 and e2, respectively.

For example, for the corridor conflict in Figure 4.11a, we calculate k = 3, t1(D3) = t2(A3) = 4,

and t ′1(D3) = t ′2(A3) = +∞. Hence, to resolve this conflict, we split the root CT node and add the

range constraints ⟨a1,D3, [0,7]⟩ and ⟨a2,A3, [0,7]⟩ to the child CT nodes. In the right (left) child

CT node, we replan the path of agent a1 (a2) and find the new path [A4, A4, A4, A4, A4, A3,

87

B3, C3, D3, D4] ([D2, D2, D2, D2, D2, D3, C3, B3, A3, A2]), that waits at its start vertex for 4

timesteps before moving to its target vertex. It waits at its start vertex rather than any vertex in the

corridor because CBS breaks ties by preferring a path that has the fewest conflicts with the paths of

other agents. Hence, the paths in both child CT nodes are conflict-free, and the corridor symmetry

is resolved in a single branching step.

As for the rectangle reasoning techniques (or, more specifically, Line 15 in Algorithm 4.1), we

use this branching method only when the range constraints block the paths of both agents in the

current CT node, which ensures that the paths in both child CT nodes are different from the paths

in the current CT node.

We add range constraints at the exit endpoints of the agents instead of their entry endpoints

because there might be an optimal solution that violates both “entry-endpoint” range constraints.

For instance, given the corridor conflict shown in Figure 4.11a, if we use “entry-endpoint” range

constraints ⟨a1,A3, [0,4]⟩ and ⟨a2,D3, [0,4]⟩, then the pair of paths, [A4, A3, B3, C3, D3, D4] for

agent a1 and [D2, D3, C3, D3, D2, D3, C3, B3, A3, A2] for agent a2, is an optimal solution that

violates both “entry-endpoint” range constraints.

4.5.3 Classifying Corridor Conflicts

Similarly to target conflicts, we classify corridor conflicts based on the cardinality of the ver-

tex/edge conflict inside the corridor. A corridor conflict is cardinal iff the corresponding ver-

tex/edge conflict is cardinal; it is semi-cardinal iff the corresponding vertex/edge conflict is semi-

cardinal; and it is non-cardinal iff the corresponding vertex/edge conflict is non-cardinal. This is

an approximate way of classifying corridor conflicts. Figure 4.11a shows an example where, after

branching on a non-cardinal corridor conflict in a CT node N, the costs of both resulting child CT

nodes are larger than the cost of CT node N. Assume that CT node N has two constraints, each

of which prohibits one of the agents from being at its target vertex at timestep 5, so both agents

have to wait for one timestep and thus have paths of length 6. If agent a1 waits at vertex D3 at

timestep 5 and agent a2 waits at vertex A3 at timestep 5, then they have the non-cardinal edge

88

conflict ⟨a1,a2,B3,C3,3⟩. As a result, the corridor conflict is classified as non-cardinal. However,

as we saw above, when we use the range constraints ⟨a1,D3, [0,7]⟩ and ⟨a2,A3, [0,7]⟩ to resolve

the corridor conflict, the costs of both child CT nodes are larger than the cost of CT node N.

We cannot use the differences between the upperbound timesteps of the range constraints and

the timesteps of the agents when they reach their exit endpoints to predict the cost change of the

child CT nodes because the agents may have paths to their target vertices without visiting their exit

endpoints of the corridor.

4.5.4 Theoretical Analysis

Property 4.9. For all combinations of paths of agents a1 and a2 with a corridor conflict, if one path

violates ⟨a1,e1, [0,min(t ′1(e1)−1, t2(e2)+ k)]⟩ and the other path violates ⟨a2,e2, [0,min(t ′2(e2)−

1, t1(e1)+k)]⟩, then the two paths have one or more vertex or edge conflicts inside the corridor.

Since we have already intuitively proved Property 4.9 when we introduce range constraints in

Section 4.5.2, we move the formal proof to Appendix E, so as not to disrupt the flow of text too

much. Property 4.9 implies that range constraints are mutually disjunctive, and thus, according to

Theorem 4.1 and the fact that each range constraint blocks the current path of the agent on which

it is imposed, using them to split a CT node preserves the completeness and optimality of CBS.

Theorem 4.6. Resolving corridor conflicts with range constraints preserves the completeness and

optimality of CBS.

4.6 Generalized Corridor Symmetry

The corridor reasoning technique in the previous section has some limitations when handling three

special corridor symmetries, namely pseudo-corridor symmetries, corridor symmetries with start

vertices inside the corridor, and corridor-target symmetries. In this section, we first discuss these

special cases in detail in the following three subsections. We then present the framework of the

89

(a) Two-agent MAPF instance with a pseudo-corridor
conflict. The shortest paths of agents a1 and a2 have
an edge conflict at edge (C2, D2) at timestep 4.

(b) CT generated by CBS when solving the two-agent
MAPF instance in (a). Each left branch constrains
agent a2, and each right branch constrains agent a1.

Figure 4.13: Example of a pseudo-corridor conflict and the corresponding CT generated by CBS.
In (b), each non-leaf CT node is marked with the vertex/edge of the chosen conflict. Each leaf CT
node marked “+2” contains an optimal solution, whose sum of costs is the cost of the root CT node
plus 2. Each leaf CT node marked “...” contains a plan with conflicts and eventually produces
suboptimal solutions in its descendant CT nodes.

generalized corridor reasoning technique that can handle all types of corridor symmetries in Sec-

tion 4.6.4. We finally show empirical results in Section 4.6.5.

4.6.1 Pseudo-Corridor Conflicts

Pseudo-corridor symmetry is a special corridor symmetry that behaves like a corridor conflict but

occurs in a non-corridor region.

Example 4.9. In Figure 4.13a, CBS detects edge conflict ⟨a1,a2,C2,D2,4⟩ and branches, thereby

generating two child CT nodes. There are many shortest paths for each agent that avoid edge (C2,

D2) at timestep 4 (e.g., path [A3, A2, B2, C2, C2, D2, E2, F2, F3, F4] for agent a1 and path [F3,

F2, E2, D2, D2, C2, B2, A2, A3, A4] for agent a2), but they all involve one wait action and differ

only in where the wait action is taken. However, each of these single-wait paths remains in conflict

with the path of the other agent. CBS has to branch again to find conflict-free paths in such a

situation. Figure 4.13b shows the corresponding CT. Only the left-most and right-most leaf CT

nodes contain optimal solutions.

90

Like corridor conflicts, a pseudo-corridor conflict occurs when (1) two agents move in opposite

directions, (2) they have a vertex or edge conflict, and (3) adding one wait action to one of the

agents before the timestep of the vertex or edge conflict, no matter where, leads to another edge

or vertex conflict. In fact, a pseudo-corridor conflict can be viewed as a corridor conflict whose

corridor is of length 1, i.e., consists of only two endpoints. Pseudo-corridor conflicts might seem

to be less problematic than corridor conflicts, as the sizes of the CTs do not grow exponentially.

However, they could occur more frequently as they are not restricted to maps that have corridors.

We reuse the corridor reasoning technique to resolve pseudo-corridor conflicts. That is, when

we find a corridor conflict of length 1, we generate two range constraints

• c1 = ⟨a1,e1, [0,min(t ′1(e1)−1, t2(e2)+1)]⟩ and

• c2 = ⟨a2,e2, [0,min(t ′2(e2)−1, t1(e1)+1)]⟩,

where ti(ei) for i = 1,2 is the earliest timestep when agent ai can reach endpoint ei and t ′i(ei) for

i = 1,2 is the earliest timestep when agent ai can reach endpoint ei without using edge (e1,e2). All

properties listed in Section 4.5.4 hold here. By reusing their proofs without changes, we can show

that resolving a pseudo-corridor conflict with constraints c1 and c2 preserves the completeness and

optimality of CBS.

In practice, we only use range constraints c1 and c2 to resolve the pseudo-corridor conflict at

a CT node N if path N.plan[a1] violates range constraint c1 and path N.plan[a2] violates range

constraint c2, and we are interested in only cardinal pseudo-corridor conflicts because semi-/non-

cardinal pseudo-corridor conflicts are easy to resolve. A necessary but insufficient condition to

ensure this is that, if the conflict between the two agents is a vertex conflict at timestep t, then the

MDDs of both agents have only one MDD node at timesteps t−1, t, and t +1, and the MDD node

of one agent at timestep t− 1 is identical to the MDD node of the other agent at timestep t + 1;

or if the conflict is an edge conflict at timestep t, then the MDDs of both agents have only one

MDD node at timesteps t − 1 and t. Therefore, before we generate range constraints c1 and c2,

we check the MDDs of both agents to eliminate some non-pseudo-corridor conflicts, as checking

91

Algorithm 4.2: Pseudo-corridor reasoning.
Input: Vertex conflict c = ⟨a1,a2,v, t⟩ or edge conflict c = ⟨a1,a2,v,u, t⟩ at a CT node N

with two MDDs MDD1 and MDD2

1 if c is a vertex conflict ∧ for i = 1,2, MDDi has singletons at timesteps t−1, t, and t +1
and the MDD node of MDDi at timestep t−1 is identical to the MDD node of MDD3−i
at timestep t +1 then

2 e1← v;
3 e2← the vertex of the MDD node of MDD1 at timestep t−1;
4 else if c is an edge conflict ∧ for i = 1,2, MDDi has singletons at timesteps t−1 and t

then
5 e1← u;
6 e2← v;
7 else return Not-Corridor;
8 c1← ⟨a1,e1, [0,min{t ′1(e1)−1, t2(e2)+1}]⟩;
9 c2← ⟨a2,e2, [0,min{t ′2(e2)−1, t1(e1)+1}]⟩;

10 if c1 blocks N.plan[a1]∧ c2 blocks N.plan[a2] then return c1 and c2;
11 return Not-Corridor;

(a) Corridor conflict. (b) Corridor conflict. (c) No corridor conflict.

Figure 4.14: Examples of corridor conflicts with start vertices inside the corridor.

MDDs is substantially computationally cheaper than computing ti(ei) and t ′i(ei) for generating

range constraints. Algorithm 4.2 summarizes the pseudo-code for the pseudo-corridor reasoning

technique. All pseudo-corridor conflicts returned by Algorithm 4.2 are cardinal.

4.6.2 Corridor Conflicts with Start Vertices inside the Corridor

The corridor reasoning technique cannot resolve corridor conflicts efficiently when the start ver-

tices of one or both agents are inside the corridor.

92

Example 4.10. Figure 4.14a shows the same example as Figure 4.11a except that the start vertex

of agent a1 is inside the corridor. If the two agents follow their individual shortest paths, they have

an edge conflict at (C3, D3) at timestep 2. Thus, when we use the corridor reasoning technique

described in Section 4.5.1, we find a corridor C = {B3,C3,D3} of length 2 and generate a pair of

range constraints ⟨a1,D3, [0,5]⟩ and ⟨a2,B3, [0,4]⟩. However, when we generate the right child CT

node with the first constraint, we cannot find a shortest path for agent a1 that does not conflict with

agent a2. In fact, the shortest path for agent a1 that does not conflict with agent a2 is to first move

to vertex A4, wait there until agent a2 reaches vertex A3, and then traverse the corridor and reach

the target vertex.

This example shows that the previous corridor reasoning technique cannot resolve the corridor

conflict in a single branching step because it stops extending the corridor after finding a start vertex.

Figure 4.14b shows a similar example where the start vertices of both agents are inside the corridor.

Therefore, in this subsection, we modify the corridor reasoning technique by allowing start vertices

to be inside the corridor. Below are the details of the modification.

Identifying corridor conflicts We describe a method that identifies both basic corridor conflicts

and corridor conflicts with start vertices inside the corridor. For every vertex and edge conflict, we

first find the corridor on-the-fly by checking whether the conflicting vertex (or an endpoint of the

conflicting edge) is of degree 2. To find the endpoints of the corridor, we check the degree of each

of the two adjacent vertices and repeat the procedure until we find either a vertex whose degree is

not 2 or the target vertex of one of the two agents. Then, we say that the two agents are involved in

a corridor conflict iff they (1) leave the corridor from different endpoints (which ensures that the

two agents traverse the corridor in opposite directions) and (2) have to cross each other inside the

corridor (which will be formally defined by a MUSTCROSS(a1,a2,C) function in Algorithm 4.3

later). The second condition is to avoid cases like in Figure 4.14c. Although the paths of the two

agents shown in Figure 4.14c do not conflict with each other, when considering constraints in the

93

(a) Corridor-target conflict. (b) Corridor-target conflict. (c) No corridor-target conflict.

Figure 4.15: Examples of corridor-target conflicts.

CT node, the shortest paths of the two agents may be longer than the paths shown in the figure and

conflict inside the corridor. But we should not view it as a corridor conflict.

Resolving and classifying corridor conflicts They are the same as the original techniques

shown in Sections 4.5.2 and 4.5.3.

Theoretical analysis All properties listed in Section 4.5.4 hold here. We can reuse their proofs

without changes. Therefore, this modified technique preserves the completeness and optimality of

CBS.

4.6.3 Corridor-Target Conflicts

Another interesting case occurs when the target vertex of an agent is inside the corridor.

Example 4.11. Figure 4.15a shows the same example as Figure 4.11a except that the target vertex

of agent a1 is inside the corridor. If the two agents follow their individual shortest paths, they

have an edge conflict at edge (B3, C3) at timestep 3. Thus, when we use the corridor reasoning

technique described in Section 4.5.1, we find a corridor C = {A3,B3,C3} of length 2 and generate

a pair of range constraints ⟨a1,C3, [0,6]⟩ and ⟨a2,A3, [0,5]⟩. In the right child CT node with the

first constraint, agent a1 waits until agent a2 leaves the corridor and then starts to enter the corridor

from vertex A3 at timestep 5. However, in the left child CT node with the second constraint, we

94

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.16: Examples of cases where the target vertices of agents a1 and a2 are inside corridor
C. Only the cases shown in the first row are classified as corridor-target conflicts by Function
MUSTCROSS(a1,a2,C).

cannot find a shortest path for agent a2 that does not conflict with the path of agent a1. The best

resolution under this CT node is to first let agent a1 travel through the corridor and leave vertex

D3, then agent a2 enter the corridor from vertex D3, and finally agent a1 reenter the corridor from

vertex D3. In other words, the paths of both agents have to be changed.

This example shows that the previous corridor reasoning technique cannot resolve the corridor

conflict in a single branching step because it stops extending the corridor after finding a target

vertex. Therefore, we extend the reasoning technique for corridor conflicts with start vertices

inside the corridor to one that also allows for target vertices inside the corridor. In particular, we

refer to a corridor conflict with one or two target vertices inside the corridor as a corridor-target

conflict.

4.6.3.1 Identifying Corridor Conflicts

We describe a method that identifies basic corridor conflicts, corridor conflicts with start vertices

inside the corridor, and corridor conflicts with target vertices inside the corridor, i.e., corridor-

target conflicts. For every vertex and edge conflict, we first find the corridor on-the-fly by checking

95

Algorithm 4.3: Identify generalized corridor conflicts.
1 Function MUSTCROSS(a1,a2,C)
2 foreach i = 1,2 do
3 if si ∈C then bi← si;
4 else bi← GETENTRYENDPOINT(ai,C);
5 if gi ∈C then ei← gi;
6 else ei← GETEXITENDPOINT(ai,C);

7 if b1 ̸= b2∧ e1 ̸= e2∧ the direction of moving from b1 to b2 is opposite to the direction
of moving from e1 to e2 then return false;

8 else return true;

whether the conflicting vertex (or an endpoint of the conflicting edge) is of degree 2. To find the

endpoints of the corridor, we check the degree of each of the two adjacent vertices and repeat the

procedure until we find a vertex whose degree is not 2. We say that the two agents are involved in a

corridor conflict iff they have to cross each other inside the corridor. We remove the condition from

Section 4.6.2 that requires the agents to move in opposite directions. This is so because, when the

start and target vertices are inside the corridor, the two agents may move in the same direction but

still have an unavoidable conflict, e.g., the conflict in Figure 4.16b.

We use a function MUSTCROSS(a1,a2,C) to determine whether agents a1 and a2 have to cross

each other in corridor C (see Algorithm 4.3). We use vertex bi for i = 1,2 to denote the start vertex

si of agent ai if it is inside the corridor and the endpoint from where agent ai enters the corridor

otherwise. Similarly, we use vertex di for i = 1,2 to denote the target vertex gi of agent ai if it is

inside the corridor and the endpoint from where agent ai leaves the corridor otherwise. Agents a1

and a2 must cross each other iff b1 ̸= b2, d1 ̸= d2, and the direction of moving from vertex b1 to

vertex b2 is opposite to the direction of moving from vertex d1 to vertex d2. Figure 4.16 shows

more examples.

96

4.6.3.2 Resolving Corridor-Target Conflicts

Unlike corridor conflicts with start vertices inside the corridor, that can be resolved by reusing

the basic corridor reasoning technique, corridor-target conflicts require new techniques. We com-

bine the corridor reasoning technique with the target reasoning technique to resolve corridor-target

conflicts.

Case 1: Only one target vertex is inside the corridor. Without loss of generality, we assume

that target vertex g1 is inside the corridor and target vertex g2 is not. We use Figure 4.15a as a

running example, where the path of agent a2 traverses the corridor from endpoint e1 (i.e., vertex

D3) to endpoint e2 (i.e., vertex A3). However, agent a2 might have bypasses that can reach vertex

e2 without traversing the corridor (omitted in Figure 4.15a). So, it can choose whether to use the

corridor. If it uses the corridor, then agent a1 has to use the corridor after agent a2 because it must

eventually wait at its target vertex inside the corridor forever. There are two cases for agent a1 to

use the corridor after agent a2.

• If agent a1 enters the corridor from endpoint e2, then it has to let agent a2 traverse the

corridor first. So, the earliest timestep for it to enter the corridor from vertex e2 is

max{t1(e2), t2(e2)+ 1}, and, therefore, the earliest timestep for it to reach its target vertex

g1 is max{t1(e2), t2(e2)+1}+dist(e2,g1) (recall that ti(x) for i = 1,2 is the earliest timestep

when agent ai can reach vertex x).

• Similarly, if agent a1 enters the corridor from endpoint e1, then the earliest timestep for it to

reach its target vertex g1 is max{t1(e1), t2(e1)+1}+dist(e1,g1).

In other words, if agent a1 reaches its target vertex at or before timestep

l = min
i=1,2
{max{t1(ei)−1, t2(ei)}+dist(ei,g1)}, (4.8)

then agent a2 cannot traverse the corridor without conflicting with a1, i.e., the earliest timestep for

it to reach endpoint e2 is t ′2(e2) (i.e., using a bypass that does not traverse the corridor). Therefore,

97

to resolve this corridor-target conflict, we generate two child CT nodes, each with one of the

constraint sets C1 = {l1 > l} and C2 = {l1 ≤ l,⟨a2,e2, [0, t ′2(e2)−1]⟩}.

Case 2: Both target vertices are inside the corridor. The reasoning is similar to Case 1. We

use Figure 4.15b as a running example, where agent a2 has to enter the corridor to reach its target

vertex g2 and can enter it from either endpoint e1 (i.e., vertex D3) or endpoint e2 (i.e, vertex A3).

If agent a2 enters the corridor from endpoint e1, then it has to visit vertex g1 before agent a1

completes its path and waits at its target vertex g1 forever.

• If agent a1 enters the corridor from endpoint e2, then it has to let agent a2 traverse the

corridor first. So, the earliest timestep for agent a1 to enter the corridor from endpoint e2 is

max{t1(e2), t2(e2)+ 1}, and, therefore, the earliest timestep for agent a1 to reach its target

vertex g1 is max{t1(e2), t2(e2)+1}+dist(e2,g1).

• If agent a1 enters the corridor from endpoint e1, then the earliest timestep for agent a1 to

reach its target vertex g1 is max{t1(e1), t2(e1)+1}+dist(e1,g1).

In other words, if agent a1 completes its path at or before timestep l (defined in Equation (4.8)),

then agent a2 cannot visit vertex g1 without conflicting with agent a1, i.e., the earliest timestep

for agent a2 to reach its target vertex g2 is t ′2(g2), which represents the earliest timestep for agent

a2 to reach its target vertex g2 via a bypass, i.e., a path that enters the corridor from vertex e2.

Therefore, to resolve this corridor-target conflict, we generate two child CT nodes, each with one

of the constraint sets C1 = {l1 > l} and C2 = {l1 ≤ l, l2 > t ′2(g2)−1}.

4.6.3.3 Classifying Corridor-Target Conflicts

We reuse the method in Section 4.5.3 to classify corridor-target conflicts.

98

Algorithm 4.4: Generalized corridor reasoning.
Input: Vertex conflict c = ⟨a1,a2,v, t⟩ or edge conflict c = ⟨a1,a2,v,u, t⟩ at a CT node N

with two MDDs MDD1 and MDD2

1 Construct corridor C =C0∪{e1,e2} from vertex v or edge (v,u);
2 if |C|= 2 then // Pseudo-corridor conflict; Algorithm 4.2
3 return PSEUDOCORRIDORREASONING(c,N,MDD1,MDD2);

4 if MUSTCROSS(ai,a j,C) = false then return Not-Corridor; // Algorithm 4.3
5 if g1 ∈C∧g2 ∈C then // Corridor-target conflict, Case 2
6 l←mins=1,2{max{t1(es)−1, t2(es)}+dist(es,g1)};
7 C1←{l1 > l};
8 C2←{l1 ≤ l, l2 > t ′2(g2)−1};
9 else if g1 ∈C∨g2 ∈C then // Corridor-target conflict, Case 1

10 WLOG, let a1 be the agent whose target vertex is inside the corridor;
11 l←mins=1,2{max{t1(es)−1, t2(es)}+dist(es,g1)};
12 C1←{l1 > l};
13 C2←{l1 ≤ l,⟨a2,e2, [0, t ′2(e2)−1]⟩};
14 else // Basic corridor conflict or corridor conflict with start vertices inside the corridor
15 C1←{⟨a1,e1, [0,min{t ′1(e1)−1, t2(e2)+dist(e1,e2)}]⟩};
16 C2←{⟨a2,e2, [0,min{t ′2(e2)−1, t1(e1)+dist(e2,e1)}]⟩};
17 if C1 blocks N.plan[a1]∧C2 blocks N.plan[a2] then return C1 and C2;
18 return Not-Corridor;

4.6.3.4 Theoretical Analysis

Property 4.10. For all combinations of paths of agents a1 and a2 with a corridor-target conflict, if

one path violates constraint set C1 and the other path violates constraint set C2, then the two paths

have one or more vertex or edge conflicts inside the corridor.

Since we have already intuitively proved Property 4.10 when we introduced constraint sets C1

and C2 in Section 4.6.3.2, we move the formal proof to Appendix F. Property 4.10 implies that

constraint sets C1 and C2 are mutually disjunctive, and thus, according to Theorem 4.1 and the

fact that Ci for i = 1,2 blocks the current path of ai, using them to split a CT node preserves the

completeness and optimality of CBS.

99

Figure 4.17: Runtime distributions of CBSH with different corridor reasoning techniques. In the
city-map and two game-map figures, the yellow and purple lines are hidden by the red lines, and
the green lines are hidden by the blue lines.

4.6.4 Summary on Generalized Corridor Symmetry

So far, we have discussed all types of generalized corridor conflicts separately, namely basic corri-

dor conflicts, pseudo-corridor conflicts, corridor conflicts with start vertices inside the corridor, and

corridor-target conflicts. Algorithm 4.4 shows the pseudo-code for generalized corridor reasoning,

that integrates these reasoning procedures.

Combining the theoretical analysis for each type of generalized corridor conflicts, we obtain

the following theorem.

Theorem 4.7. Resolving generalized corridor conflicts with the constraint sets returned by Algo-

rithm 4.4 preserves the completeness and optimality of CBS.

4.6.5 Empirical Evaluation

We compare all corridor reasoning techniques empirically and show the results in Figure 4.17.

None represents CBSH, C represents CBSH with the basic corridor-reasoning technique described

100

in Section 4.5, PC represents CBSH with the basic corridor-reasoning technique described in Sec-

tion 4.5 plus the pseudo-corridor-reasoning technique described in Section 4.6.1, STC represents

CBSH with the basic corridor-reasoning technique described in Section 4.5 plus the modification

for handling start and target vertices described in Sections 4.6.2 and 4.6.3, and GC represents

CBSH with generalized corridor-reasoning technique shown in Algorithm 4.4.

Map Empty contains no obstacles and thus no corridors. So, none of the corridor-reasoning

techniques speeds up CBSH, but they do not slow down CBSH either. Maps Game1, City, and

Game2 have only few corridors, but they all have obstacles of various shapes, where pseudo-

corridor reasoning can be useful. As a result, although C and STC do not improve the performance

of CBSH, PC and GC do. Maps Random, Warehouse, Room, and Maze have many corridors, and,

as a result, all corridor-reasoning techniques speed up CBSH. Among all maps, the improvements

on map Maze are the largest. Among all corridor reasoning techniques, GC is always the best.

4.7 Symmetry Reasoning Framework

Until now, we have described and empirically evaluated each symmetry reasoning technique inde-

pendently. In this section, we present the complete framework of our pairwise symmetry-reasoning

techniques, namely how to identify different classes of symmetry conflicts and, when multiple con-

flicts exist, which conflict to resolve first. We then show some empirical results for combining all

symmetry reasoning techniques and compare them with mutex propagation, a different symmetry

reasoning technique.

4.7.1 Framework

During the expansion of a CT node, we run symmetry reasoning for each vertex and edge conflict

c. Algorithm 4.5 shows the pseudo-code. We first run generalized corridor reasoning by calling

Algorithm 4.4 [Line 1] and return the corresponding constraint sets C1 and C2 for resolving the

conflict if it is a (generalized) corridor conflict [Line 2]. If conflict c is not a (generalized) corridor

101

Algorithm 4.5: Symmetry reasoning.
Input: Vertex conflict c = ⟨a1,a2,v, t⟩ or edge conflict c = ⟨a1,a2,v,u, t⟩ at a CT node N

with two MDDs MDD1 and MDD2

1 {C1,C2}← GENERALIZEDCORRIDORREASONING(c,N,MDD1,MDD2);
2 if {C1,C2} ̸= Not-Corridor then return C1 and C2; // Corridor conflict
3 if t ≥ length(N.plan[a1])∨ t ≥ length(N.plan[a2]) then
4 {C1,C2}← TARGETREASONING(c);
5 return C1 and C2; // Target conflict

6 if c is a semi-/non-cardinal vertex conflict then
7 {C1,C2}← GENERALIZEDRECTANGLEREASONING(c,N,MDD1,MDD2);
8 if {C1,C2} ̸= Not-Rectangle then return C1 and C2; // Rectangle conflict

9 {C1,C2}← STANDARDCBSSPLITTING(c);
10 return C1 and C2; // Vertex/Edge conflict

conflict, we then check whether it is a target conflict by comparing the path lengths of the agents

with the conflicting timestep t [Line 3]. If, say, the path of agent a1 is no longer than t, then it is

a target conflict, and we run target reasoning by calling function TARGETREASONING(c) [Line 4]

and return the corresponding constraint sets C1 = {l1 > t} and C2 = {l1 ≤ t} [Line 5]. If conflict c

is not a target conflict but a semi- or non-cardinal vertex conflict [Line 6], then we run generalized

rectangle reasoning by calling the algorithm described in Section 4.3.2 [Line 7] and return the

corresponding constraint sets if conflict c is a (generalized) rectangle conflict [Line 8]. If conflict c

does not belong to any class of symmetry conflicts, then we use the standard CBS splitting method

to generate the constraints [Line 9].

We run generalized corridor reasoning before target reasoning because, otherwise, target rea-

soning may identify some corridor-target conflicts as target conflicts and resolve them less effi-

ciently. We run generalized rectangle reasoning after generalized corridor and target reasoning

because this leads to the smallest runtime overhead. More specifically, if conflict c is a (gener-

alized) rectangle conflict, then generalized corridor and target reasoning can quickly realize that

conflict c is not a (generalized) corridor or target conflict because the graph structure around the

conflicting vertex/edge and the conflicting timestep does not satisfy their requirements. On the

102

other hand, if conflict c is a (generalized) corridor or target conflict, then generalized rectangle rea-

soning needs to manipulate the corresponding MDDs before it realizes that it is not a (generalized)

rectangle conflict. Therefore, running generalized rectangle reasoning last leads to the smallest

runtime overhead.

When choosing conflicts, we resolve cardinal conflicts first, then semi-cardinal conflicts, and

last non-cardinal conflicts. The cardinality of symmetry conflicts are determined during the sym-

metry reasoning procedure, although we do not show it explicitly in Algorithm 4.5. When there

are multiple conflicts of the same cardinality, we break ties using the motivation described in Sec-

tion 2.3.2.1, i.e., in favor of conflicts that can increase the costs of the child CT nodes more. To

be specific, we give target conflicts the highest priority because, when resolving a target conflict,

the cost of at least one child CT node is at least one and often even larger than the cost of the

parent CT node. (Generalized) corridor conflicts have the second highest priority because, when

resolving a (generalized) corridor conflict, the costs of the child CT nodes can be more than one

larger than the cost of the parent CT node. (Generalized) rectangle conflicts have the third highest

priority because, when resolving a (generalized) rectangle conflict, the costs of the child CT nodes

are typically at most one larger. Vertex and edge conflicts have the lowest priority because we

prefer to resolve all symmetry conflicts first, and also, when resolving a vertex or edge conflict, the

costs of the child CT nodes are typically at most one larger than the cost of the parent CT node.

4.7.2 Empirical Evaluation

In this subsection, we compare CBSH (denoted None), CBSH with the best variant of each of

the reasoning technique, namely generalized rectangle reasoning (denoted GR), target reasoning

(denoted T), and generalized corridor reasoning (denoted GC), and CBSH with their combination

(denoted GRTGC, or RTC for short).

Runtimes and Success Rates Figure 4.18 presents the runtimes, and Figure 4.19 presents the

success rates, i.e., the percentage of instances solved within the runtime limit of one minute. As

103

Figure 4.18: Runtime distributions of CBSH with different symmetry reasoning techniques.

Figure 4.19: Success rates of CBSH with different pairwise symmetry reasoning techniques.

expected, all of GR, T, and GC can speed up CBSH, and the amount of their speedup depends

on the structure of the maps. Their combination, i.e., RTC, is always (very close to) best. In

Figure 4.19, we notice an interesting behavior on many maps, such as maps Empty, Warehouse,

104

Table 4.3: Scalability of None and RTC, i.e., the largest number of agents that each algorithm can
solve with a success rate of 100%.

Map None RTC Map None RTC Map None RTC Map None RTC
Random 35 47 Empty 18 82 Warehouse 17 84 Game1 5 67
Room 10 27 Maze 2 2 City 3 89 Game2 11 31

Game1, and City: the success rate improvements of the combination RTC are substantially larger

than those of GR, T, and GC separately. This is so because, when a MAPF instance contains

more than one class of symmetry conflicts, solving any class of symmetry conflicts with standard

CBS splitting could result in unacceptable runtimes. Thus, CBSH with only one of the reasoning

techniques does not solve many instances within the runtime limit, while CBSH with all techniques

does.

Scalability To show the scalability of CBSH with and without our reasoning techniques, instead

of using the instances described in Table 4.1, we run None and RTC on the same six maps with

the number of agents increasing by one at a time, starting from 2. We report the largest number of

agents that each algorithm can solve with a success rate of 100% in Table 4.3. We see that, except

for map Maze, RTC dramatically improves the scalability of None, especially on large maps with

lots of open space, such as maps Game1 (with an improvement of 13 times) and City (with an

improvement of 30 times).

Sizes of CTs Figure 4.20 compares the number of expanded CT nodes of None and RTC. It

shows that our reasoning techniques can reduce the sizes of CTs by up to four orders of magnitude.

Among the 890 instances solved by at least one of the algorithms, RTC performs worse than None

on only 24 (= 2% of) instances and beats it on 782 (= 88% of) instances.

Runtime Overhead Table 4.4 reports the runtime overhead of generalized rectangle and cor-

ridor reasoning in RTC. The runtime overhead of generalized rectangle reasoning mainly stems

from manipulating MDDs because it has to search the MDDs twice, once for finding the gen-

eralized rectangle and once for classifying the rectangle conflicts. However, both searches are

105

Figure 4.20: Numbers of expanded CT nodes of None and RTC. If an instance is not solved within
the runtime limit of one minute, we set the number of its expanded CT nodes to infinity. Among
the 1,200 instances, 310 instances are solved by neither algorithm; 418 instances are solved by
RTC but not by None; and only 3 instances are solved by None but not by RTC. Among the 469
instances solved by both algorithms, RTC expands fewer CT nodes than None for 364 instances,
the same number of CT nodes for 84 instances, and more CT nodes for only 21 instances.

Table 4.4: Percentages of runtimes of RTC spent on generalized rectangle and corridor reasoning.
The runtime overhead of target reasoning is negligible and thus not reported here.

Map Rectangle Corridor Map Rectangle Corridor
Random 3.62% 10.86% Empty 5.79% 0.30%

Warehouse 1.26% 5.69% Game1 1.73% 1.80%
Room 2.42% 30.12% Maze 0.14% 0.57%
City 1.12% 0.98% Game2 6.32% 8.52%

relatively fast, and, as a result, the overall runtime overhead of generalized rectangle reasoning is

manageable, i.e., always less than 7% in Table 4.4. The runtime overhead of generalized corridor

reasoning mainly stems from calculating ti(x) and t ′i(x), as each of them, in our implementation,

is a state-time A* search. We see that, on most maps, this overhead is small. But there are some

maps, such as Random and Room, where the runtime overhead is more than 10%. Overall, the run-

time overhead pays off in Figures 4.18 and 4.19 due to the effectiveness of the symmetry-breaking

constraints for reducing the sizes of CTs.

Frequencies of Symmetries Table 4.5 reports how often RTC uses each reasoning technique

to expand CT nodes, which also indicates how often different conflicts occur on different maps.

106

Table 4.5: Conflict distributions of RTC. “Rectangle”, “Target”, “Corridor”, and “Vertex/Edge”
represent the percentages of CT nodes expanded by resolving generalized rectangle, target, gener-
alized corridor, and vertex/edge conflicts, respectively.

Map Expanded CT nodes Rectangle Target Corridor Vertex/Edge
Random 25,840 6.528% 54.391% 10.812% 28.269%
Empty 17,946 9.016% 61.856% 0.016% 29.112%

Warehouse 959 4.745% 55.579% 10.337% 29.339%
Game1 535 7.776% 50.851% 10.901% 30.472%
Room 8,848 3.443% 10.135% 55.036% 31.386%
Maze 30 0.000% 2.556% 44.315% 53.129%
City 401 6.183% 48.422% 5.364% 40.031%
Game2 345 2.400% 11.768% 67.998% 17.834%

Clearly, generalized rectangle conflicts are more frequent on maps with more open space. An

extreme case is map Maze, where RTC does not branch on any rectangle conflicts as there is no

open space on this map. Target conflicts happen frequently on all maps for two reasons: one is

that we always choose to resolve target conflicts first, and the other is that the likelihood of a target

conflict happening is high given the high density of the agents in our instances and regardless of the

structures of the maps. The only exception is map Maze because most target conflicts are classified

as corridor-target conflicts by generalized corridor reasoning there. Corridor conflicts are detected

on all maps and frequent on maps with obstacles. Thanks to pseudo-corridor reasoning, we find

many corridor conflicts not only on maps with many corridors, such as maps Random, Warehouse,

Room, and Maze, but also on maps with few or even no corridors, such as maps Empty, Game1,

City, and Game2. Generalized rectangle, target, and generalized corridor conflicts account for

approximately 70% of conflicts used to expand CT nodes on many of the maps. Together with the

efficiency of our reasoning techniques and the effectiveness of our symmetry-breaking constraints,

this high frequency results in the gains that we see in Figures 4.18 to 4.20.

Two-Agent Analysis An interesting question about our symmetry reasoning techniques is

whether the generalized rectangle, target, and generalized corridor reasoning techniques find all

pairwise symmetries in MAPF. To answer this question, we design a two-agent experiment. Re-

call that CBSH2 solves a two-agent sub-MAPF instance for each pair of conflicting agents at each

107

Table 4.6: Numbers of expanded CT nodes of None and RTC when solving two-agent MAPF
instances. The numbers in column > n represent the percentages of instances that are solved by
expanding more than n CT nodes.

Map Agents Algorithm > 1 > 2 > 9 > 99 > 999

Random 100
None 13.577% 5.852% 0.754% 0.215% 0.055%
RTC 1.748% 0.806% 0.428% 0.031% 0.014%

Empty 200
None 8.997% 8.262% 6.892% 5.583% 4.689%
RTC 2.808% 0.588% 0.006% 0.001% 0.000%

Warehouse 200
None 20.896% 14.237% 1.049% 0.484% 0.297%
RTC 0.948% 0.187% 0.029% 0.011% 0.011%

Game1 300
None 18.952% 4.477% 3.159% 2.926% 2.813%
RTC 10.150% 0.502% 0.060% 0.050% 0.000%

Room 100
None 49.291% 28.169% 4.031% 0.007% 0.000%
RTC 14.517% 3.283% 0.123% 0.003% 0.000%

Maze 20
None 96.886% 93.426% 69.550% 46.713% 16.609%
RTC 6.484% 6.180% 1.418% 1.216% 0.405%

City 400
None 18.732% 7.338% 5.146% 3.531% 3.203%
RTC 5.756% 0.189% 0.029% 0.029% 0.029%

Game2 150
None 38.282% 6.180% 0.116% 0.097% 0.093%
RTC 18.930% 2.422% 0.024% 0.024% 0.000%

CT node to compute the WDG heuristic (see Section 3.3.3).6 Here, we record the number of CT

nodes expanded by None and RTC for solving such two-agent sub-MAPF instances and report the

results in Table 4.6. Compared to None, RTC expands substantially fewer CT nodes for solving

the two-agent sub-MAPF instances. Impressively, RTC solves up to 99% of two-agent sub-MAPF

instances by expanding only a single CT node. Even in the worst case, it solves 81% of two-agent

sub-MAPF instances by expanding only a single CT node. Except for map Maze, RTC expands

10 or more CT nodes for fewer than 0.5% of instances. As for map Maze, the percentage is less

than 1.5%. Therefore, RTC identifies and efficiently eliminates most of the pairwise symmetries

in MAPF.

Conflict Prioritization In order to show the effectiveness of our proposed conflict prioritization

strategy (i.e., for conflicts of the same cardinality, we first choose target conflicts, then generalized

corridor conflicts, generalized rectangle conflicts, and finally vertex and edge conflicts), we create

6In practice, CBSH2 does not do so for all pairs of agents, as it uses a memoization technique to avoid solving the
same two-agent sub-MAPF instance at different CT nodes more than once.

108

Table 4.7: Numbers of instances solved by rRCT and RTC within one minute. The total number
of instances for each map is 150 (i.e., 6 different numbers of agents with 25 instances for each
number).

Map rRTC RTC Map rRTC RTC Map rRTC RTC Map rRTC RTC
Random 97 113 Empty 116 126 Warehouse 90 118 Game1 114 119
Room 90 111 Maze 46 49 City 128 133 Game2 106 118

a strawman algorithm rRTC that chooses randomly among all conflicts of the same cardinality and

compare it with RTC in Table 4.7. On all maps, RTC solves 3.9%-31.1% more instances than

rRTC, which clearly shows that our fine-grained conflict prioritization strategy that sorts conflicts

according to their cardinalities and then breaks ties according to their symmetry types is better than

the existing conflict prioritization strategy [27] that sorts the conflicts according to their cardinali-

ties only.

4.7.3 Empirical Comparison with Mutex Propagation

Our symmetry reasoning techniques are manually designed. In another line of research, we pro-

pose to use mutex propagation [208] to autonomously identify all cardinal symmetry conflicts and

resolve them with a pair of vertex constraint sets. MDDs essentially capture the reachability infor-

mation for single agents and thus resemble planning graphs in classical planning [25]. Therefore,

we add mutex propagation on top of MDDs to capture the reachability information for pairs of

agents. Two MDD nodes for two agents are mutex iff all pairs of their paths that visit the two

MDD nodes are in conflict. So, two agents have a cardinal (symmetry) conflict iff the goal nodes

of their MDDs are mutex. Given two agents with a cardinal (symmetry) conflict, we find two MDD

node sets, each consisting of the MDD nodes of one agent that are mutex with the goal MDD node

of the other agent, and use them to generate two constraint sets for branching in CBS. Therefore,

the mutex propagation technique can automatically identify all cardinal symmetry conflicts and

resolve them. See [208] for more details.

To compare our manually designed symmetry reasoning techniques and mutex propagation, we

test four versions of CBSH: (1) CBSH with mutex propagation only (denoted M); (2) CBSH with

109

Figure 4.21: Runtime distributions of CBSH with our symmetry reasoning techniques and mutex
propagation.

our symmetry reasoning techniques only (denoted RTC); (3) CBSH with both techniques where,

for each vertex/edge conflict, we always perform mutex propagation first and then perform our

symmetry reasoning only if mutex propagation fails to identify this conflict as a cardinal symme-

try conflict (denoted M+RTC); and (4) CBSH with both techniques where, for each vertex/edge

conflict, we always perform our symmetry reasoning first and then perform mutex propagation only

if our symmetry reasoning fails to identify this conflict as a symmetry conflict (denoted RTC+M).

Figure 4.21 reports the runtime distributions of these four algorithms. First, our symmetry

reasoning alone always performs better than mutex propagation alone. One of the reasons is that

mutex propagation only reasons about cardinal symmetry conflicts but ignores semi- and non-

cardinal symmetry conflicts. Therefore, when we apply our symmetry reasoning techniques after

mutex propagation, M+RTC performs better than M in many cases. RTC always performs better

than M+RTC for two reasons: Mutex propagation has a larger runtime overhead than our symmetry

reasoning techniques and uses vertex constraint sets to resolve target and corridor-target conflicts,

which are less effective than the length constraints that our symmetry reasoning techniques use.

The performance of RTC and RTC+M is competitive. In some cases, RTC is slightly better than

110

RTC+M because RTC+M has a larger runtime overhead. In other cases, RTC is slightly worse than

RTC+M because mutex propagation can identify some cardinal symmetry conflicts that our sym-

metry reasoning techniques fail to identify. The negligible improvement of RTC+M over RTC also

implies that, although we developed our symmetry reasoning techniques by enumerating possible

pairwise symmetries manually, RTC is able to identify most of the cardinal symmetry conflicts. In

summary, our symmetry reasoning techniques are more effective than mutex propagation on the

instances used. Their combination does not outperform our symmetry-reasoning techniques alone.

4.8 Combining Symmetry Breaking with the WDG Heuristic

CBSH2 uses CBSH to solve a two-agent sub-MAPF instance for each pair of agents in the origi-

nal MAPF instance to generate informed heuristic guidance for the high-level search of CBS. We

already showed in Table 4.6 that symmetry reasoning can significantly reduce the number of CT

nodes expanded by CBSH when solving two-agent sub-MAPF instances — and thus reduce its

runtime. Now, we show that symmetry reasoning can also reduce the number of CT nodes ex-

panded by CBSH2 when solving the original MAPF instance — and thus reduce its runtime. In

addition, we add the bypassing conflicts (see Section 2.3.2.2) to CBSH2, which resolves some

semi- and non-cardinal conflicts without branching. We call the resulting algorithm CBSH2-RTC,

which uses symmetry reasoning both in the main routine of CBSH2 and in the two-agent sub-

MAPF solver CBSH of CBSH2, and show its pseudo-code in Algorithm 4.6. Compared to vanilla

CBS shown in Algorithm 2.1, CBSH2-RTC contains four improvement techniques, namely prior-

itizing conflicts [Line 11], symmetry reasoning [Line 12], bypassing conflicts [Lines 23 and 26],

and using the WDG heuristic [Lines 7 to 10].

Furthermore, we make two changes to the WDG heuristic. First, we need to modify the lazy

heuristic technique used by the WDG heuristic slightly because, when adding a length constraint

l2 ≤ t to a CT node, we might need to replan paths for more than one agent, which may make the

111

Algorithm 4.6: CBSH2-RTC for solving MAPF optimally.
Input: MAPF instance (G,A)

1 Generate root CT node R; // Same as CBS on Lines 1 to 3 in Algorithm 2.1
2 OPEN←{R};
3 while OPEN ̸= /0 do
4 N← argminN∈OPEN f (N); // Break ties by CT nodes with fewer conflicts
5 OPEN← OPEN \{N};
6 if N.conflicts = /0 then return N.plan;
7 if the WDG heuristic for N has not yet been computed then
8 COMPUTEWDGHEURISTIC(N); // WDG heuristic from Section 3.3
9 OPEN← OPEN∪{N};

10 continue;

11 CONFLICTPRIORITIZATION(N.conflicts); // Prioritizing conflicts from Section 2.3.2.1
12 SYMMETRYREASONING(N.conflicts); // Symmetry reasoning using Algorithm 4.5
13 conflict← a conflict in N.conflicts with the highest priority;
14 Generate the two constraint sets C1 and C2 for resolving conflict;
15 children← /0;
16 for i = 1,2 do
17 N′← a copy of N;
18 N′.constraints← N.constraints∪Ci;
19 for a j ∈ A : N′.plan[a j] violates Ci do
20 N′.plan[a j]← LOWLEVELSEARCH(a j,G,N′);
21 if N′.plan[a j] does not exist then Go to Line 16;

22 N′.conflicts← all conflicts in N′.plan;
23 if cost(N′) = cost(N)∧|N′.conflicts|< |N.conflicts| then
24 N.plan← N′.plan;
25 N.conflicts← N′.conflicts;
26 Go to Line 6; // Bypassing conflicts from Section 2.3.2.2

27 children← children∪{N′};
28 for N′ ∈ children do OPEN← OPEN∪{N′};
29 return “No Solution”;

first item in Equation (3.1) inadmissible. Therefore, we delete the first item and use the following

equation instead:

h1(N′) = max{cost(N)+h(N)− cost(N′),0}, (4.9)

Second, when building the weighted pairwise dependency graph GWD = (VD,ED,WD), we do not

use the merging MDDs technique to determine whether an edge belongs to ED. Instead, we run

112

Figure 4.22: Runtime distributions of CBSH and CBSH2 with and without RTC.

CBSH-RTC for every pair of agents whose paths are in conflict to determine the existence of an

edge and its weight simultaneously. This is so because CBSH-RTC, unlike CBSH, does not suffer

from rectangle symmetry any longer and thus runs significantly faster than merging MDDs (as we

show in Table 4.6, CBSH-RTC solves most of the two-agent sub-MAPF instances by expanding

only one CT node).

4.8.1 Empirical Evaluation

Figure 4.22 shows the runtime distributions of CBSH and CBSH2 with and without symmetry rea-

soning. As expected, both RTC and CBSH2 outperform CBSH in most cases. In particular, RTC

always performs better than CBSH2, which indicates that, although both symmetry reasoning and

the heuristics used in CBSH2 reason about pairs of agents, RTC (that uses symmetry-breaking

constraints to resolve symmetries directly) is more effective than CBSH2 (that relies on the heuris-

tics to eliminate symmetries). Not surprisingly, CBSH2-RTC performs the best as it uses both

symmetry-breaking constraints and informed heuristics.

113

Figure 4.23: Numbers of CT nodes expanded by CBSH2 and CBSH2-RTC. If an instance is not
solved within the runtime limit, we set its number of expanded nodes to infinity. Among the 1,200
instances, 239 instances are solved by neither algorithm; 241 instances are solved by CBSH2-RTC
but not by CBSH2; and only 6 instances are solved by CBSH2 but not by CBSH2-RTC. Among
the 714 instances solved by both algorithms, CBSH2-RTC expands fewer CT nodes than CBSH2
for 572 instances, the same number of CT nodes for 104 instances, and more CT nodes for only 38
instances.

In order to show that the gain of adding symmetry reasoning to CBSH2 is not just due to it

speeding up CBSH when solving the two-agent sub-MAPF instances, we plot the number of CT

nodes expanded by CBSH2 with and without symmetry reasoning in Figure 4.23. We see that

symmetry reasoning can reduce the size of the CTs of CBSH2 by up to three orders of magnitude.

Among the 961 instances solved by at least one of the algorithms, CBSH2 with RTC performs

worse than CBSH2 only on 44 (= 5% of) instances and beats it on 676 (= 70% of) instances.

4.9 Summary

In this chapter, we provided evidence that symmetries are one of the reasons why MAPF is hard.

We showed that symmetry conflicts arise extremely frequently in MAPF. Rectangle symmetry

occurs when the paths of two agents must cross and have many equivalent ways of doing so.

Generalized rectangle reasoning applies to planar graphs, which represent all MAPF instances

on 2D maps in practice. Generalized corridor and target reasoning avoids symmetries resulting

114

from multiple wait actions. Both of them apply to graphs in general and important for one of the

main commercial uses of MAPF algorithms, namely routing robots in automated warehouses. We

showed that our symmetry reasoning techniques scale up CBSH by up to thirty times and reduce its

number of expanded CT nodes by up to four orders of magnitude. They significantly outperform

both CBSH2 and CBSH with mutex propagation.

4.10 Extensions

As we introduced in Section 2.2.1, state-of-the-art optimal MAPF algorithms all search the

conflict-resolution space and thus, not surprisingly, suffer from the issue of pairwise symmetries.

Motivated by our work, researchers have developed a sequence of symmetry-reasoning techniques

for speeding up BCP, a state-of-the-art optimal MAPF algorithm based on integer linear program-

ming (introduced in Section 2.2.1.2) [96, 95, 97]. Our symmetry-reasoning techniques can be

directly applied to Lazy CBS, a state-of-the-art optimal MAPF algorithm based on constraint pro-

gramming (introduced in Section 2.2.1.2) and speed it up as well [95]. In Chapter 5, we will show

that symmetry reasoning can also speed up bounded-suboptimal CBS variants.

Symmetries reduce the efficiency of optimal MAPF algorithms for not only classic MAPF

problems but also generalized MAPF problems. Therefore, our symmetry-reasoning techniques

can also significantly speed up CBS variants for generalized MAPF problems, such as k-robust

MAPF [39], MAPF with precedence constraints [210], and MAPF with agents of different

lengths [40].

Although mutex propagation does not outperform our symmetry-reasoning techniques in our

experiments, it has the advantage that it can be easily adapted to many generalized MAPF prob-

lems and can easily detect new symmetries that our symmetry-reasoning techniques have not been

designed to discover. For example, we have shown that mutex propagation can speed up the SAT-

based optimal algorithm SAT-MDD for classic MAPF [173, 212], the CBS-based algorithm CBICS

115

for MAPF with non-unit traversal times [187], and the CBS-based algorithm MC-CBS for MAPF

with large agents [211].

116

Chapter 5

Speeding up Bounded-Suboptimal CBS via Inadmissible

Heuristics

Many real-world applications of MAPF involve hundreds of agents but have only limited comput-

ing resources available for planning. Therefore, we study bounded-suboptimal MAPF algorithms

in this chapter, that trade off solution quality for runtime. Bounded-suboptimal algorithms are

algorithms that guarantee to find solutions with costs no more than a user-specified factor away

from optimal. The current state-of-the-art bounded-suboptimal MAPF algorithms, just like the

current state-of-the-art optimal MAPF algorithms, are CBS variants or employ ideas similar to

CBS. Among all CBS variants, ECBS runs the fastest [16]. Its bounded suboptimality is achieved

by replacing the best-first search on the high and low levels of CBS with focal search [134]. Fo-

cal search uses an admissible heuristic for bounding the solution cost and another heuristic for

determining the distance of nodes to the goal nodes.

In this chapter, we first demonstrate that ECBS becomes inefficient if these heuristics are neg-

atively correlated. We then propose a new bounded-suboptimal variant of CBS, called Explicit

Estimation CBS (EECBS), to overcome this issue. EECBS replaces focal search with Explicit

Estimation Search [174] on the high level and uses online learning [176] to learn an informed

but potentially inadmissible heuristic to guide the high-level search. ECBS and EECBS differ

from CBS only in the node-selection rules used in their high- and low-level searches. Hence,

the ideas behind many improvements of CBS, such as prioritizing conflicts (see Section 2.3.2.1)

117

and bypassing conflicts (see Section 2.3.2.2) as well as our proposed admissible heuristics and

symmetry-reasoning techniques in Chapters 3 and 4, might improve ECBS and EECBS as well,

and we show how they can be adapted to them. Finally, we empirically evaluate how each im-

provement affects the performance of ECBS and EECBS, finding that their combination is best.

EECBS with the improvements runs significantly faster than ECBS as well as BCP-7 [95] and

eMDD-SAT [172], two other state-of-the-art bounded-suboptimal MAPF algorithms.

This chapter closely follows [112].

5.1 Background: Enhanced CBS (ECBS)

Focal search is a bounded-suboptimal search algorithm based on A∗ε [134]. It maintains two lists

of nodes: OPEN and FOCAL. OPEN is the regular open list of A*, sorted according to an

admissible cost function f .1 Let best f be the node with the minimum f -value in OPEN and w

be a user-specified suboptimality factor. FOCAL contains those nodes n in OPEN for which

f (n) ≤ w · f (best f), sorted according to a function d that estimates the distance-to-go, i.e., the

number of hops from node n to a goal node. Focal search always expands the node with the

minimum d-value in FOCAL. Since f (best f) is a lower bound on the optimal solution cost c∗,

focal search guarantees that the cost of the found solution is at most w · c∗.

Enhanced CBS (ECBS) [16] is a bounded-suboptimal variant of CBS that uses focal search

with the same suboptimality factor w on both the high and low levels. Given a CT node N, the

low level of ECBS finds a bounded-suboptimal path for agent ai that satisfies N.constraints and

minimizes the number of conflicts with the paths of other agents {N.plan[a j] | a ja j ∈ A \ {ai}}.

It achieves this by using a focal search with f (n) being the standard f (n) = g(n)+ h(n) of A*

and d(n) being the number of conflicts with the paths of other agents. When it finds a solution, it

returns not only the path but also the minimum f -value f i
min(N) in the low-level open list, which

is a lower bound on the length of the shortest path for agent ai. For clarity, we denote the length

1We say that a cost function is admissible iff it is provably a lower bound on the optimal cost and inadmissible
otherwise. If f = g+h, then f being admissible is equivalent to h being admissible.

118

of the shortest path for agent ai as f i
opt(N), although this value is in general unknown during the

search. The low level of ECBS ensures that the found path N.plan[ai] and the returned lower bound

f i
min(N) satisfy

f i
min(N)≤ f i

opt(N)≤ length(N.plan[ai])≤ w · f i
min(N). (5.1)

Unlike usual bounded-suboptimal searches, the focal search used on the low level of ECBS is to

speed up the high-level search, instead of the low-level search itself, as it tries to reduce the number

of conflicts that need to be resolved by the high-level search.

The high level of ECBS uses a modified focal search. OPEN is the regular open list of A*,

which sorts its CT nodes N according to lb(N) = ∑ai∈A f i
min(N), which is a lower bound on the

minimum cost of the solutions below CT node N. From Inequality 5.1, we know that

lb(N)≤ cost(N)≤ w · lb(N). (5.2)

Let bestlb be the CT node in OPEN with the minimum lb-value. FOCAL contains those CT

nodes N in OPEN for which cost(N)≤ w · lb(bestlb), sorted according to the number of conflicts

hc(N) of the paths in N.plan, roughly indicating the distance-to-go for the high-level search, i.e.,

the number of splitting actions required to find a solution below CT node N. Since lb(bestlb) is a

lower bound on the optimal sum of costs, the cost of any CT node in FOCAL is no larger than w

times the optimal sum of costs. Thus, once a solution is found, its sum of costs is also no larger

than w times the optimal sum of costs.

5.2 Explicit Estimation CBS (EECBS)

We first analyze the behavior of the high-level focal search of ECBS. We then present our new

algorithm EECBS, which uses Explicit Estimation Search on the high level and online learning to

estimate the sum of cost of the solution that can be found under each CT node.

119

(a) Average runtimes of the algorithms over 200 instances. The runtime limit of one minute is included in
the average for each instance not solved within the runtime limit.

(b) Success rates (i.e., percentages of solved instances within the runtime limit of one minute) of the algo-
rithms with w = 1.02,1.10, and 1.20.

Figure 5.1: Performance of ECBS and EECBS with different improvement techniques. BP, PC,
SR, and WDG are short for bypassing conflicts, prioritizing conflicts, symmetry reasoning, and
using the WDG heuristic, respectively.

To evaluate the effectiveness of each technique that we introduce, we test it on 200 instances

from the MAPF benchmarks [163] with a runtime limit of one minute per instance and report the

reports in Figure 5.1. In particular, we use map random-32-32-20, a 32×32 four-neighbor grid

with 20% randomly blocked cells, shown in Figure 5.1a, with the number of agents varying from

45 to 150 in increments of 15. We use the “random” scenarios from the benchmarks, yielding

25 instances for each number of agents. We vary the suboptimality factor from 1.02 to 1.20 in

increments of 0.02. For now, we focus only on this random map, but later, in Section 5.4, we will

evaluate our algorithms on additional maps.

120

(a) CT of ECBS with suboptimality factor w = 1.1 after 506 iterations (i.e., after expanding 506 CT nodes).

(b) CT of ECBS after 5,000 iterations and three charts that plot the cost, the number of conflicts hc, and the
depth of the CT node selected for expansion at each iteration. The red and green lines in the first chart are
the lower bound lb(bestlb) and the suboptimality bound w · lb(bestlb) at each iteration, respectively.

Figure 5.2: Performance of ECBS on a hard MAPF instance.

5.2.1 Limitations of ECBS

Figure 5.2 shows the typical behavior of ECBS on a hard MAPF instance, revealing two drawbacks

of its high-level focal search. The first drawback is that, when selecting CT nodes for expansion,

ECBS considers only the distance-to-go and requires the cost of the selected CT node N to be

within suboptimality bound w · lb(bestlb) but ignores the fact that the cost of the solution below

CT node N is likely to be larger than cost(N) and thus could also be larger than the suboptimality

bound. In the example of Figure 5.2a, ECBS first keeps expanding CT nodes roughly along a

branch of the CT (i.e., CT nodes 1→ 2→ 3→ ··· → 487). So, the cost of the CT node selected

for expansion keeps increasing and its hc-value keeps decreasing until ECBS expands a CT node

N both of whose child CT nodes do not qualify for inclusion in FOCAL (i.e., CT node 487). As a

result, ECBS then expands a neighboring CT node N′ whose cost is slightly smaller than cost(N)

121

w 1.04 1.08 1.12 1.16 1.20
ECBS ∆lb 0.63 0.63 0.64 0.52 0.56

EECBS
∆lb 5.21 2.32 1.40 0.71 0.64

Cleanup% 39.6% 14.4% 11.1% 0.7% 0.0%

Table 5.1: Lower-bound improvement ∆lb, i.e., the value of lb(bestlb) when the algorithm termi-
nates minus the lb-value of the root CT node. “Cleanup%” is the percentage of expanded CT nodes
that are selected from CLEANUP.

and whose hc value is slightly larger than hc(N). It keeps expanding CT nodes below CT node N′,

but, after several iterations, expands another CT node both of whose child CT nodes do not qualify

for inclusion in FOCAL (i.e., CT node 506). This pattern repeats numerous times, as shown in the

three charts in Figure 5.2b. As a result, ECBS is stuck in part of the CT and never gets a chance to

explore other parts of the CT, as shown in the left diagram in Figure 5.2b. This thrashing behavior,

in which the negative correlation of hc(N) and cost(N) causes focal search to abandon the child

CT nodes of expanded CT nodes repeatedly, was noticed by Thayer et al. [175].

The second drawback is that the lower bound lb(bestlb) of ECBS rarely increases, as shown by

the flat red line in the first chart of Figure 5.2b. This is so because, when expanding a CT node

N, ECBS resolves a conflict and adds new constraints to the generated child CT nodes. So, the

lb-values of the child CT nodes tend to be equal to or larger than lb(N) while the hc-values of the

child CT nodes tend to be smaller than hc(N). As a result, bestlb tends to have a large hc value. This

results in bestlb being expanded only when FOCAL is almost empty. Since there are many CT

nodes of the same cost, ECBS rarely empties FOCAL, and thus its lower bound lb(bestlb) rarely

increases. More statistics can be found in Table 5.1 (second row). Therefore, if the optimal sum of

costs is not within the initial suboptimality bound w · lb(R) (where R is the root CT node), ECBS

can have difficulty finding a solution within a reasonable amount of time. While this problematic

behavior is similar to that in the first drawback, in that both involve a negative correlation of node

values, it is subtly different as it involves the lower bound rather than the cost.

122

5.2.2 Explicit Estimation Search (EES)

Explicit Estimation Search (EES) [174] is a bounded-suboptimal search algorithm designed in part

to overcome the poor behavior of focal search. It introduces a third function f̂ that estimates,

potentially inadmissibly, the cost of the best solution in the subtree below a given node. EES

combines estimates of this solution cost and the distance-to-go to predict the expansion of which

nodes will lead most quickly to a solution for the user-specified suboptimality factor. If the nodes of

interest are not within the current suboptimality bound, then it expands the unexpanded node with

the minimum f -value to increase the suboptimality bound. Formally, EES with a user-specified

suboptimality factor w maintains three lists of nodes: CLEANUP, OPEN, and FOCAL.

• CLEANUP is the regular open list of A*, sorted according to an admissible cost function

f . Let best f be the node with the minimum f -value in CLEANUP.

• OPEN is also another regular open list of A*, sorted according to a more informed but

potentially inadmissible cost function f̂ . Let best f̂ be the node with the minimum f̂ -value in

OPEN.

• FOCAL contains those nodes n in OPEN for which f̂ (n) ≤ w · f̂ (best f̂), sorted according

to a distance-to-go function d. f̂ (best f̂) is an estimate of the cost of an optimal solution, so

EES suspects that expanding the nodes in FOCAL can lead to solutions that are no more

than a factor of w away from optimal. Let bestd be the node with the minimum d-value in

FOCAL.

When selecting nodes for expansion, EES first considers node bestd , as expanding nodes with

nearby goal nodes should lead to a goal node fast. To guarantee bounded suboptimality, EES

selects node bestd for expansion only if f (bestd)≤ w · f (best f). If node bestd is not selected, EES

next considers node best f̂ , as it suspects that node best f̂ lies along a path to an optimal solution.

To guarantee bounded suboptimality, EES selects node best f̂ for expansion only if f (best f̂) ≤

w · f (best f). If neither node bestd nor node best f̂ is selected, EES selects node best f , which can

123

raise the suboptimality bound w · f (best f), allowing EES to consider nodes bestd or best f̂ in the

next iteration.

5.2.3 Explicit Estimation CBS (EECBS)

We form EECBS by replacing focal search with EES on the high level of ECBS. Formally, the

high level of EECBS maintains three lists of CT nodes: CLEANUP, OPEN, and FOCAL.

• CLEANUP is the regular open list of A*, sorted according to the lower bound function lb.

bestlb denotes the CT node with the smallest lb-value in CLEANUP.

• OPEN is another regular open list of A*, sorted according to a potentially inadmissible cost

function f̂ , which estimates the minimum cost of the solutions below a CT node. We use

f̂ (N) = cost(N)+ ĥ(N), where ĥ(N) is the cost-to-go heuristic introduced in Section 5.2.4.

best f̂ denotes the CT node with the smallest f̂ -value in OPEN.

• FOCAL contains those CT nodes N in OPEN for which f̂ (N)≤w · f̂ (best f̂), sorted accord-

ing to the distance-to go function hc. besthc denotes the CT node with the smallest hc-value

in FOCAL.

EECBS selects CT nodes for expansion from these three lists using the SELECTNODE function:

1. if cost(besthc)≤ w · lb(bestlb), then select besthc (i.e., select from FOCAL);

2. else if cost(best f̂)≤ w · lb(bestlb), then select best f̂ (i.e., select from OPEN);

3. else select bestlb (i.e., select from CLEANUP).

Like EES, EECBS selects a CT node N for expansion only if its cost is within the current subopti-

mality bound, i.e.,

cost(N)≤ w · lb(bestlb), (5.3)

which guarantees bounded suboptimality. EECBS uses the same focal search as ECBS on its low

level.

124

EECBS overcomes the first drawback from Section 5.2.1 by taking the potential cost increase

below a CT node into consideration in Steps 1 and 2 of the SELECTNODE function and selecting

a CT node N whose estimated cost f̂ (N) is within the estimated suboptimality bound w · f̂ (best f̂).

It overcomes the second drawback by selecting the CT node with the minimum lb-value in Step

3 of the SELECTNODE function to raise the lower bound. Table 5.1 shows its empirical behavior

in comparison with ECBS. Unlike for ECBS, whose lower-bound improvement is always around

0.6, the lower-bound improvement of EECBS increases as the suboptimality factor w decreases,

as shown in Table 5.1(third row). The smaller w is, the less likely a solution is within the initial

suboptimality bound and thus the more frequently EECBS selects CT nodes from CLEANUP, as

shown in Table 5.1 (fourth row). Figure 5.1 compares the runtimes and success rates of ECBS

and EECBS. As expected, EECBS (green lines) has smaller runtimes and larger success rates than

ECBS (red lines). The improvement increases as w decreases.

5.2.4 Online Learning of the Cost-To-Go Heuristic

Our estimate of the minimum cost of the solutions below a given CT node N uses online learning

since it does not require preprocessing and allows for instance-specific learning. Thayer et al. [176]

present a method for learning the cost-to-go during search using the error experienced during node

expansions. Consider a node n with an admissible cost-to-go heuristic h and a distance-to-go

heuristic d. The error εd of the distance-to-go heuristic d, called one-step distance error, is defined

as

εd(n) = d(bc(n))− (d(n)−1), (5.4)

125

where bc(n) is the best child node of node n, i.e., the child node with the smallest f̂ -value, breaking

ties in favor of the child node with the smallest d-value. Similarly, the error εh of the cost function

f , called one-step cost error, is defined as

εh(n) = f (bc(n))− f (n)

= g(bc(n))+h(bc(n))−g(n)−h(n)

= h(bc(n))−h(n)+(g(bc(n))−g(n))

= h(bc(n))−h(n)+ c(n,bc(n))

= h(bc(n))− ((h(n)− c(n,bc(n))), (5.5)

where c(n,bc(n)) is the cost of moving from node n to node bc(n). These errors can be calculated

after every node expansion. Thayer et al. [176] use a global error model that assumes that the

distribution of one-step errors across the entire search space is uniform and can be estimated as

an average of all observed one-step errors. Therefore, the search maintains a running average of

the one-step errors observed so far, denoted by εd and εh. Thayer et al. [176] prove that the true

cost-to-go of node n can be approximated by

ĥ(n) = h(n)+
d(n)

1− εd(n)
· εh(n). (5.6)

We apply this method to EECBS. Since EECBS does not have an admissible cost-to-go heuris-

tic h,2 we define εd of CT node N as

εd(N) = hc(bc(N))− (hc(N)−1) (5.7)

and εh of CT node N as

εh(N) = cost(bc(N))− cost(N). (5.8)

2The admissible heuristics introduced in Chapter 3 cannot be applied here because the plan of a CT node of EECBS
consists of bounded-suboptimal paths (instead of optimal paths) whose sum of costs can be larger than the sum of costs
of the optimal solution under the CT node.

126

Then,

ĥ(N) =
hc(N)

1− εd(N)
· εh(N). (5.9)

Thus, ĥ(N) is linear in hc(N), indicating that, the larger the number of conflicts of a CT node, the

higher the potential cost increments below the CT node could be.

Algorithm 5.1 shows the pseudo-code of the high-level search of EECBS. For now, we ig-

nore Lines 4, 9-14, and 25-28 since they will be introduced in the next section. Compared to

the high-level search of ECBS, EECBS changes the PUSHNODE and SELECTNODE functions

[Lines Line 7,5,and 30] and adds an UPDATEONESTEPERRORS function at the end of each it-

eration to update the one-step errors [Line 31].

5.3 Bringing CBS Improvements to EECBS

We now show how we can incorporate recent CBS improvements into EECBS. We discuss these

techniques one by one and, for each one, evaluate its effectiveness by adding it to the best version

of EECBS so far and showing the resulting performance in Figure 5.1.

5.3.1 Bypassing Conflicts

Recall Section 2.3.2.2. In CBS, the paths of every CT node N are the shortest paths that satisfy

N.constraints. However, in EECBS, the paths can be bounded-suboptimal. Therefore, we can

resolve more conflicts with the bypassing conflicts (BP) technique in EECBS if we relax the con-

ditions of accepting bypasses. Formally, when expanding a CT node N and generating its child

CT nodes, EECBS replaces the paths of N with the paths of a child CT node N′ and discards all

generated child CT nodes iff

1. CT node N is not selected from CLEANUP,

2. the cost of every path of CT node N′ is within the suboptimality bound of the corresponding

agent in CT node N, i.e., ∀ai ∈ Alength(N′.plan[ai])≤ w · f i
min(N),

127

Algorithm 5.1: EECBS for solving MAPF bounded-suboptimally.
Input: MAPF instance (G,A) and suboptimality bound w

1 Generate root CT node R with an empty set of constraints;
2 for ai ∈ A do R.plan[ai]← LOWLEVELSEARCH(ai,G,R,w);
3 R.conflicts← all conflicts in R.plan;
4 COMPUTEWDGHEURISTIC(R);
5 PUSHNODE(R,OPEN,CLEANUP,FOCAL,w);
6 while OPEN ̸= /0 do
7 N← SELECTNODE(OPEN, CLEANUP, FOCAL, w);
8 if N.conflicts = /0 then return N.plan;
9 if N is selected from CLEANUP ∧ the WDG heuristic of N has not yet been

computed then
10 COMPUTEWDGHEURISTIC(N);
11 PUSHNODE(N, OPEN, CLEANUP, FOCAL);
12 continue;

13 CONFLICTPRIORITIZATION(N.conflicts);
14 SYMMETRYREASONING(N.conflicts);
15 conflict← the conflict in N.conflicts with the highest priority;
16 Generate the two constraint sets C1 and C2 for resolving conflict;
17 children← /0;
18 for i = 1,2 do
19 N′← a copy of N;
20 N′.constraints← N.constraints∪Ci;
21 foreach a j ∈ A : N′.plan[a j] violates Ci do
22 N′.plan[a j]← LOWLEVELSEARCH(a j,G,N′,w);
23 if N′.plan[a j] does not exist then Go to Line 18;

24 N′.conflicts← all conflicts in N′.plan;
25 if N is not selected from CLEANUP∧∀ai ∈ A length(N′.plan[ai])≤

w · f i
min(N)∧ cost(N′)≤ w · lb(bestlb)∧hc(N′)< hc(N) then

26 N.plan← N′.plan;
27 N.conflicts← N′.conflicts;
28 Go to Line 8;

29 children← children∪{N′};
30 for N′ ∈ children do PUSHNODE(N′,OPEN,CLEANUP,FOCAL,w);
31 UPDATEONESTEPERRORS(N,children);

32 return “No Solution”;

3. the cost of CT node N′ is within suboptimality bound w · lb(bestlb), and

4. the number of conflicts decreases, i.e., hc(N′)< hc(N).

128

w 1.04 1.08 1.12 1.16 1.20
CBS bypassing 0.086 0.107 0.110 0.116 0.108

Relaxed bypassing 0.091 0.114 0.104 0.131 0.126

Table 5.2: Average numbers of accepted bypasses per expanded CT node.

The first condition avoids wasting time in applying the bypassing conflicts technique to CT nodes

that are selected from CLEANUP because bypassing conflicts resolves conflicts without adding

any constraints and thus does not change the lb-value of a CT node.3 Therefore, it is not be helpful

if the purpose of expanding a CT node N is to improve the lower bound, i.e., CT node N is selected

from CLEANUP. The second and third conditions ensure that Equations (5.1) and (5.3) hold after

replacing the paths, which guarantees bounded suboptimality. The last condition avoids deadlocks,

as in the standard CBS bypassing conflicts technique. See Lines 25-28 of Algorithm 5.1. In

addition, since bypassing conflicts resolves conflicts without adding any constraints, it does not

change the lb value of a CT node.

Empirically, we compare the effectiveness of relaxed bypassing and CBS bypassing for EECBS

and report the results in Table 5.2. Relaxed bypassing accepts more bypasses than CBS bypassing,

and the difference increases as the suboptimality factor w increases. The yellow and green lines

in Figure 5.1 show the performance of EECBS with and without relaxed bypassing. Relaxed

bypassing improves the performance of EECBS for all values of w and all numbers of agents. In

general, the improvement increases with w.

5.3.2 Prioritizing Conflicts

Recall Section 2.3.2.1. In CBS, the prioritizing conflicts technique (PC) tries to improve the costs

of CT nodes faster since the cost of a CT node also serves as a lower bound on the minimum cost of

the solutions below this CT node. In EECBS, however, the cost of a CT node is different from its

lower bound. Therefore, we redefine cardinal, semi-cardinal, and non-cardinal conflicts. A conflict

3CT node N′ has more constraints than CT node N, so the lb-value of CT node N′ may be larger than the minimum
cost of the solutions below CT node N and thus cannot be used as the lb-value of CT node N. Therefore, bypassing
conflicts do not change the lb-value of a CT node.

129

is cardinal iff, when CBS uses the conflict to split CT node N and generates two child CT nodes N′

and N′′, where both ∑ai∈A f i
opt(N

′) and ∑ai∈A f i
opt(N

′′) are larger than ∑ai∈A f i
opt(N). The changes

to the definitions of semi-cardinal and non-cardinal conflicts are similar. Like CBS, EECBS uses

MDDs to classify conflicts and prioritizes conflicts before it chooses conflicts [Line 13]. Since

the construction of MDDs incurs runtime overhead and not all cardinal conflicts are important to

EECBS (because EECBS can resolve a cardinal conflict by finding bounded-suboptimal paths),

EECBS classifies a conflict between agents ai and a j only when

1. the CT node N is selected from CLEANUP or

2. at least one of the path costs is equal to its lower bound, i.e., length(N.plan[ai]) = f i
min(N)

or length(N.plan[a j]) = f j
min(N).

The prioritizing conflicts technique is applied in the first case because resolving cardinal conflicts

tends to raise the lower bound in this case. It is applied in the second case because resolving

cardinal conflicts has to increase the path lengths of the agents in this case (which makes the

costs of the resulting child CT nodes closer to the sum of costs of the solutions below them).

EECBS selects cardinal conflicts first, then semi-cardinal conflicts, non-cardinal conflicts, and

finally unclassified conflicts. By comparing the purple and yellow lines in Figure 5.1, we see that

the prioritizing conflicts technique improves the performance of EECBS.

5.3.3 Symmetry Reasoning

We adapt the symmetry reasoning (SR) techniques from Chapter 4 to EECBS with almost no

changes. EECBS performs symmetry reasoning before it chooses conflicts [Line 14]. Rectangle

symmetries occur only if the paths of both agents are the shortest because, otherwise, one of

the agents can simply perform a wait action to avoid the rectangle symmetry. Therefore, for a

given conflict between agents ai and a j at CT node N, we apply rectangle symmetry reasoning

only when the paths of both agents are provably the shortest, i.e., length(N.plan[ai]) = f i
min(N)

and length(N.plan[a j]) = f j
min(N). Corridor and target symmetries can occur even if the paths

130

w 1.04 1.08 1.12 1.16 1.20

No WDG
∆lb 36.1 23.4 12.9 7.4 3.9

Cleanup% 84.0% 74.0% 56.6% 40.4% 11.6%

CBS WDG
∆lb 54.5 45.0 37.0 30.1 25.8

Cleanup% 49.9% 46.5% 25.1% 17.8% 5.7%
WDG time 87.9% 84.5% 80.1% 76.4% 65.3%

Adaptive WDG
∆lb 54.8 45.2 36.8 29.1 25.3

Cleanup% 53.2% 44.0% 27.2% 14.4% 8.7%
WDG time% 77.6% 62.6% 56.9% 43.2% 24.1%

Table 5.3: Lower-bound improvement ∆lb, i.e., the minimum (lb+ h)-value of the CT nodes in
CLEANUP when EECBS terminates minus the lb-value of the root CT node. “Cleanup%” is
the percentage of expanded CT nodes that are selected from CLEANUP. “WDG time%” is the
percentage of runtime spent on computing the WDG heuristic.

of the agents are suboptimal. Therefore, we apply corridor and target symmetry reasoning to all

conflicts. By comparing the grey and purple lines in Figure 5.1, we see that the symmetry reasoning

technique significantly improves the performance of EECBS.

In our implementation, we added only the rectangle, target, and corridor reasoning techniques

from Sections 4.2, 4.4, and 4.5 to EECBS. We did not implement the generalized rectangle and

corridor reasoning techniques from Sections 4.3 and 4.6, which we leave for future work.

5.3.4 WDG Heuristic

Since a path of a CT node N in EECBS is not necessarily the shortest one and, for each agent

ai, f i
min(N) could be smaller than f i

opt(N), we need to modify the WDG heuristic from Chapter 3

as follows. When EECBS computes the WDG heuristic for a CT node N, it builds a weighted

dependency graph GWD = (VD,ED,WD). Each vertex i ∈VD corresponds to an agent ai. The edge

weight on each edge (i, j) ∈ ED is equal to the minimum sum of costs of the conflict-free paths for

agents ai and a j that satisfy N.constraints for their two-agent sub-MAPF problem minus f i
opt(N)+

f j
opt(N) (instead of length(N.plan[ai])+ length(N.plan[a j])). Like for CBS, we compute each edge

weight by solving a two-agent sub-MAPF problem (with the constraints in N.constraints) using

131

CBS (or, more specifically, CBSH with symmetry reasoning4): f i
opt(N) and f j

opt(N) are equal to

the costs of the paths of agents ai and a j of the root CT node of CBS, and the minimum sum of costs

of the conflict-free paths for agents ai and a j is equal to the cost of the solution returned by CBS.

Since computing the edge weights for all pairs of agents is time-consuming, we follow Section 4.8

by computing the weight of an edge (i, j) only when the paths N.plan[ai] and N.plan[a j] are in

conflict (as the weight is more likely to be larger than 0 in this case). We delete the other edges

and the vertices without incident edges. Let hWDG(N) be the value of the edge-weighted minimum

vertex cover (defined in Definition 3.1) of GWD. Reusing the reasoning in Section 3.3.1, we know

that ∑ai∈A f i
opt(N) + hWDG(N) is a lower bound on the minimum sum of costs of the solutions

below CT node N. Since

∑
ai∈A

f i
opt(N)+hWDG(N) = lb(N)+ ∑

ai∈A
(f i

opt(N)− f i
min(N))+hWDG(N) (5.10)

≥ lb(N)+ ∑
i∈V

(f i
opt(N)− f i

min(ND))+hWDG(N), (5.11)

h(N) = ∑i∈VD(f i
opt(N)− f i

min(N))+hWDG(N) is admissible, and we can thus use lb(N)+h(N) to

sort the CT nodes in CLEANUP and compute the lower bound.

Since computing the WDG heuristic for a CT node is time-consuming, we follow Section 3.4.1

and compute the WDG heuristic lazily [Lines 9-12]. But, instead of computing the WDG heuristic

for all CT nodes, we only compute it for CT nodes selected from CLEANUP, as the purpose of

computing the WDG heuristic is to improve the lower bound. In addition, we also compute the

WDG heuristic for the root CT node [Line 4], as this can provide a higher lower bound to begin

with.

Table 5.3 reports the lower-bound improvements of EECBS without the WDG heuristic tech-

nique (denoted as No WDG), with the WDG heuristic being computed for all CT nodes (denoted as

CBS WDG), and with the WDG heuristic technique introduced above (denoted as Adaptive WDG).

4Like in Section 5.3.3, we used only the symmetry-reasoning techniques from Sections 4.2,4.4, and 4.5 in our
implementation.

132

Compared to No WDG, Adaptive WDG selects CT nodes less frequently from CLEANUP but ob-

tains a larger lower-bound improvement. Compared to CBS WDG, Adaptive WDG obtains similar

lower-bound improvements but spends less time on computing the WDG heuristic. By comparing

the blue and grey lines in Figure 5.1, we see that adaptive WDG improves the performance of

EECBS for small and moderately large suboptimality factors.

5.4 Empirical Evaluation

We evaluate EECBS on six maps of different sizes and structures from the MAPF benchmark

suite [163] with eight different numbers of agents per map. We use the “random” scenarios, yield-

ing 25 instances for each map and number of agents. We evaluate ten different values of w for each

setting, and these values of w decrease as the map size increases. The experiments are conducted

on Ubuntu 20.04 LTS on an Intel Xeon 8260 CPU with a memory limit of 16 GB and a runtime

limit of one minute.

As shown in Figure 5.3, EECBS (green lines) outperforms ECBS (red lines) on some maps

but has a similar or even slightly worse performance on other maps. The four improvements

improve the performance of both ECBS and EECBS, but EECBS benefits more from them. As a

result, EECBS+ (EECBS with all improvements, purple lines) significantly outperforms the other

algorithms on all six maps in terms of both runtimes and success rates. When comparing the

dashed lines in the success rate figures, we observe that, in many cases (e.g., for 60 agents on the

random map and 180 agents on the empty map), EECBS+ is able to solve almost all instances

within the runtime limit while ECBS solves only a few or even no instances. For a given success

rate, EECBS+ is able to solve instances with up to twice the number of agents compared to ECBS

(e.g., on map den520d).

We provide more details on the experiment on the random map in Figure 5.4. EECBS+ runs

faster than ECBS in most cases and never fails to solve an instance that is solved by ECBS. In

addition, the average solution costs (not shown in the figure) of ECBS and EECBS+ over the

133

(a) Small-sized maps with w ranging from 1.02 to 1.20.

(b) Medium-sizes maps with w ranging from 1.01 to 1.10.

(c) Large-sized maps with w ranging from 1.002 to 1.020.

Figure 5.3: Performance of ECBS, EECBS, ECBS+ (ECBS with all improvements), EECBS+
(EECBS with all improvements), BCP-7, and eMDD-SAT. All results are presented in the same
format as in Figure 5.1. The algorithms are indicated by the legend with the same color and
the same marker style, while the suboptimality factors of the lines in the success rate figures are
indicated by the legend with the same line style. Since some algorithms solve (almost) zero in-
stances within the runtime limit, their lines overlap at the top of the runtime figures and the bottom
of the success rate figures: the grey lines are hidden by the blue lines in the runtime figures of
maps warehouse-10-2-10-2-1, den520d, and Pairs 1 256; the dashed red and green lines are
hidden by the dashed yellow line in the success rate figure of map den312d; and many of the
dashed/solid/dotted grey/blue lines are hidden by other lines at the bottom of many of the success
rate figures.

1,081 instances solved by both algorithms are 1,967 and 1,958, respectively, indicating that the

improvements used in EECBS+ do not sacrifice the solution quality.

134

Figure 5.4: Runtimes of ECBS and EECBS+ on the random map with the number of agents m
ranging from 45 to 150 and the suboptimality factor w ranging from 1.02 to 1.20. If an instance
is not solved within the runtime limit of one minute, we set its runtime to one minute. Among the
2,000 instances, 475 instances are solved by neither algorithm, 444 instances are solved only by
EECBS+, and 0 instances are solved only by ECBS.

We omit comparisons with the many search-based bounded-suboptimal MAPF algorithms that

have already been shown to perform worse than ECBS [2, 16, 183]. However, there are two re-

cent compilation-based bounded-suboptimal MAPF algorithms, namely BCP-7 [95] and eMDD-

SAT [172] (introduced in Sections 2.2.1.2 and 2.2.2), that perform well. BCP-7 can outperform

CBS when finding optimal solutions [95], and eMDD-SAT can outperform ECBS in some do-

mains [172]. We therefore compare them with our algorithms. We modify the search of the ILP

solver used by BCP-7 from a best-first search (which is more beneficial for finding optimal solu-

tions) to a depth-first search with restarts (which is more beneficial for finding suboptimal solu-

tions). As shown in Figure 5.3, BCP-7 and eMDD-SAT outperform ECBS on the two small maps

when the suboptimality factor is small. But for larger suboptimality factors or larger maps, they

perform worse than ECBS. EECBS+ performs better than them on all six maps.

5.5 Summary

In this chapter, we proposed a new bounded-suboptimal MAPF algorithm EECBS that uses online

learning to estimate the cost of the solution below each high-level node and uses EES to select

high-level nodes for expansion. We further improved it by adding bypassing conflicts, prioritizing

135

conflicts, symmetry reasoning, and the WDG heuristic. With these improvements, EECBS+ sig-

nificantly outperforms the state-of-the-art bounded-suboptimal MAPF algorithms ECBS, BCP-7,

and eMDD-SAT. Within one minute, it is able to find solutions that are provably at most 2% worse

than optimal for large MAPF instances with up to 1,000 agents, while, on the same map, state-

of-the-art optimal algorithms can handle at most 200 agents [95]. We hope that the scalability of

EECBS+ enables additional applications for bounded-suboptimal MAPF algorithms.

We used EECBS+ to represent EECBS with all improvements in this chapter in order to show

the effectiveness of these improvements. In the other chapters, we refer to EECBS with all im-

provements simply as EECBS.

5.6 Extensions

This chapter focused on bounded-suboptimal MAPF algorithms that efficiently find near-optimal

solutions with theoretical guarantees and thus used only small suboptimality factors. In Chapter 6,

we will show that EECBS with large suboptimality factors is competitive with existing unbounded-

suboptimal MAPF algorithms in terms of runtime (see Sections 6.1.4 and 6.2.4). Moreover, we will

also show that EECBS can be further sped up by using a more efficient low-level search algorithm

(see Section 6.2.2.2).

Although EECBS was published just a year ago, several pieces of work have used or extended

EECBS to either further speed it up or use it as an efficient sub-MAPF solver. For example, flexible

EECBS [36] speeds up EECBS by relaxing the bounded-suboptimality requirement that EECBS

enforces on (single-agent) paths while preserving its (overall) bounded-suboptimal guarantee on

solutions. Shard systems [101] partition the workspace into geographic regions and call EECBS to

plan paths for the agents in each region.

136

Chapter 6

Improving MAPF Solutions via Large Neighborhood Search

Optimal and bounded-suboptimal algorithms guarantee that the costs of their solutions are at most

a given (multiplicative) factor away from optimal. Sometimes, we are interested in good solutions

without a guarantee on how good they are. Since providing optimality proofs is computationally

expensive in MAPF, we focus in this chapter on using stochastic local search algorithms to find

near-optimal solutions greedily (without guarantees) for challenging MAPF problems.

Large Neighborhood Search (LNS) [154] is a popular stochastic local search technique for

improving the solution quality for combinatorial optimization problems. Starting from a given

solution, LNS destroys part of the solution, called a neighborhood, and treats the remaining part

of the solution as fixed. What results is a reduced and thus simpler form of the original problem to

solve. One can use any desired approach from the literature to solve the reduced problem, assuming

that it can take into account the fixed part of the solution. LNS repairs the solution and replaces

the old solution with the repaired one if the repaired one is better. This procedure is repeated until

some stopping criterion is met.

Although LNS is broadly used for solving optimization problems [80, 24, 159], we are unaware

of any previous LNS approaches for MAPF. In this chapter, we propose two LNS-based MAPF

algorithms for improving MAPF solutions in different ways:

137

• MAPF-LNS is an anytime MAPF algorithm. Starting from an initial MAPF solution that

is quickly found by an existing MAPF algorithm from the literature, MAPF-LNS repeat-

edly selects a subset of agents and replans their paths to reduce their sum of costs until the

runtime limit is reached. We show empirically that, compared to existing anytime MAPF

algorithms, MAPF-LNS computes initial solutions fast, finds near-optimal solutions eventu-

ally, and scales to very large numbers of agents. MAPF-LNS improves the solution quality

of existing suboptimal MAPF algorithms by up to 36 times.

• MAPF-LNS2 is an unbounded-suboptimal MAPF algorithm. Starting from a set of paths that

contain conflicts, MAPF-LNS2 repeatedly selects a subset of colliding agents and replans

their paths to reduce the number of conflicts until the paths become conflict-free. We show

empirically that, compared to existing suboptimal MAPF algorithms, MAPF-LNS2 runs

significantly faster while still providing near-optimal solutions in most cases. MAPF-LNS2

solves 80% of the random-scenario instances with the largest number of agents from the

MAPF benchmark suite within a runtime limit of just five minutes, which, to our knowledge,

has not been achieved by any existing MAPF algorithms.

We also show that MAPF-LNS and MAPF-LNS2 can be combined, and their combination

achieves the best performance empirically in terms of scalability and solution quality.

In order to speed up MAPF-LNS2, we also propose an efficient single-agent pathfinding algo-

rithm SIPPS based on SIPP [136] for finding a short path for an agent that avoids conflicts with

a given set of paths and attempts to minimize the number of conflicts with another given set of

paths. We show that SIPPS runs five times (or more) faster than space-time A* (introduced in Sec-

tion 2.3.1), an A*-based algorithm widely used by many MAPF algorithms (such as all CBS-based

and PP-based MAPF algorithms we have mentioned). Thus, we demonstrate that SIPPS can speed

up not only MAPF-LNS2 but also many other MAPF algorithms, such as EECBS.

In this chapter, we refer to the difference between the length of a path pi and the distance be-

tween its endpoints as the delay delay(pi) = length(pi)−dist(si,gi). Minimizing the sum of costs

∑ai∈A length(pi) of a solution P is equivalent to minimizing its sum of delays ∑ai∈A delay(pi).

138

Since we study challenging MAPF instances for which optimal solutions are usually unknown, un-

less explicitly stated otherwise, we refer to the (overestimated) suboptimality of a MAPF solution

as ∑ai∈A length(pi)/∑ai∈A dist(si,gi).

This chapter closely follows [109, 114].

6.1 MAPF-LNS: Reducing the Cost of MAPF Solutions

MAPF algorithms can be categorized on a spectrum. At one end are (bounded-sub)optimal al-

gorithms that can find high-quality MAPF solutions for small MAPF problems. At the other end

are unbounded-suboptimal algorithms that can solve large MAPF problems but usually find low-

quality MAPF solutions. In this section, we consider a third approach that combines the best of

both worlds, namely anytime algorithms that quickly find an initial MAPF solution using efficient

MAPF algorithms from the literature, even for large MAPF problems, and that subsequently im-

prove the MAPF solution quality to near-optimal as time progresses by replanning subgroups of

agents using LNS.

6.1.1 Background: Anytime MAPF Algorithms

Anytime behavior, i.e., generating an initial MAPF solution fast and improving it over time, is

highly desirable in practice. Yet, there is little existing work on anytime MAPF algorithms:

OA [162] and X* [182] achieve an anytime behavior by repeatedly calling joint-state A* to find

optimal MAPF solutions for larger and larger sub-MAPF problems and are efficient only for non-

congested instances. IMMI [194] repeatedly replans single-agent paths to reduce the makespan

(instead of the sum of costs) of a MAPF solution over time. The optimal algorithm BCP [95] uses

a branch-and-bound algorithm, which is anytime in theory, but rarely finds MAPF solutions much

earlier than the optimal MAPF solution in practice.1 Anytime BCBS [47] changes the high-level

1In Section 5.4, we run BCP on a given MAPF instance and report success if it finds a solution within the runtime
limit that satisfies the bounded-suboptimality requirement. It turns out that, in most cases, BCP either fails to find
any solution for the given instance within the runtime limit or finds a first solution whose cost is already very close to

139

focal search of the bounded-suboptimal algorithm Bounded CBS (BCBS) [16] to an anytime focal

search. It starts with an infinite suboptimality bound on the sum of costs objective, which is then

repeatedly tightened to S− 1 whenever a new MAPF solution with sum of costs S is found. We

compare our proposed algorithm against anytime BCBS empirically in Section 6.1.4 and report

significant gains in scalability, runtime to the initial MAPF solution, and speed of improving the

MAPF solution.

6.1.2 MAPF-LNS Framework

Given a MAPF instance, we first call a MAPF algorithm to find an initial MAPF solution P. Any

non-optimal MAPF algorithm can be used here, including EECBS proposed in Chapter 5. Then, in

each iteration, we select a subset of agents As ⊆ A, remove their paths P−s = {pi ∈ P | ai ∈ As} from

P, and replan new paths for them by calling a modified MAPF algorithm. The modified MAPF

algorithm returns a set of paths P+
s , one for each agent in As, that do not conflict with each other

and with the paths in P. Most optimal (such as CBSH2-RTC proposed in Chapter 4), bounded-

suboptimal (such as EECBS), and prioritized MAPF algorithms can be adapted for this purpose by

treating the remaining paths in P as moving obstacles. We then compare the (old) path set P−s with

the (new) path set P+
s and add the one with the smaller sum of costs to P. We repeat this procedure

until we time out. We call the resulting algorithm MAPF-LNS.

6.1.3 Neighborhood Selection

The selection of good neighborhoods is critical to the success of LNS. For adaptive LNS (intro-

duced in Section 6.1.3.4) to be most successful, the neighborhoods should be orthogonal, in the

sense that they are formed very differently. Therefore, in this section, we define three different

neighborhood selection methods for MAPF and combine them via adaptive LNS. We use a prede-

fined neighborhood size N to specify the number of agents that are used to form each neighborhood.

optimal. This behavior is also supported by the observation that the success rate of BCP in Figure 5.3 seldom increases
when the suboptimality factor increases.

140

Algorithm 6.1: Generate an agent-based neighborhood.
Input: MAPF instance (G,A), neighborhood size N, MAPF solution P, and tabu list

tabuList

1 ak← argmaxai∈A\tabuList delay(pi);
2 tabuList← tabuList ∪{ak};
3 if |tabuList|= m∨delay(pk) = 0 then tabuList← /0;
4 As←{ak};
5 while |As|< N do
6 As← RANDOMWALK(G,ak,P,As,N);
7 ak← a random agent in As;

8 return As;

9 Function RANDOMWALK(G,ak,P,As,N)
10 (x, t)← (pk[t], t), where t is a random timestep in [0, length(pk)−1];
11 while |As|< N do
12 Nx←{v ∈V | (x,v) ∈ E ∪{(x,x)}∧ t +1+dist(v,gk)< length(pk)};
13 if Nx = /0 then break;
14 y← a random vertex in Nx;
15 As← As∪{ai ∈ A | pi[t +1] = y∨ (pi[t] = y∧ pi[t +1] = x)};
16 (x, t)← (y, t +1);

17 return As;

6.1.3.1 Agent-Based Neighborhood

The first neighborhood selection method is based on the agents and their paths. We want to select

an agent whose path could be shorter if some other agents were not blocking its way, as replanning

them together has a chance to reduce the overall sum of costs of their paths.

Algorithm 6.1 shows the pseudo-code. We first choose the agent ak that is not in the tabu list

(i.e., a globally maintained set, initially being empty, to avoid selecting the same agent repeatedly)

and whose path has the largest delay [Line 1]. We update the tabu list by adding agent ak to it

[Line 2]. If the agents being delayed are all in the tabu list (i.e., either the tabu list contains all

agents or the path of agent ak has a delay of zero, indicating that the path of any agent that is not in

the tabu list has a delay of zero as well), then we empty the tabu list [Line 3]. We then initialize the

neighborhood As with agent ak [Line 4] and let the agent perform a restricted random walk (details

are introduced in the next paragraph) to collect the agents that prevent it from reaching its target

141

vertex gk earlier. These agents are added to the neighborhood As as well [Line 6]. We randomly

select an agent in As [Line 7], which could be the same agent or a different agent, and repeat the

procedure as long as fewer than N agents are in As [Line 5]. In the experiments, we iterate for at

most ten iterations (not shown in the pseudo-code) to address the situation where the agent density

is too low for us to collect N agents in As.

In function RANDOMWALK(G,ak,P,As,N), agent ak performs a restricted random walk, which

allows it to take only the move or wait actions that could potentially lead to a path shorter than its

current one, ignoring conflicts with the paths in P. Then, the agents that agent ak conflicts with

during the random walk are the ones that might prevent it from reaching its target vertex gk earlier

and are thus added to As. Formally, we first randomly choose a start state (i.e., a vertex-time pair)

along the path of agent ak for the random walk, i.e., a vertex x along path pk at some timestep

t ∈ [0, length(pk)) [Line 10]. We then collect the set of possible vertices Nx of agent ak at timestep

t + 1 that might be on paths to gk (ignoring other agents) that are shorter than its current path pk

[Line 12]. More specifically, the length of a path of agent ak that visits vertex v at timestep t + 1

is at least t + 1+ dist(v,gk). Thus, if t + 1+ dist(v,gk) < length(pk), then agent ak might be able

to reach vertex gk via vertex v at timestep t +1 earlier than by following path pk. We let the agent

move to a random vertex y in Nx [Line 14] and add any agents to As whose paths conflict with this

action [Line 15]. Lastly, we update the state of agent ak [Line 16]. This procedure is repeated until

we have collected N agents in As [Line 11] or vertex set Nx is empty [Line 13].

6.1.3.2 Map-Based Neighborhood

The second neighborhood selection method is based on the topology of the map (= graph). In

particular, we are interested in the agents that visit the same intersection vertex, i.e., a vertex with

a degree greater than two, because a different ordering of the agents traversing an intersection

vertex could lead to better MAPF solutions. If there are not enough agents at one intersection

vertex, we explore the map around the intersection vertex to find nearby intersection vertices and

142

Algorithm 6.2: Generate a map-based neighborhood.
Input: MAPF instance (G,A), neighborhood size N, and MAPF solution P

1 VI ←{v ∈V | degree(v)≥ 3};
2 x← a random vertex in VI;
3 Q←{x}; // Q is a queue
4 As← /0;
5 while |Q|> 0∧|As|< N do // A breath-first search
6 x← Q.pop();
7 if degree(x)≥ 3 then As← GETINTERSECTIONAGENTS(x,P,As);
8 for y ∈V : (x,y) ∈ E ∧ y has not been visited before do Q.push(y);

9 return As;

10 Function GETINTERSECTIONAGENTS(x,P,As) :
11 T ←max{t ∈ N | ∃pi ∈ P : pi[t] = x}; // T is the last timestep when a path in P visits x
12 t← a random timestep in [0,T];
13 ∆← 0;
14 while |As|< N∧∆≤max{t,T − t} do
15 if t +∆≤ T then As← As∪{ai ∈ A | pi[t +∆] = x};
16 if t−∆≥ 0 then As← As∪{ai ∈ A | pi[t−∆] = x};
17 ∆← ∆+1;

18 return As;

collect agents that visit them. This neighborhood is orthogonal to the agent-based neighborhood

by design.

Algorithm 6.2 shows the pseudo-code. We begin by collecting all intersection vertices [Line 1]

and picking a random one [Line 2]. We put this vertex into a queue [Line 3] and perform a

breadth-first search from it. Every time when we pop a vertex x from the queue [Line 6], we

examine whether it is an intersection vertex [Line 7]. If it is, then we add the agents that visit the

vertex to the neighborhood As [Line 7] (details are introduced in the next paragraph). We then add

the vertices adjacent to vertex x to the queue [Line 8]. This procedure is repeated until we have

collected N agents in As or explored the entire map [Line 5].

We use function GETINTERSECTIONAGENTS(x,P,As) to add those agents to As whose paths

in P visit vertex x. We first pick a random timestep t no later than the last timestep when an agent

visits vertex x [Lines 11 and 12]. We then add agents to As by iteratively exploring, for increasing

143

∆, which agents visit vertex x ∆ timesteps before or after timestep t until we have collected N

agents in As or explored all timesteps [Line 13 to 17].

6.1.3.3 Random Neighborhood

The third neighborhood selection method is to select N agents uniformly at random. Random

neighborhoods are a good baseline used in many LNS approaches [52, 159]. Although this method

appears to be naı̈ve, it is surprisingly effective for congested MAPF instances, as we later show in

Table 6.2.

6.1.3.4 Adaptive LNS (ALNS)

Adaptive LNS (ALNS) [146] is a strong variant of LNS as it adapts to what is working on the

problem at hand. It makes use of multiple neighborhood selection methods by recording their

relative success in improving the current solution and choosing the next neighborhood guided by

the most promising method. Given the three methods above, we instantiate ALNS as described

below.

We maintain a weight wi ≥ 0 for each neighborhood selection method i that represents the

relative success of method i in reducing the cost of the current solution. In our experiments, we

use wi = 1 for all methods initially. Then, in each iteration, we select the method for generating the

next neighborhood according to the weights. Specifically, we use the roulette wheel selection [70]

for selecting a method. That is, we select method i with probability wi/∑ j w j. We then use the

selected method to generate a neighborhood and replan the paths of the agents in the neighborhood.

After the new paths are found, we update the weight wi of the selected method i according to how

much the new paths improve the solution quality, namely wi is set to

wi = γ ·max{0, ∑
p∈P−s

length(p)− ∑
p∈P+

s

length(p)}+(1− γ) ·wi, (6.1)

144

where γ ∈ [0,1] is a user-specified reaction factor that controls how quickly the weights react to

the changes in the relative success in improving the current MAPF solution. We use γ = 0.01 in

our experiments. The weights of the other methods remain the same.

6.1.4 Empirical Evaluation

We evaluate MAPF-LNS on six representative maps from the MAPF benchmarks [163], namely

empty-8-8 of size 8× 8, empty-32-32 of size 32× 32, random-32-32-20 of size 32× 32 (de-

noted as random), warehouse-10-20-10-2-1 of size 161×63 (denoted as warehouse), ost003d

of size 194×194, and den520d of size 256×257. Illustrations of the maps are shown in Figure 6.2.

We use the “random” scenarios from the MAPF benchmarks, yielding 25 instances for each map

and each number of agents. If the number of agents that we want to test exceeds the number of

agents in the benchmarks, we generate new instances with the start and target vertices being se-

lected uniformly at random. The experiments are conducted on Ubuntu 20.04 LTS on an Intel Xeon

8260 CPU with a memory limit of 8 GB and a runtime limit of 60 seconds, except for Experiment

1 where the runtime limit is 10 seconds and Experiment 7 where the runtime limit is 600 seconds.

We use the CBS improvements introduced earlier for all CBS-based algorithms (i.e., CBS,

EECBS, and BCBS) that we use as sub-solvers in anytime algorithms, including prioritizing con-

flicts (see Section 2.3.2.1), bypassing conflicts (see Section 2.3.2.2), using the WDG heuristic (see

Chapter 3), and symmetry reasoning2 (see Chapter 4). That is, CBS is actually CBSH2-RTC intro-

duced in Algorithm 4.6; EECBS is the one with all improvements in Algorithm 5.1; and BCBS is a

variant of Algorithm 5.1 that uses focal search instead of EES to search the CT. We use EECBS(x)

to denote EECBS with suboptimality factor x.

Before examining the experimental results in detail, we show in Figure 6.1 the evolution of

the sum of delays of the MAPF solution produced over time on the same instance. Traditional

algorithms, like EECBS, return a single MAPF solution, shown as a point. Anytime algorithms

2Like in Section 5.3.3, we use only the symmetry-reasoning techniques from Sections 4.2, 4.4, and 4.5 in our
implementation.

145

Figure 6.1: Evolution of the sum of delays over a minute for various algorithms on instance
“random-32-32-20-random-1.scen” with 150 agents. The points for EECBS are labeled with
the corresponding suboptimality factors w. EECBS with w ≤ 1.10 failed to solve the instance
within a minute.

improve the MAPF solution as time progresses, shown as continuous curves. More details are

provided in Experiment 6. To judge an anytime algorithm, we use the Area Under the Curve

(AUC) since it represents not only the sum of delays of the final MAPF solution but also how

rapidly we approach it. We define AUC formally as the integral of the sum of delays, starting

from the initial MAPF solution (since we only compare algorithms that start from the same initial

MAPF solution) and ending when the runtime limit is reached.

Experiment 1: Algorithms for initial planning. We compare three representative non-optimal

MAPF algorithms in different categories for creating the initial MAPF solutions, namely the

bounded-suboptimal algorithm EECBS(2), the prioritized algorithm PPR (see Section 2.2.3), and

the rule-based algorithm PPS (see Section 2.2.3); all with a runtime limit of 10 seconds. If an

algorithm terminates before 10 seconds without finding a MAPF solution, we restart it with a new

random ordering of agents. As shown in Figure 6.2, no single algorithm dominates all other ones

for all scenarios. Compared to the success rate, the quality of the initial MAPF solution is usually

less critical. With a poor initial MAPF solution, MAPF-LNS may take longer to converge, but

the improvement is rapid. For example, when we run MAPF-LNS on the random map with 100

agents (using the parameters in Experiment 5) with initial MAPF solutions from EECBS, PP, and

PPS, their initial sums of delays are very different (namely 299, 468, and 2,224, respectively), but

their final sums of delays are close (namely 138, 141, and 136, respectively). The initial solution

146

Figure 6.2: Success rates and sums of delays of various algorithms with a runtime limit of 10
seconds for finding initial MAPF solutions. The sum of delays is averaged over all instances
solved by each algorithm. The bars of EECBS in the right bottom figure are hidden by the line of
PPS. Some bars are missing because zero instances are solved.

quality may be more important for harder instances since it might then be harder for MAPF-LNS

to improve the initial MAPF solutions. Hence, for each map and each number of agents, we use the

algorithm with the highest success rate to find the initial MAPF solutions in our future experiments.

Experiment 2: Algorithms for replanning. We test various types of MAPF algorithms

for replanning paths, namely the prioritized algorithm PP, the bounded-suboptimal algorithm

EECBS(1.1), and the optimal algorithm CBS (which always finds optimal MAPF solutions with

respect to the chosen subset of agents, i.e., is guaranteed to reach a local minimum). We use the

agent-based neighborhood method with a neighborhood size of 4 to generate the neighborhoods.

147

Initial
m

Iterations (x 1,000) Final sum of delays AUC
algorithm PP EECBS CBS PP EECBS CBS EECBS/PP CBS/PP

e
m
p
t
y
-
8
-
8

EECBS
16 1,644 257 275 3 3 3 1.00 1.03
24 1,125 170 131 13 13 13 1.00 0.98
32 1,013 125 98 30 32 31 1.04 1.03

PPS
40 1,319 104 86 76 80 71 1.15 1.10
48 770 32 20 1,067 834 969 0.88 0.98

e
m
p
t
y
-
3
2
-
3
2

EECBS
300 68 36 22 437 450 435 1.28 1.31
350 45 27 17 855 879 855 1.03 1.02
400 29 18 11 1,616 1,614 1,593 1.01 1.02

PPS
450 11 1 1 6,588 26,991 28,544 1.72 1.72
500 3 1 1 37,013 47,055 47,233 1.13 1.13

r
a
n
d
o
m

EECBS

50 206 60 30 27 28 27 1.05 1.01
100 71 32 16 143 147 142 1.03 0.98
150 48 20 10 383 401 382 1.04 1.01
200 24 13 6 871 889 878 1.03 1.03

PPS 250 9 2 1 4,718 11,131 11,082 1.77 1.77

w
a
r
e
h
o
u
s
e EECBS

150 13 10 3 132 136 133 1.06 1.06
200 7 5 2 268 291 276 1.10 1.10

PPS
250 5 1 0.3 891 1,211 2,977 1.93 3.51
300 3 1 0.1 1,774 3,903 10,510 1.85 2.74
350 2 0.2 0.1 3,830 14,343 20,783 1.79 1.99

o
s
t
0
0
3
d

PPR

100 13 9 1 51 64 79 1.35 3.82
200 8 4 0.4 333 495 1,150 1.80 3.92
300 7 2 0.2 1,198 2,139 4,806 1.75 2.95
400 5 1 0.1 3,337 7,217 10,344 1.78 2.11
500 3 0.3 0.1 8,813 15,171 17,969 1.43 1.54

d
e
n
5
2
0
d

PPR

500 5 1 0.1 1,788 6,422 9,116 2.53 3.07
600 5 1 0.1 3,480 9,742 13,796 2.05 2.46
700 5 0.3 0.1 5,980 15,743 18,678 1.88 2.04
800 4 0.3 0.1 10,149 21,003 24,008 1.55 1.67
900 4 0.4 0.1 15,275 27,133 30,371 1.40 1.49

Table 6.1: Performance of MAPF-LNS with various algorithms for replanning. The success rate
for each map and each number of agents is the same as in Figure 6.2. Numbers in the AUC columns
are the ratios of the average AUC of EECBS/CBS over the average AUC of PP. Numbers in bold
correspond to the cases when EECBS/CBS has a smaller AUC/final sum of delays than PP.

Table 6.1 reports the resulting number of iterations, the sum of delays of the final MAPF solution,

and the relative AUC with respect to PP. Overall, PP is significantly better, dominating CBS and

148

m
Final Sum of delays AUC

Random Agent Map ALNS Random/ALNS Agent/ALNS Map/ALNS
e
m
p
t
y
-
8
-
8 16 3 3 3 3 1.00 1.18 1.02

24 12 13 13 12 0.99 1.12 1.08
32 30 30 33 29 1.04 1.04 1.14
40 83 76 85 74 1.16 1.04 1.11
48 480 1,051 583 434 1.10 2.33 1.30

e
m
p
t
y
-
3
2
-
3
2 300 453 437 418 408 1.11 1.06 1.01

350 853 852 794 772 1.10 1.08 1.02
400 1,559 1,613 1,407 1,423 1.08 1.09 0.99
450 4,626 7,774 5,618 4,469 0.96 1.31 1.18
500 32,060 38,933 34,510 30,830 1.02 1.10 1.03

r
a
n
d
o
m

50 25 27 28 25 0.99 1.06 1.07
100 138 143 145 139 1.02 1.04 1.05
150 391 382 385 373 1.05 1.02 1.03
200 881 870 864 838 1.04 1.03 1.02
250 3,388 4,700 3,843 3,988 0.90 1.13 1.01

w
a
r
e
h
o
u
s
e 150 138 134 146 130 1.11 1.03 1.19

200 300 280 326 283 1.11 0.98 1.17
250 1,535 884 1257 831 1.41 1.09 1.53
300 2,706 1,708 2,851 1,736 1.27 1.13 1.38
350 4,555 3,694 6,917 3,256 1.14 1.11 1.28

o
s
t
0
0
3
d

100 59 51 211 44 2.59 1.00 5.10
200 1,106 334 1,192 330 3.41 0.96 3.08
300 3,964 1,215 2,985 1,227 2.46 0.92 1.81
400 8,779 3,289 5,777 3,343 1.92 0.96 1.42
500 15,386 8,926 11,947 9,207 1.40 0.97 1.18

d
e
n
5
2
0
d

500 8,451 1,752 5,288 1,661 2.99 0.96 2.13
600 13,087 3,415 7,669 3,462 2.31 0.94 1.64
700 17,364 6,209 11,024 6,597 1.82 0.93 1.37
800 22,607 9,882 14,969 10,054 1.61 0.95 1.25
900 28,342 15,367 19,956 15,746 1.41 0.97 1.15

Table 6.2: Performance of MAPF-LNS using LNS with various neighborhood selection methods
with respect to MAPF-LNS using ALNS. Numbers in bold correspond to the cases where LNS
with a single neighborhood selection method has a smaller AUC/final sum of delays than ALNS.

EECBS on 74% of the tested instances in terms of the AUC. This is so because PP runs signifi-

cantly faster than the other two algorithms and thus can explore a substantially larger number of

neighborhoods within the runtime limit.

149

Experiment 3: Neighborhood selection methods. We compare MAPF-LNS using LNS with

each of the three neighborhood selection methods discussed in Section 6.1.3 against MAPF-LNS

using ALNS with all three methods. We use the same setting as in Experiment 2 and PP to replan.

As shown in Table 6.2, different methods perform differently on different maps with different

numbers of agents, but ALNS is the best one overall. While not always superior, it is at least the

second best in each scenario and never more than 10% worse than the best method in terms of AUC.

An interesting result is that the naı̈ve random neighborhood method outperforms the other methods

on the random map with 250 agents. This is so because these instances are highly congested, so,

even if we select agents randomly, we still find groups of agents that are coupled with each other,

and some of the groups might not be covered by the other two handcrafted neighborhood selection

methods.

Experiment 4: Neighborhood sizes. We examine different neighborhood sizes N by trying al-

ternate sizes of 2, 8, and 16, comparing to the size of 4 used up to this point. We use ALNS with

the same settings as in Experiment 3. In general, larger neighborhoods result in larger chances to

find better MAPF solutions but require more time to replan, resulting in fewer iterations within

the runtime limit. Table 6.3 shows that the neighborhood size makes a substantial difference, with

larger neighborhood sizes being better for less congested instances.

Experiment 5: Solution quality. Table 6.4 shows the sum of delays of the initial and final MAPF

solutions of MAPF-LNS using the same settings as in Experiment 4 and the best neighborhood

sizes from Table 6.3. Within a minute, MAPF-LNS dramatically reduces the sum of delays by up

to 36 times. Since it is too difficult to discover the optimal MAPF solutions for most instances,

the suboptimality reported in Table 6.4 is an upper bound on the (actual) suboptimality of the final

MAPF solution, namely ∑ai∈A length(pi)/∑ai∈A dist(si,gi). Overall, the suboptimality of MAPF-

LNS is small. For the large maps (i.e., the warehouse, ost003d, and den520d maps), it is never

worse than 14%, and almost certainly much better. For the small maps (i.e., the empty and random

maps), it can grow large for large numbers of agents, but the upper bound on the suboptimality is

150

m
Iterations (x 1,000) AUC

N2 N4 N8 N16 N2/N4 N8/N4 N16/N4

e
m
p
t
y
-
8
-
8 16 3,268 1,548 832 510 1.25 0.97 0.97

24 2,708 1,455 800 451 1.39 0.89 0.88
32 2,558 1,236 655 381 1.38 0.91 0.87
40 2,727 1,593 809 431 1.71 0.91 1.84
48 1,971 1,363 226 52 1.12 3.59 4.20

e
m
p
t
y
-
3
2
-
3
2 300 172 87 33 17 1.18 0.92 0.99

350 117 55 20 10 1.15 0.98 1.11
400 71 33 13 6 1.09 1.00 1.17
450 27 15 3 1 1.19 1.54 1.85
500 5 4 1 0.4 1.04 1.13 1.19

r
a
n
d
o
m

50 451 257 146 81 1.11 0.96 0.95
100 206 103 49 28 1.10 0.94 0.94
150 137 58 24 14 1.11 0.96 0.96
200 77 30 11 6 1.12 0.98 1.05
250 35 12 4 2 0.99 1.29 1.57

w
a
r
e
h
o
u
s
e 150 28 19 11 6 1.22 0.95 0.89

200 14 9 5 2 1.13 0.94 0.93
250 12 6 3 2 1.51 1.06 1.09
300 8 4 2 1 1.27 1.14 1.12
350 4 2 1 0.4 1.21 1.08 1.16

o
s
t
0
0
3
d

100 28 19 10 5 2.27 0.82 0.87
200 15 11 6 3 2.44 1.17 1.14
300 11 7 3 1 1.81 1.00 0.97
400 8 5 2 1 1.66 0.90 0.95
500 5 3 1 0.4 1.31 0.97 1.02

d
e
n
5
2
0
d

500 10 7 3 1 2.05 0.85 0.91
600 9 6 3 1 1.77 0.85 0.83
700 8 5 2 1 1.53 0.83 0.81
800 7 5 2 1 1.43 0.83 0.85
900 6 4 2 1 1.31 0.91 0.84

Table 6.3: Performance of MAPF-LNS using neighborhood sizes of 2, 4, 8, and 16 (denoted as
N2, N4, N8, and N16, respectively). Numbers in bold correspond to the neighborhood size with
the smallest AUC. If no numbers are in bold, N4 has the smallest AUC.

highly misleading since, for these extremely congested instances, the sum of costs of the optimal

MAPF solution (if we could find it) is probably much larger than ∑ai∈A dist(si,gi). When we use

only instances for which we can find the optimal MAPF solutions, the (actual) suboptimality of

MAPF-LNS is much smaller. Among the 750 (easier) instances used in Experiment 6, CBS solved

199 instances to optimality within 60 seconds. For these instances, MAPF-LNS finds optimal

151

N m
Sum of delays Subopt-

N m
Sum of delays Subopt-

Initial Final imality Initial Final imality
e
m
p
t
y
-
8
-
8 16 16 7 3 ≤1.03

e
m
p
t
y
-
3
2
-
3
2 8 300 1,515 367 ≤1.06

16 24 33 11 ≤1.09 8 350 2,740 743 ≤1.10
16 32 79 25 ≤1.16 8 400 4,445 1,374 ≤1.16
8 40 1,314 63 ≤1.30 4 450 40,513 5,121 ≤1.54
4 48 2,586 668 ≤3.67 4 500 55,057 33,554 ≤4.16

r
a
n
d
o
m

16 50 47 24 ≤1.02

w
a
r
e
h
o
u
s
e 16 150 261 124 ≤1.01

16 100 299 130 ≤1.06 16 200 526 266 ≤1.02
16 150 914 346 ≤1.10 8 250 13,199 635 ≤1.03
8 200 2,139 792 ≤1.18 8 300 18,587 1,400 ≤1.06
4 250 24,455 3,390 ≤1.60 4 350 25,539 3,979 ≤1.14

o
s
t
0
0
3
d

8 100 1,338 37 ≤1.00

d
e
n
5
2
0
d

8 500 12,002 869 ≤1.01
4 200 4,103 346 ≤1.01 8 600 16,424 2,034 ≤1.02
8 300 8,129 1,098 ≤1.02 16 700 20,713 4,473 ≤1.04
8 400 13,634 2,427 ≤1.04 8 800 25,885 7,408 ≤1.05
8 500 19,914 8,223 ≤1.11 16 900 31,888 12,186 ≤1.08

Table 6.4: Solution quality of MAPF-LNS.

MAPF solutions for 171 instances and <0.01%, <0.1%, and <1% suboptimal MAPF solutions

for 175, 195, and 198 instances, respectively. The worst MAPF solution is 1.35% suboptimal.

Experiment 6: Alternative anytime algorithms. We compare MAPF-LNS against the state-of-

the-art anytime algorithm Anytime BCBS. Anytime BCBS is based on the bounded-suboptimal

algorithm BCBS, which is much slower than more recent bounded-suboptimal algorithms, such as

EECBS. We therefore also created an anytime version of EECBS based on restarting its search.

Anytime EECBS starts with an initial suboptimality factor of 2. Whenever it finds a MAPF solution

with sum of costs S and a lower bound L on the optimal sum of costs, it updates the suboptimality

factor to 1+0.99×(S/L−1) and restarts the search. Since the value of S/L−1 is guaranteed to be

at least 1% smaller after each iteration, it will converge to 0 after a finite number of iterations. That

is, the MAPF solutions of Anytime EECBS are guaranteed to converge to optimal. MAPF-LNS

uses EECBS(2) to generate an initial MAPF solution (i.e., the same initial MAPF solution as used

by Anytime EECBS), ALNS with a neighborhood size of 16 to generate neighborhoods, and PP to

replan. Since Anytime BCBS and Anytime EECBS cannot find MAPF solutions for many of the

152

m
Success rate Time to solution Iterations

BCBS MAPF-LNS BCBS MAPF-LNS BCBS EECBS MAPF-LNS
e
m
p
t
y
-
8
-
8 8 1.00 1.00 0.0002 0.0002 1 2 1,053k

16 1.00 1.00 0.0012 0.0005 2 4 524k
24 1.00 1.00 0.01 0.0018 8 11 462k
32 1.00 1.00 0.05 0.01 7 11 377k
40 0.60 1.00 0.87 0.43 5 4 401k

e
m
p
t
y
-
3
2
-
3
2 100 1.00 1.00 0.05 0.02 10 7 111k

200 1.00 1.00 4.21 0.11 15 7 55k
300 0.72 1.00 16.96 0.45 8 5 18k
400 0.00 1.00 - 3.36 - 4 7k
500 0.00 1.00 - 33.33 - 1 1k

r
a
n
d
o
m

50 1.00 1.00 0.06 0.02 17 10 78k
100 0.96 1.00 0.88 0.10 11 8 27k
150 0.88 1.00 9.63 0.42 7 6 13k
200 0.08 1.00 39.60 1.50 2 6 6k
250 0.00 1.00 - 5.00 - 4 4k

w
a
r
e
h
o
u
s
e 50 1.00 1.00 0.23 0.03 3 3 13k

100 0.92 1.00 1.54 0.12 23 8 12k
150 0.92 1.00 7.65 0.90 17 5 6k
200 0.80 1.00 27.00 2.86 4 3 3k
250 0.28 1.00 33.04 4.67 6 2 2k

o
s
t
0
0
3
d

50 1.00 1.00 0.30 0.06 2 5 7k
100 0.92 1.00 2.42 0.22 6 6 5k
150 0.84 1.00 6.98 1.48 4 4 3k
200 0.52 1.00 18.20 1.86 2 3 2k
250 0.16 1.00 29.72 2.88 3 1 2k

d
e
n
5
2
0
d

100 0.92 1.00 0.69 0.26 2 4 5k
200 0.68 1.00 4.35 0.88 5 5 3k
300 0.44 1.00 12.39 1.83 3 3 2k
400 0.08 1.00 20.98 3.16 1 2 2k
500 0.00 1.00 - 3.58 - 1 1k

Table 6.5: Comparison of MAPF-LNS against Anytime BCBS and Anytime EECBS on easier
MAPF instances. The numbers in the “Time to solution” (short for runtime to the initial MAPF
solution) and “Iterations” columns are averaged over all instances solved by each algorithm. We
omit the columns for Anytime EECBS when its values are always the same as the ones of MAPF-
LNS. Numbers in bold correspond to the largest success rates or the smallest runtimes to the initial
MAPF solution.

instances used in our previous experiments, we use instances with fewer agents than before in this

experiment. Table 6.5 summarizes the success rates, runtimes to the initial MAPF solutions, and

numbers of iterations, and Figure 6.3 summarizes the initial and final sums of delays. Since BCBS

153

Figure 6.3: Initial and final sums of delays of MAPPF-LNS, Anytime BCBS, and Anytime EECBS,
averaged over all instances solved by each algorithm. Some blue bars are missing because zero
instances are solved.

is slower than EECBS, Anytime BCBS has lower success rates and longer runtimes to the initial

MAPF solution than the other two algorithms. Anytime BCBS and Anytime EECBS are essentially

multiple runs of a bounded-suboptimal search algorithm with decreasing suboptimality bounds, so

they both result in longer and longer iterations and thus fail to improve the initial MAPF solutions

substantially. MAPF-LNS, on the other hand, focuses on a few (ideally highly-coupled) agents

in each iteration and thus can perform substantially more iterations and improve the initial MAPF

solution rapidly. Although the solutions of Anytime BCBS/EECBS are guaranteed to converge

to optimal in theory [47], this happens in practice only when the instances are very easy, such as

some instances of the random and warehouse maps with 50 agents. MAPF-LNS does not have

154

Figure 6.4: Evolution of the sum of delays over 10 minutes for the three anytime algorithms on the
first three instances of map den520d with 300 agents that are solved by all of the algorithms. Each
point on the Anytime BCBS/EECBS curves represents one iteration, except for the last point at 600
seconds. We omit the points on the MAPF-LNS curves as MAPF-LNS has too many iterations.

such guarantees, but its MAPF solutions also converge to optimal on most of those instances in

practice. In addition, when facing harder instances that Anytime BCBS/EECBS cannot solve,

MAPF-LNS can still solve them by using more efficient algorithms, such as PP and PPS, to find

initial MAPF solutions and improve them over time.

Experiment 7: Longer runtime limits. To better understand the anytime behavior of the three

algorithms used in Experiment 6, we repeat that experiment with a runtime limit of 600 seconds

on map den520d. The final sums of delays of MAPF-LNS here are usually smaller (by at most

12%) than the final sum of delays of MAPF-LNS reported in Experiment 6, but the trends are the

same (i.e., PP is the best replanning algorithm, and ALNS works better than LNS). Anytime BCBS

and Anytime EECBS, on the other hand, run out of memory in many cases. Moreover, their final

sums of delays and numbers of iterations do not change much, and their sum-of-delays graphs

usually become flat after a few seconds (see Figure 6.4). Similar memory issues of CBS-based

algorithms have been observed in [30], and similar convergence behavior of Anytime BCBS has

been observed in [47].

155

6.2 MAPF-LNS2: Repairing Infeasible MAPF Solutions

Existing MAPF algorithms include optimal and bounded-suboptimal search algorithms (that are

exponential-time), rule-based algorithms (that are usually polynomial-time and complete but not

optimal), and prioritized algorithms (that run fast empirically but are neither complete nor optimal).

When facing challenging MAPF instances, however, the first two types of algorithms suffer from

either memory-outs or time-outs while the last type suffers from incompleteness. Although MAPF-

LNS significantly improves the solution quality of non-optimal MAPF algorithms, it relies on

existing MAPF algorithms to find initial MAPF solutions and thus cannot improve the runtimes or

success rates of them.

One technique that can improve the chance of finding MAPF solutions is to restart the search

with a new random seed [21, 48]. In this section, we propose a different way of improving the

chance of finding MAPF solutions. Instead of giving up on the previous search effort and restarting

the search from scratch, we make use of the infeasible set of paths produced by a MAPF algorithm

and try to repair it via LNS.

6.2.1 MAPF-LNS2 Framework

We propose MAPF-LNS2, a version of LNS that can efficiently find a MAPF solution (instead

of improving a given MAPF solution) for a MAPF instance. To begin with, MAPF-LNS2 calls a

MAPF algorithm to solve the instance and obtain a plan that might be incomplete or have conflicts.

For each agent that does not yet have a path, MAPF-LNS2 plans a path that minimizes the number

of conflicts with the existing paths. Details of finding such paths are introduced in Section 6.2.2.

For instance, for a CBS-based algorithm, each CT node contains a plan, so MAPF-LNS2 picks

the plan with the minimum number of conflicts. For a prioritized algorithm, it fails when there

is no path for an agent that avoids conflicts with the paths of all higher-priority agents. MAPF-

LNS2 retains the already-planned paths and plans paths for the remaining agents that minimize the

number of conflicts (instead of avoid conflicts) with the already-planned paths.

156

MAPF-LNS2 then repeats a repair procedure until the plan P becomes conflict-free. At each

iteration, MAPF-LNS2 selects a subset of agents As ⊆ A with a neighborhood selection method

(see Section 6.2.3). We denote the paths of the agents in As as P−. It then calls a modified MAPF

algorithm to replan the paths of the agents in As so as to minimize the number of conflicts with

each other and the paths in P \P−. Specifically, MAPF-LNS2 uses a modification of PP as the

modified MAPF algorithm.3 (Modified) PP assigns a random priority ordering to the agents in As

and replans their paths one at a time according to the ordering. Each time, it calls a single-agent

pathfinding algorithm (see Section 6.2.2) to find a path for an agent that minimizes the number of

conflicts with the new paths of the higher-priority agents in As and the paths in P\P−. We denote

the new paths of the agents in As as P+. Finally, MAPF-LNS2 replaces the old plan P with the new

plan (P\P−)∪P+ iff the number of colliding pairs (CP) of the paths in the new plan is no larger

than that of the old plan.

6.2.2 Pathfinding with Dynamic Obstacles

To make MAPF-LNS2 efficient, we need an efficient single-agent pathfinding algorithm to find a

(short) path for an agent that minimizes the number of conflicts with a given set of paths. Here, we

formulate a more general problem called Pathfinding with Mixed Dynamic Obstacles (PMDO).

Definition 6.1 (Pathfinding with Mixed Dynamic Obstacles). We call (v, t), (e, t), and (v, [t,∞)) a

vertex, edge, and target obstacle indicating that vertex v ∈ V , edge e ∈ E, and vertex v ∈ V are

occupied at timestep t, from timestep t− 1 to timestep t, and at and after timestep t, respectively.

Given a graph G= (V,E), a start vertex s∈V , a target vertex g∈V , and two finite sets of obstacles

Oh (called hard obstacles) and Os (called soft obstacles), where each obstacle is either a vertex,

edge, or target obstacle, our task is to find a path from vertex s to vertex g that does not conflict with

any hard obstacles. We assume that vertex s at timestep 0 is not occupied by any hard obstacles,

and vertex g at timestep ∞ is not occupied by any hard obstacles either, i.e., there exists a finite

3We have adapted two other MAPF algorithms to replanning the paths, namely Greedy CBS [16] and PBS [123].
But both of them perform worse than PP empirically.

157

(a) (b)

Figure 6.5: Examples when PP fails to find any MAPF solutions. Agent a1 follows the arrow
without waiting.

timestep after which no more hard obstacles occupy vertex g. The optimization objective is to

minimize the number of soft conflicts, i.e., conflicts between the found path and the soft obstacles,

and break ties in favor of the shortest path.

The problem that the single-agent pathfinding solver in MAPF-LNS2 has to solve is a special

case of PMDO with Oh = /0 and Os = {(v, t) | p[t] = v, p ∈ P′, t ∈ [0, length(p)−1]}∪{((u,v), t) |

p[t − 1] = u∧ p[t] = v∧ u ̸= v, p ∈ P′, t ∈ [1, length(p)− 1]}∪ {(p[length(p)], [length(p),+∞)) |

p ∈ P′}, where P′ consists of the new paths of the higher-priority agents in As and the paths in

P\P−.

6.2.2.1 Space-Time A*

A straightforward algorithm for PMDO is space-time A*, which is used by many MAPF algo-

rithms, such as ID [162] as well as all the CBS-based and prioritized MAPF algorithms that we

have introduced so far. Space-time A* performs an A* search on a time-expanded graph. Each

state in the graph is defined by a vertex v and a timestep t, representing the agent being at vertex v

at timestep t. The agent can move from state (v, t) to state (v′, t ′) iff ((v,v′)∈ E∨v = v′)∧ t ′ = t+1

holds and the move action does not conflict with any obstacles in Oh. In addition to the regular g-,

h-, and f -values, each node in the search tree of space-time A* maintains a c-value, that represents

the number of conflicts of the partial path from the root node to the current node with obstacles in

Os. To solve PMDO optimally, space-time A* sorts the nodes in the open list in ascending order

of their c-values, breaking ties in ascending order of their f -values.

158

While space-time A* can solve PMDO correctly, unfortunately, it cannot do so efficiently.

Consider the instance shown in Figure 6.5a. If agent a2 has to plan a path that minimizes the

number of conflicts with the path of agent a1, space-time A* has to expand all nodes whose c-

values are zero before finding the optimal path, that has one conflict with a1 at C2 at timestep 2

(because a1 reaches C2 at timestep 1 and remains there forever). However, a potentially infinite

number of nodes have zero conflicts as the time dimension is unbounded. So, space-time A*

may not return a path in finite time. Although one can fix this issue by restricting space-time A*

to generating states only with timesteps no greater than the maximum timestep of the obstacles

max{t ∈ N | (v, t) ∈ Oh∪Os∨ (e, t) ∈ Oh∪Os∨ (v, [t,∞)) ∈ Oh∪Os} and switching to standard

A* (without the time dimension) afterward [123], the number of nodes it has to expand can still

be large. Similar performance issues have been observed in [45, 36] where ECBS and EECBS can

run slower when their low levels use a larger suboptimality factor as a larger suboptimality factor

results in more timesteps that space-time A* needs to consider.

6.2.2.2 SIPPS

Safe Interval Path Planning (SIPP) [136] is a fast variant of space-time A* that uses time intervals

instead of timesteps to represent the time dimension of the problem. It performs an A* search on

a time-interval graph. Each state in the graph is defined by a vertex and a safe (time) interval,

representing that the vertex is not occupied by any hard obstacles at any timestep during the time

interval. For each state with vertex v and safe interval [a,b), SIPP always prefers the (partial) path

that arrives at vertex v as early as possible within [a,b) and then waits at vertex v if necessary, since

this allows SIPP to prune paths that arrive at vertex v at a later timestep within [a,b) without losing

optimality. SIPP runs significantly faster than space-time A* empirically [136, 110], yet it cannot

handle soft obstacles. We thus generalize SIPP to Safe Interval Path Planning with Soft constraints

(SIPPS) for solving PMDO.4

4To the best of our knowledge, SCIPP [49] is the only existing SIPP variant that handles soft obstacles. However,
it cannot solve PMDO as it cannot handle edge obstacles.

159

Safe intervals. A safe interval for a vertex is a contiguous period of time during which

• there are no hard vertex obstacles and no hard target obstacles at any timestep, and

• there is either

– a soft vertex or soft target obstacle at every timestep or

– no soft vertex obstacle and no soft target obstacle at any timestep.

We build a safe interval table T , that maps each vertex v ∈ V to a sequence of safe intervals

T [v]. To build T [v], we look at all hard and soft vertex and target obstacles at vertex v and divide

interval [0,∞) into a minimum set of disjoint safe intervals in T [v] in chronological order. We do

not consider edge obstacles here as they are handled elsewhere.

SIPPS nodes. A node n in the search tree of SIPPS consists of four elements, namely a vertex

n.v, a safe interval [n.low,n.high) where n.low is also called the earliest arrival time, an index

n.id indicating that the safe interval is (a subset of) the id-th safe interval in T [n.v] (i.e., interval

T [n.v][n.id]), and a Boolean flag n.is goal indicating whether the node is a goal node (set to false

by default). The f -value of node n is the sum of its g-value and h-value, where the g-value is set

to n.low and the h-value is a lower bound on dist(n.v,g). Each node n also maintains a c-value,

which is (a lower bound on) the number of the soft conflicts of the partial path from the root node

to node n, i.e.,

c(n) = c(n′)+ cv + ce, (6.2)

where n′ is the parent node of n, cv is 1 if the safe interval of n contains soft vertex/target obstacles

and 0 otherwise, and ce is 1 if ((n.v,n′.v),n.low)∈Os and 0 otherwise. If n is the root node (i.e., n′

does not exist), then c(n) = cv. In principle, an agent may encounter more than one soft conflict if it

160

Algorithm 6.3: SIPPS for solving PMDO.
Input: PMDO instance (G = (V,E),s,g,Oh,Os)

1 T ← BUILDSAFEINTERVALTABLE(V,Oh,Os);
2 root← Node(s,T [s][1],1, false); // 1 and f alse indicate id = 1 and is goal = false
3 T ← 0; // Lower bound on path length
4 if ∃t ∈ N : (g, t) ∈ Oh then T ←max{t ∈ N | (g, t) ∈ Oh}+1;
5 Compute g-, h-, f -, and c-values of root;
6 OPEN←{root}; CLOSED← /0; // Initialize open and closed lists
7 while OPEN ̸= do
8 n← OPEN.pop(); // Node with the smallest c-value
9 if n.is goal then return EXTRACTPATH(n);

10 if n.v = g∧n.low≥ T then
11 cfuture← |{(g, t) ∈ Os | t > n.low}|;
12 if cfuture = 0 then return EXTRACTPATH(n);
13 n′← a copy of n with is goal = true;
14 c(n′)← c(n′)+ cfuture;
15 INSERTNODE(n′,OPEN,CLOSED); // Algorithm 6.5

16 EXPANDNODE(n,OPEN,CLOSED,T); // Algorithm 6.4
17 CLOSED← CLOSED∪{n};
18 return “No Solution”;

waits within a safe interval that contains soft vertex obstacles. We ignore such cases for efficiency.5

More discussions can be found in the Theoretical analysis paragraph.

Main algorithm. Algorithm 6.3 shows the pseudo-code of SIPPS. To begin with, we build T

[Line 1] and generate the root node with start vertex s, the first safe interval T [s][1] from T [s],

index 1, and is goal = false [Line 2]. T is a lower bound on the path length [Line 3]. If there are

hard vertex obstacles at target vertex g, then T is set to one plus the maximum timestep of all hard

vertex obstacles at vertex g [Line 4] because the agent cannot complete its path before all hard

vertex obstacles at vertex g have disappeared. OPEN and CLOSED are regular open and closed

lists, respectively [Line 6]. In order for SIPPS to find the path with the minimum number of soft

conflicts (and break ties in favor of the shortest path), the nodes in OPEN are sorted in ascending

5If we consider such cases and define the c-value as the accurate number of the soft conflicts, then the key idea
behind SIPP cannot be applied. That is, given a state with vertex v and safe interval [a,b), the (partial) path that arrives
at vertex v as early as possible within [a,b) and then waits at vertex v if necessary can be suboptimal because waiting
at vertex v may result in a larger c-value as opposed to waiting at the vertex before vertex v.

161

order of their c-values, breaking ties in ascending order of their f -values. At every iteration, SIPPS

pops a node n from OPEN [Line 8] and return its corresponding path if it is a goal node [Line 9].

Function EXTRACTPATH(n) constructs a path by repeatedly moving to the parent node until the

root node is found. The reversed sequence of vertices of the visited nodes is the sequence of

vertices visited by the path, with their timesteps being the earliest arrival time of each node. If the

difference between the timesteps of two adjacent vertices on the path is larger than one, we add

wait actions in between accordingly so that the agent reaches the first vertex at the earliest arrival

time of the corresponding node, waits there, and then moves to the second vertex at the earliest

arrival time of the corresponding node. If the vertex of node n is target vertex g with n.low ≥ T

[Lines 10 to 15], it can be a goal node, but its c-value does not consider the number of additional

soft conflicts c f uture that the agent encounters after timestep n.low while staying at g forever. We

thus terminate only if c f uture is 0 and generate a goal node that considers c f uture otherwise. Finally,

we expand node n [Line 16] and insert it into CLOSED [Line 17].

Expanding nodes. When expanding a node n (see Algorithm 6.4), we first store all reachable

vertex-index pairs from vertex n.v at a timestep within interval [n.low,n.high) in I [Lines 2 to 6].

A vertex-index pair (v, id) is reachable iff the agent can move to v at a timestep within T [v][id],

i.e., T [v][id] overlaps with [n.low+ 1,n.high+ 1), or wait at v from interval [n.low,n.high) to

interval T [v][id], i.e., n.high = T [v][id].low. For each vertex-index pair (v, id) ∈ I [Line 7],

we use [low,high) to represent the corresponding interval [Line 8]. We update low to the earliest

arrival time at vertex v within [low,high) without colliding with any hard edge obstacles [Line 9].

We jump to the next iteration if low does not exist [Line 10]. We then find the earliest arrival time

low′ at vertex v within [low,high) without colliding with any hard or soft edge obstacles [Line 11].

If low′ exists and low′ > low [Lines 12 to 16], then the agent will conflict with a soft edge obstacle

if it arrives at v during timesteps [low, low′) and will not if it arrives at timestep low′ (and waits

at v if necessary). Thus, we generate two child nodes, one with safe interval [low, low′) and one

with safe interval [low′,high). The former child node has one more conflict than the latter one. If

low′ does not exist or low′ = low [Lines 17 to 19], then we generate one child node as usual (The

162

Algorithm 6.4: Expand a SIPPS node.
1 Function EXPANDNODE(n,OPEN,CLOSED,T)
2 I ← /0;
3 for v : (n.v,v) ∈ E do
4 I ←I ∪{(v, id) |T [v][id]∩ [n.low+1,n.high+1) ̸= /0, id ∈ N+};
5 if ∃id : T [n.v][id].low = n.high then
6 I ←I ∪{(n.v, id) |T [n.v][id].low = n.high, id ∈ N+}; // Indicates wait actions

7 foreach (v, id) ∈I do
8 [low,high)←T [v][id];
9 low←min{t ∈ [low,high) | t−1 ∈ [n.low,n.high)∧ ((v,n.v), t) /∈ Oh};

10 if low does not exist then continue;
11 low′←min{t ∈ [low,high) | t−1 ∈ [n.low,n.high)∧ ((v,n.v), t) /∈ Oh∪Os};
12 if low′ exists ∧ low′ > low then
13 n1← Node(v, [low, low′), id, f alse);
14 INSERTNODE(n1,OPEN,CLOSED) ; // Algorithm 6.5
15 n2← Node(v, [low′,high), id, f alse);
16 INSERTNODE(n2,OPEN,CLOSED); // Algorithm 6.5
17 else
18 n3← Node(v, [low,high), id, f alse);
19 INSERTNODE(n3,OPEN,CLOSED); // Algorithm 6.5

Figure 6.6: Illustration of all possible combinations of the relative positions of the safe intervals
of two nodes n1 and n2 with the same identity. The timeline is from left to right. Without loss of
generality, we assume that c(n1) < c(n2) in (a), (b), and (d) and c(n1) ≤ c(n2) in (c), (e), and (f).
We do not consider the cases where c(n1) = c(n2) in (a), (b), and (d) because they are identical to
the cases where c(n1) = c(n2) in (f), (e), and (c), respectively.

case when low′ does not exist results in one more conflict in the child node than the case when

low′ = low).

Inserting nodes. We say that two nodes n1 and n2 have the same identity, denoted as n1 ∼ n2,

iff n1.v = n2.v, n1.id = n2.id, and n1.is goal = n2.is goal. We say that n1 (weakly) dominates n2,

denoted as n1 ⪰ n2, iff n1 ∼ n2, [n1.low,n1.high) ⊇ [n2.low,n2.high), and c(n1) ≤ c(n2). We are

163

interested in dominance because, if node n1 dominates node n2 (e.g., as in Figure 6.6(c)), we can

prune n2 without loss of completeness. Moreover, we know from Lines 7 to 19 in Algorithm 6.4

that a node n satisfies n.high < T [n.v][n.id].high iff it is generated on Line 13, i.e., there is a twin

node n′ with n′ ∼ n, [n′.low,n′.high) = [n.high,T [n.v][n.id].high), and c(n′) = c(n)−1. That is to

say, if the situations in Figures 6.6(e) and (f) occur, although node n1 does not dominate node n2,

there exists a twin node n3 of node n1 such that n1∼ n2∼ n3, [n1.low,n1.high)∪ [n3.low,n3.high)⊇

[n2.low,n2.high), and c(n3)< c(n1)≤ c(n2). We can thus prune node n2. Therefore, we generalize

the definition of dominance as follow. We say that node n1 (weakly) dominates node n2, denoted

as n1 ⪰ n2, iff n1 ∼ n2, n1.low≤ n2.low, and c(n1)≤ c(n2). We can prune a node if it is dominated

by another node. For situations when two nodes with the same identity have overlapping intervals

but no dominance relationship (as in Figures 6.6(b) and (d)), the intersection of the two intervals

would be explored twice if we expanded both nodes. We know that the node with the smaller lower

bound always has the larger c-value (since, otherwise, the two nodes would have a dominance

relationship), so we can shrink the interval of the node with the smaller lower bound by updating

its upper bound to the lower bound of the the interval of the other node. This avoids the duplicate

search effort without loss of completeness. The only unconsidered situation is the one shown in

Figure 6.6(a), in which case we have to keep both nodes. In order to make SIPPS efficient, we use

this pruning in SIPPS. As shown in Algorithm 6.5, we first compute the values of node n [Line 2]

and collect all nodes in OPEN and CLOSED that have the same identity as node n [Line 3].

We need to compare with each such node so as to avoid duplicate search effort. Consider a node q

[Line 4]. If it dominates node n [Line 5], then we do not need to generate node n and thus terminate

[Line 6]. If it is dominated by node n [Line 7], then we do not need node q and thus remove it from

OPEN and CLOSED [Line 8]. Otherwise, if the safe intervals of the two nodes overlap [Line 9],

then we reset the upper bound of the interval with the smaller lower bound to the lower bound of

the other interval [Lines 10 and 11].

Heuristics. To achieve high efficiency, most MAPF algorithms use the distance dist(n.v,g) from

vertex n.v to vertex g as the h-value of node n when they plan paths for single agents, where the

164

Algorithm 6.5: Insert a SIPPS node.
1 Function INSERTNODE(n,OPEN,CLOSED)
2 Compute g-, h-, f -, and c-values of n;
3 N ←{q ∈ OPEN∪CLOSED | q∼ n}; // Nodes having same identity as n
4 foreach q ∈N do
5 if q.low≤ n.low∧ c(q)≤ c(n) then // q⪰ n
6 return; // No need to generate n
7 else if n.low≤ q.low∧ c(n)≤ c(q) then // n⪰ q
8 delete q from OPEN and CLOSED; // Prune q
9 else if n.low < q.high∧q.low < n.high then

10 if n.low < q.low then n.high = q.low;
11 else q.high = n.low;

12 insert n into OPEN;

distances are computed during preprocessing. Such a heuristic is informed as long as the length of

the optimal path p∗ is not too much larger than dist(s,g). Unfortunately, this is not always the case

for PMDO for two reasons:

• T = max{t | (g, t) ∈ Oh}+1 is a lower bound on length(p∗) and can be substantially larger

than dist(s,g); and

• T ′ = max{t | (g, t) ∈ Oh ∪Os}+ 1 is a lower bound on length(p∗) when p∗ has zero soft

conflicts and can be substantially larger than dist(s,g).

Therefore, we compute the h-value of a non-goal node n as

h(n) =


max{dist(n.v,g),T ′−g(n)}, c(n) = 0

max{dist(n.v,g),T −g(n)}, c(n)≥ 1,
(6.3)

The h-value of a goal node is, of course, 0.

Theoretical analysis. Below are two theorems for SIPPS. The proofs are omitted as they follow

the proofs for SIPP.

Theorem 6.1. SIPPS guarantees to return a path if one exists and “No Solution” otherwise.

165

Theorem 6.2. SIPPS guarantees to return a shortest path with zero soft conflicts if one exists.

One limitation of SIPPS is that, if no zero-soft-conflict path exists, SIPPS may return a path that

has more soft conflicts than the minimum because the c-value ignores the soft conflicts that occur

when the agent waits within a safe interval that contains soft vertex obstacles. This approximation

is acceptable since the minimization of the number of conflicts itself is an approximation of the

CP minimization (i.e., minimization of the number of colliding pairs) used by MAPF-LNS2.6 We

have considered minimizing CP in SIPPS directly, but it is extremely inefficient as we have to keep

track of the set of agents that the partial path from the root node to each node conflicts with, which

substantially increases the search space.

Applications. Although SIPPS was designed for MAPF-LNS2, it can be used by a broad family

of MAPF algorithms as PMDO is a problem that needs to be solved by many MAPF algorithms.

Examples include the optimal MAPF algorithms ID [162] and CBS, the bounded-suboptimal

MAPF algorithm ECBS, and the prioritized MAPF algorithm PBS [123] as well as their variants.

With small changes to the priority function used by the open list of SIPPS (e.g., in CBS, priori-

tizing nodes with smaller f -values and breaking ties towards smaller c-values), SIPPS can speed

up these MAPF algorithms while preserving their solution quality guarantees. Moreover, unlike

space-time A*, SIPPS can also be applied in continuous-time settings. So, it can also speed up

Continuous-Time CBS (CCBS) [5] and allows one to generalize CCBS to its suboptimal variants,

e.g., Continuous-Time ECBS.

6.2.3 Neighborhood Selection

Following MAPF-LNS, we present three neighborhood selection methods and introduce adaptive

LNS that intelligently combines these methods. Each neighborhood selection method derives from

6Empirically, we ran MAPF-LNS2 on the random map with 400 agents using the setup described in Section 6.2.4
and collected the results of 84,739 SIPPS runs. Among them, more than 95% of runs find the minimum-conflict
paths, and 4% of runs find paths that contain only one more conflict than the minimum (where the minimum-conflict
paths are found by space-time A*). Although space-time A* guarantees to find minimum-conflict paths, their CPs are
occasionally larger than the CPs of the paths found by SIPPS.

166

Algorithm 6.6: Generate a conflict-based neighborhood.
Input: MAPF instance (G,A), plan P, conflict graph Gc, and neighborhood size N

1 v← a random vertex in {v ∈Vc | degree(v)> 0};
2 G′c = (V ′c ,E

′
c)← the largest connected component of Gc that contains v;

3 if |V ′c | ≤ N then
4 As←{av ∈ A | v ∈V ′c};
5 while |As|< N do
6 ai← a random agent in As;
7 As← As∪ RANDOMWALK(G,ai,P);

8 else
9 As← /0;

10 while |As|< N do
11 As← As∪{av};
12 v← a random vertex in {u ∈V ′c |(v,u) ∈ E ′c};

13 return As;

14 Function RANDOMWALK(G,ak,P)
15 (x, t)← (pk[t], t), where t is a random timestep in [0, length(pk)−1];
16 while t ≤max{length(p) | p ∈ P} do
17 y← a random vertex in {u ∈V | u = v∨ (v,u) ∈ E};
18 Ac←{ai ∈ A\{ak} | pi[t +1] = y∨ (pi[t] = y∧ pi[t +1] = x)};
19 if Ac ̸= /0 then return Ac;
20 (x, t)← (y, t +1);

21 return /0;

a different motivation. Although there might be multiple implementations for each motivation, we

present the one that works well for us and leave the exploration of other implementations for

future work. We denote the current plan as P, the selected neighborhood as As, and the size of

As as a predefined parameter N. Gc = (Vc,Ec) is the conflict graph, where Vc = {i | ai ∈ A} and

Ec = {(i, j) | pi ∈ P conflicts with p j ∈ P}. We denote the degree of i ∈Vc as degree(i).

6.2.3.1 Conflict-Based Neighborhood

A straightforward idea for generating neighborhoods that can potentially reduce CP is to select a

subset of agents whose current paths conflict with each other. See Algorithm 6.6. To implement

this idea, we first select a random vertex v from Vc with degree(v)> 0 [Line 1] and find the largest

167

connected component G′c = (V ′c ,E
′
c) of conflict graph Gc that contains v [Line 2]. There are two

cases:

• If |V ′c | ≤ N [Line 3], then we put all agents av with v ∈ V ′c into As [Line 4] and repeatedly

add additional agents that might conflict with some agents in As to As until |As|= N [Lines 5

to 7]. At each iteration, we select a random agent from As [Line 6] and let it perform a

random walk starting from a random vertex on its path [Line 15] and stop when it conflicts

with another agent [Line 19], which is then added to As [Line 7]. In the experiments, we

iterate for at most ten iterations (not shown in the pseudo-code) at which the random walk

fails to find any conflicting agents (i.e., it returns an empty set on Line 21) to address the

situation where the agent density is too low for us to collect N agents in As.

• Otherwise [Line 8], we select N vertices from V ′c via a random walk on G′c starting at v and

put the corresponding agents into As [Lines 9 to 12].

6.2.3.2 Failure-Based Neighborhood

The second idea for generating neighborhoods is to reason about why we failed to find conflict-

free paths for some agents in the previous LNS iterations. Finding a path for an agent ai that does

not conflict with a given set of paths is an essential problem that is repeatedly solved in PP. Thus,

previous work on PP has already studied this problem thoroughly [33]. Briefly speaking, there are

two scenarios that result in failures, namely,

1. agent ai is blocked by the agents from the given set of paths “sitting” at their target vertices

surrounding agent ai (see agent a1 = a2 in Figure 6.5a), i.e., all possible paths for agent ai to

reach its target vertex gi are blocked by some target obstacles, and

2. agent ai is “run over” by the given set of paths at (or around) its start vertex si during early

timesteps (see agent ai = a2 in Figure 6.5b), i.e, the agent has no way to go.

168

Algorithm 6.7: Generate a failure-based neighborhood.
Input: MAPF instance (G,A), plan P, conflict graph Gc, and neighborhood size N

1 Select an agent ai ∈ A with probability ∝ degree(i);
2 As← {ai};
3 As←{a j ∈ A | p j ∈ P visits si};
4 Ag←{a j ∈ A | p visits g j}; // p is the path from si to gi that minimizes |Ag|
5 if |As∪Ag| ≥ N−1 then
6 if |As|= 0 then
7 A′← N−1 random agents in Ag;
8 As← As∪A′;
9 else if |Ag| ≥ N−1 then

10 ai← the agent in As that visits si the earliest;
11 A′← N−2 random agents in Ag;
12 As← As∪{ai}∪A′;
13 else
14 A′← the first N−2−|Ag| agents in As that visit si the earliest;
15 As← As∪Ag∪A′;

16 else if |As∪Ag|> 0 then
17 As← As∪As∪Ag;
18 while |As|< N do
19 ai← a random agent in As;
20 a j← a random agent in {ak ∈ A | pi ∈ P visits gk};
21 As← As∪{a j};

22 return As;

Therefore, the failure-based neighborhood focuses on an agent ai that has conflicts and a set of

agents whose paths visit vertex si or whose target vertices are on some path from vertex si to vertex

gi.

Formally, as shown in Algorithm 6.7, we first select an agent ai ∈ A with a probability propor-

tional to degree(i) (i.e., proportional to the number of agents that agent ai conflicts with) [Line 1]

and initialize As with it [Line 2]. We then collect two sets of agents As = {a j ∈ A | p j ∈ P visits si}

[Line 3] and Ag = {a j ∈ A | p visits g j} [Line 4], where p is the path from si to gi that minimizes

|Ag|. There are three cases:

• If |As∪Ag| ≥ N−1 [Line 5], then we add N−1 agents to As using the following rule:

– If |As|= 0 [Line 6], then we add N−1 random agents in Ag to As [Lines 7 and 8].

169

– Otherwise, if |Ag| ≥N−1 [Line 9], then we add the agent in As that visits si the earliest

and N−2 random agents in Ag to As [Lines 10 to 12].

– Otherwise [Line 13], we add all agents in Ag and the first N− 1− |Ag| agents in As

(from the sequence of agents in ascending order of the timesteps when their paths visit

si) to As [Lines 14 and 15].

• Otherwise, if |As∪Ag| > 0 [Line 16], then we add all agents in As∪Ag to As [Line 17] and

then repeatedly add additional agents to As whose target vertices are visited by the paths of

some agents in As until |As| = N [Lines 18 to 21]. At each iteration, we select a random

agent a j from As and collect the agents whose target vertices are visited by p j ∈ P. We select

a random agent from the collected agents and add it to As. In the experiments, we terminate

the while loop on Line 18 if the size of As remains the same after all agents in As have been

selected (not shown in the pseudo-code) to address the situation where the agent density is

too low for us to collect N agents in As.

• Otherwise, i.e., if |As∪Ag| = 0, then we terminate and return As = {ai} [Line 22], because

we are guaranteed to find a path for ai that does not conflict with any other agents as ai can

sit at si until all other agents reach their target vertices and then move to gi via path p.

This rule prefers agents in Ag slightly over agents in As because we find empirically that Scenario

1 occurs more frequently than Scenario 2 when PP fails.

6.2.3.3 Random Neighborhood

Generating neighborhoods randomly may sound naı̈ve but has been shown to be extremely effec-

tive for many problems [52, 159]. Our third idea for generating neighborhoods therefore is to select

N agents randomly, namely each ai with a probability proportional to degree(i)+ 1. We add one

here in order to give the agents who do not conflict with others a chance to be selected.

170

6.2.3.4 Adaptive LNS (ALNS)

We use the same ALNS method as in Section 6.1.3.4. Formally, we maintain a weight wi for each

neighborhood selection method i that represents its relative success in reducing the CP. Initially,

we set all wi to 1. At each iteration, we select a method i with probability wi/∑ j w j to generate a

neighborhood and replan the paths. After replanning, we set wi to

wi = γ ·max{0,c−− c+}+(1− γ) ·wi, (6.4)

where c− and c+ are the CPs of the plans before and after replanning, respectively, and γ ∈ [0,1]

is a user-specified reaction factor that controls how quickly the weights react to the changes in the

relative success in reducing the CP. We use γ = 0.1 in our experiments. The weights for the other

methods remain the same.

6.2.4 Empirical Evaluation

We compare MAPF-LNS2 against a representative set of scalable state-of-the-art MAPF algo-

rithms, namely the bounded-suboptimal algorithm EECBS, the prioritized algorithms PP and PPR,

and the rule-based algorithm PPS. In addition, in order to show the effectiveness of SIPPS for

speeding up MAPF algorithms other than MAPF-LNS2, we implement a variant of EECBS (de-

noted as EECBS*) that uses SIPPS instead of space-time A*. Both PP and PPR use SIPP to plan

paths for single agents (they do not use SIPPS as their underlying single-agent pathfinding problem

does not have soft obstacles). Unless specified otherwise, MAPF-LNS2 uses PP to find the initial

plans, ALNS to generate neighborhoods of size N = 8, and SIPPS to plan paths for single agents.

We use the random-scenario instances on all 33 maps from the MAPF benchmarks, yielding

25 instances per map and number of agents. 25 out of the 33 maps are shown in Figure 6.7, and

the other 8 maps are 4 empty maps empty-i-i of size i× i for i = 8,16,32,48 and 4 random maps

random-i-i- j of size i× i with j% randomly blocked cells for i = 32,64 and j = 10,20. We con-

duct experiments on Amazon EC2 “m4.xlarge” instances with 16 GB of memory. Unless specified

171

(a) 32×32 (b) 32×32 (c) 32×32 (d) 65×81 (e) 64×64 (f) 64×64 (g) 161×63

(h) 162×41 (i) 128×128 (j) 133×270 (k) 170×84 (l) 251×180 (m) 128×128 (n) 194×194

(o) 194×194 (p) 128×128 (q) 321×123 (r) 256×257 (s) 642×578 (t) 340×164 (u) 530×481

(v) 256×256 (w) 256×256 (x) 256×256 (y) 1,491×656

Figure 6.7: Illustrations of maps (a) maze-32-32-2, (b) room-32-32-4, (c) maze-32-32-4,
(d) den312d, (e) room-64-64-8, (f) room-64-64-16, (g) warehouse-10-20-10-2-1, (h)
ht chantry, (i) maze-128-128-1, (j) ht mansion n, (k) warehouse-10-20-10-2-2,
(l) lt gallowstemplar n, (m) maze-128-128-2, (n) ost003d, (o) lak303d, (p)
maze-128-128-10, (q) warehouse-20-40-10-2-1, (r) den520d, (s) w woundedcoast,
(t) warehouse-20-40-10-2-2, (u) brc202d, (v) Paris 1 256, (w) Berlin 1 256, (x)
Boston 0 256, and (y) orz900d. The caption of each map specifies its grid size.

m
Success rate Runtime (s) Runtime per call (ms)

Space-time A* SIPPS Space-time A* SIPPS Space-time A* SIPPS
250 1.00 1.00 3.37 0.64 5.49±17.19 1.11±1.79
300 1.00 1.00 15.99 2.67 10.9±28.72 1.94±2.79
350 0.88 1.00 >68 9.25 15.83±43.52 2.75±3.72
400 0.68 0.88 >162 >78 15.28±40.95 3.04±4.23

Table 6.6: Performance of MAPF-LNS2 using different PMDO algorithms on the random map.
“Runtime per call” is the average runtime of a single space-time A* or SIPPS search.

otherwise, the runtime limit is five minutes. We report results only on map random-32-32-20 of

size 32×32 (denoted as random) in Experiments 1-3 and map warehouse-20-40-10-2-2 of size

340×164 (denoted as warehouse) in Experiment 5.

172

m
Success rate Runtime (s)

Random Failure Conflict ALNS Random Failure Conflict ALNS
250 1.00 1.00 1.00 1.00 0.80 0.59 0.79 0.64
300 1.00 1.00 1.00 1.00 13.13 3.41 3.09 2.67
350 1.00 0.96 1.00 1.00 32.57 >22 9.11 9.25
400 0.48 0.60 0.76 0.88 >192 >155 >128 >78

Table 6.7: Performance of MAPF-LNS2 using LNS with various neighborhood selection methods
and MAPF-LNS2 using ALNS on the random map.

Experiment 1: PMDO algorithms. Table 6.6 compares MAPF-LNS2 with SIPPS against

MAPF-LNS2 with space-time A* in terms of their success rates (i.e., percentages of instances

solved within the runtime limit), average runtimes (with five minutes used for unsolved instances),

and average runtimes per call with their standard deviations. SIPPS clearly dominates space-time

A* with a speedup of more than five times. It is also more stable, e.g., the largest runtime per call

for SIPPS is 51ms while that of space-time A* is 524ms (not shown in the table). This difference

is even larger on larger maps.

Experiment 2: Neighborhood selection methods. Table 6.7 compares MAPF-LNS2 with

ALNS against MAPF-LNS2 with the three individual neighborhood selection methods. As ex-

pected, ALNS performs the best as it combines the strengths of the other methods and is able

to use a larger variety of neighborhoods. We also experiment with different neighborhood sizes

N = 4,8,16,32 but omit the results since they are similar to those reported in Section 6.1.4: There

is no global winner, and larger neighborhoods increase the chance to find better MAPF solutions

but require more time to replan, resulting in fewer iterations within the runtime limit.

Experiment 3: PP-based algorithms. We compare MAPF-LNS2 against other PP-based MAPF

algorithms, namely PP and PPR. MAPF-LNS2 can be viewed as a PP-based MAPF algorithm as

it uses PP to both find initial plans and replan. As shown in Table 6.8, MAPF-LNS2 performs the

best. It rapidly reduces the CP of the initial plan generated by PP and, as a result, substantially

improves the success rate of PP. Its LNS framework is a more efficient approach than random

restarts since MAPF-LNS2 requires significantly fewer runs of single-agent pathfinding than PPR,

173

m
Success rate Runtime (s) #Single-agent runs Initial

PP PPR MAPF-LNS2 PPR MAPF-LNS2 PPR MAPF-LNS2 CP
50 0.84 1.00 1.00 0.01 0.01 61 53 0.2

100 0.56 1.00 1.00 0.02 0.01 179 105 0.6
150 0.20 1.00 1.00 0.13 0.05 1,012 170 1
200 0.08 1.00 1.00 6.69 0.14 47,114 262 5
250 0.00 0.08 1.00 >288 0.64 - 513 20
300 0.00 0.00 1.00 >300 2.67 - 1,285 61
350 0.00 0.00 1.00 >300 9.25 - 3,337 155
400 0.00 0.00 0.88 >300 >78 - - 316

Table 6.8: Comparison of MAPF-LNS2 against PP and PPR on the random map. We omit the
runtime of PP since it is equal to the runtime of PPR and MAPF-LNS2 for any instance that it
was able to solve. “#Single-agent runs” is the average number of times for which we run SIPP or
SIPPS. We omit this result for PP because it is always equal to the number of agents m. “Initial
CP” is the average CP of the initial plan.

which in turn results in significantly higher success rates and lower runtimes. Although MAPF-

LNS2 failed to solve 3 instances with 400 agents, its final plans in these cases have only 1, 1, and

2 CPs (not shown in the table).

Experiment 4: State-of-the-art suboptimal MAPF algorithms. We compare MAPF-LNS2

against the state-of-the-art algorithms PPR, PPS, and EECBS(5) as well as our EECBS*(5).7 We

use the instances in the random scenario on all 33 maps from the MAPF benchmarks with the

largest number of agents, i.e., m = min{0.5|V |,1,000} for each map. Figure 6.8 shows the runtime

and solution quality (measured by an overestimated suboptimality) for each instance, and Fig-

ure 6.9 summarizes the success rates. MAPF-LNS2 solves more than 60% of the instances within

a minute and 80% of the instances within five minutes. Its success rate is always the highest for

all runtime limits. The instances that MAPF-LNS2 fails to solve are mostly on maps with lots of

obstacles, such as the maze and room maps, and mostly not solved by the other algorithms either.

Although PPS solves a few instances that are not solved by MAPF-LNS2, such as instances on map

room-32-32-4, its solution quality is always substantially worse than that of MAPF-LNS2 (and the

7We pick 5 as the suboptimality factor because we intend to choose a large enough suboptimality factor such that,
if EECBS fails to solve an instance that MAPF-LNS2 solves, it is due to the limited scalability of EECBS rather than
it using a suboptimality factor that is too small.

174

Fi
gu

re
6.

8:
R

un
tim

es
an

d
so

lu
tio

n
qu

al
ity

on
al

lm
ap

s.

175

Figure 6.9: Success rates on all maps.

other algorithms). EECBS* finds MAPF solutions of slightly better quality than MAPF-LNS2 for

some instances, yet its runtime is always larger. We did not use EECBS*/PPS to find initial plans

for MAPF-LNS2 because, whenever PP finds MAPF solutions, it always finds them faster than

EECBS*/PPS (as shown in Figure 6.8), and, whenever it fails to find them, MAPF-LNS2 repairs

the plans rapidly and results in better success rates and runtimes than EECBS*/PPS eventually (as

shown in Figure 6.8). In addition, the difference in the success rates and runtimes of EECBS and

EECBS* clearly shows the advantage of SIPPS over space-time A*, especially on large maps, such

as ht chantry, ost003d, and warehouse-20-40-10-2-1. The success rate of EECBS* is almost twice

of EECBS for a runtime limit of five minutes in Figure 6.9. The memory usage of PPS, EECBS,

and EECBS* increases fast over time (as they generate longer and longer paths or larger and larger

search frontiers), while that of PPR and MAPF-LNS2 stays stable. Thus, PPR and MAPF-LNS2

usually end up with a substantially smaller memory usage after five minutes than PPS, EECBS,

and EECBS*.

Experiment 5: Longer runtime limits. We examine the effects of a longer runtime limit of an

hour. Figure 6.10 shows that MAPF-LNS2 still performs the best. It plans conflict-free paths for

3,000 agents within a minute, 5,000 agents within five minutes, and 8,000 agents within a hour.

176

Figure 6.10: Runtimes on the warehouse map with a runtime limit of an hour. Each dot represents
the runtime on one instance, with each line and filled area representing the mean and 0.1-quantile
values over the 25 randomly generated instances for each number of agents. The runtime of each
unsolved instance is set to an hour.

6.3 Combining MAPF-LNS and MAPF-LNS2

One limitation of the MAPF-LNS implementation in Section 6.1 is that no existing MAPF al-

gorithm for finding initial solutions dominates the others. Thus, one must determine the MAPF

algorithm for finding initial solutions manually. However, as shown in Section 6.2, MAPF-LNS2

significantly outperforms the existing algorithms in terms of runtimes on 30 out of 33 maps, i.e.,

all maps except for the 3 small maps with many blocked cells room-32-32-4, random-32-32-20,

and den312d. Therefore, we can use MAPF-LNS2 to find initial MAPF solutions for MAPF-

LNS. Algorithm 6.8 shows the pseudo-code. For simplicity, we still call the resulting algorithm

MAPF-LNS2. MAPF-LNS2 contains three main steps:

1. finding an initial plan via PP [Lines 1 to 7],

2. repairing the plan via LNS if it has conflicts [Lines 8 to 19], and

3. reducing the solution cost via LNS until timeout [Lines 20 to 30].

Unlike MAPF-LNS in Section 6.1, that always uses space-time A* to plan single-agent paths,

MAPF-LNS2 always uses SIPP or SIPPS as they run faster than space-time A*.

177

Algorithm 6.8: MAPF-LNS2 for solving MAPF suboptimally and in an anytime manner.
Input: MAPF instance (G,A)

/* PP for finding an initial plan */
1 success← true; P← /0;
2 for ai ∈ A do // Agents are selected in an random order
3 if success = true then
4 pi← SIPP(G,ai,P);
5 if pi does not exist then success← false;

6 if success = false then pi← SIPPS(G,ai,P);
7 P← P∪{pi};

/* LNS for repairing the plan to a solution */
8 if success = false then
9 Initialize the weights w⃗ of the destroy heuristics for MAPF-LNS;

10 while P is not conflict-free do
11 As← SELECTNEIGHBORHOOD(G,A,P, w⃗); // by ALNS in Section 6.2.3
12 P−s ←{pi ∈ P | ai ∈ As};
13 P+

s ← /0;
14 for ai ∈ As do // Agents are selected in an random order
15 pi← SIPPS(G,ai,P\P−s ∪P+

s);
16 P+

s ← P+
s ∪{pi};

17 P′← P\P−s ∪P+
s ;

18 if COLLIDINGPAIRS(P′)≤ COLLIDINGPAIRS(P) then P← P′;
19 Update w⃗;

/* LNS for reducing the MAPF solution cost */
20 Initialize the weights w⃗ of the destroy heuristics for MAPF-LNS2;
21 while not timeout do
22 As← SELECTNEIGHBORHOOD(G,A,P, w⃗); // by ALNS in Section 6.1.3
23 P−s ←{pi ∈ P | ai ∈ As};
24 P+

s ← /0;
25 for ai ∈ As do // Agents are selected in an random order
26 pi← SIPP(G,ai,P\P−s ∪P+

s);
27 if pi does not exist then Go to Line 30;
28 P+

s ← P+
s ∪{pi};

29 if ∑p∈P+
s

length(p)≤ ∑p∈P−s length(p) then P← P\P−s ∪P+
s ;

30 Update w⃗;

31 return P;

178

m Ins Iterations
Average delay Suboptimality

Initial Final Ratio Initial Final
empty-8-8 32 25 3,094,813 2.8 0.8 3.40 ≤1.58 ≤1.17

empty-16-16 128 25 550,723 7.0 2.5 2.77 ≤1.64 ≤1.23
room-32-32-4 341 1 1,326 63.0 43.1 1.46 ≤3.50 ≤2.71
maze-32-32-4 395 1 305 201.1 141.6 1.42 ≤5.80 ≤4.38

random-32-32-20 409 15 42,164 35.1 19.9 1.76 ≤2.57 ≤1.89
random-32-32-10 461 25 82,690 23.5 12.0 1.95 ≤2.07 ≤1.55

empty-32-32 512 25 79,050 17.4 8.7 2.00 ≤1.82 ≤1.41
empty-48-48 1,000 25 29,567 21.2 11.9 1.78 ≤1.67 ≤1.38

den312d 1,000 9 194 209.9 196.0 1.07 ≤4.87 ≤4.62
room-64-64-8 1,000 21 649 161.9 148.1 1.09 ≤3.74 ≤3.50

random-64-64-20 1,000 25 13,886 31.4 19.7 1.59 ≤1.71 ≤1.45
room-64-64-16 1,000 19 203 211.3 197.1 1.07 ≤4.06 ≤3.86

random-64-64-10 1,000 25 30,384 20.7 8.1 2.57 ≤1.49 ≤1.19
warehouse-10-20-10-2-1 1,000 23 3,187 56.9 31.7 1.79 ≤1.71 ≤1.40

ht chantry 1,000 25 2,464 52.0 35.2 1.48 ≤1.55 ≤1.37
ht mansion n 1,000 25 1,488 64.3 48.3 1.33 ≤1.62 ≤1.47

warehouse-10-20-10-2-2 1,000 25 20,414 34.6 5.5 6.31 ≤1.39 ≤1.06
lt gallowstemplar n 1,000 18 164 131.2 125.3 1.05 ≤2.17 ≤2.12

ost003d 1,000 25 1,022 72.9 49.0 1.49 ≤1.48 ≤1.32
lak303d 1,000 25 794 89.4 66.0 1.35 ≤1.48 ≤1.36

maze-128-128-10 1,000 25 2,043 72.2 43.0 1.68 ≤1.37 ≤1.22
warehouse-20-40-10-2-1 1,000 25 5,829 58.3 13.2 4.42 ≤1.35 ≤1.08

den520d 1,000 25 6,795 38.1 7.0 5.46 ≤1.22 ≤1.04
w woundedcoast 1,000 25 1,356 107.7 66.6 1.62 ≤1.25 ≤1.16

warehouse-20-40-10-2-2 1,000 25 12,725 46.6 0.4 110.02 ≤1.26 ≤1.00
brc202d 1,000 25 1,273 98.3 57.3 1.72 ≤1.24 ≤1.14

Paris 1 256 1,000 25 11,432 33.0 1.3 25.47 ≤1.17 ≤1.01
Berlin 1 256 1,000 25 10,853 25.7 1.6 15.78 ≤1.14 ≤1.01
Boston 0 256 1,000 25 8,421 32.4 3.2 10.05 ≤1.17 ≤1.02

orz900d 1,000 24 158 291.0 244.0 1.19 ≤1.26 ≤1.22

Table 6.9: Performance of MAPF-LNS and MAPF-LNS2 on all maps. Results on maps
maze-32-32-2, maze-128-128-1, and maze-128-128-2 are omitted due to their 0% success
rates. “Iterations” are the average number of iterations that we run MAPF-LNS for reducing the
solution costs, i.e., the average number of times that Lines 22 to 30 in Algorithm 6.8 are executed.
“Average delay” is the average sum of delays of the initial/final MAPF solution divided by the
number of agents, and its ratio is the number in the ”Initial” column divided by the number in the
”Final” column.

6.3.1 Empirical Evaluation

We repeat Experiment 4 in Section 6.2 for this new version of MAPF-LNS2 and report the results

in Table 6.9. This time, since we can solve more challenging MAPF instances than we have solved

179

in Section 6.1 and use a longer runtime limit, we show more significant improvements in terms of

the MAPF solution quality, i.e., we reduce the average delays of the MAPF solutions by up to 110

times.

Since Figure 6.8 shows that EECBS* sometimes finds solutions of better quality than MAPF-

LNS2 (even though EECBS* has much lower success rates overall, as shown in Figure 6.9), we

present a detailed comparison of the solution qualities of EECBS* versus MAPF-LNS2 in Fig-

ure 6.11. Although the quality of the initial MAPF solution of MAPF-LNS2 is worse than that of

EECBS*(5) on many maps, the quality of its final MAPF solution is either similar or better on all

maps except maps w woundedcoast and brc202d. We also examine EECBS* with smaller subop-

timality factors, namely w= 1.1 and w= 1.5. Compared to EECBS*(5), only on maps empty-8-8,

empty-16-16, random-64-64-10, and ost003d is the solution quality significantly improved. On

the other maps, EECBS* with smaller suboptimality factors either finds similar quality solutions or

fails to find any solutions within the runtime limit. Among the four maps on which EECBS* with

smaller suboptimality factors finds better solutions than EECBS*(5), only on map ost003d does

EECBS* with smaller suboptimality factors find better solutions than MAPF-LNS2. Therefore,

although MAPF-LNS2 does not have theoretical guarantees, it finds MAPF solutions of qualities

that are at least as good as those of EECBS* in most cases no matter what suboptimality factors

are used.

6.4 Summary

In this chapter, we provided first evidence that the use of Large Neighborhood Search (LNS) leads

to very scalable and high-quality solutions to MAPF. Specifically:

• Our anytime MAPF algorithm MAPF-LNS significantly outperforms the existing anytime

MAPF algorithm anytime BCBS in terms of success rates, runtimes to the first solutions,

and speeds of improving the solutions. On easy instances that the optimal algorithm CBS

can solve within a minute, MAPF-LNS finds solutions that are optimal in most cases and

180

Fi
gu

re
6.

11
:R

un
tim

es
an

d
so

lu
tio

n
qu

al
ity

of
M

A
PF

-L
N

S2
an

d
E

E
C

B
S*

on
al

lm
ap

s.
M

A
PF

-L
N

S2
(I

ni
tia

l)
re

pr
es

en
ts

th
e

re
su

lts
w

ith
re

sp
ec

tt
o

th
e

fir
st

M
A

PF
so

lu
tio

n
th

at
M

A
PF

-L
N

S2
fin

ds
,w

hi
ch

is
id

en
tic

al
to

M
A

PF
-L

N
S2

in
Fi

gu
re

6.
8.

181

within 1.35% of optimal in the worst case. On harder instances that the bounded-suboptimal

algorithm EECBS can solve, MAPF-LNS rapidly improves the solution found by EECBS to

near-optimal. On very challenging instances that only the unbounded-suboptimal algorithms

PPS or PPR can solve, MAPF-LNS rapidly reduces the sum of delays of the solution found

by PPS or PP by up to 36 times.

• Our unbounded-suboptimal MAPF algorithm MAPF-LNS2 solves 80% of the most chal-

lenging MAPF-benchmark instances within a runtime limit of just five minutes, which signif-

icantly outperforms a variety of state-of-the-art MAPF algorithms, including EECBS, PPR,

and PPS. In addition, the single-agent path planner SIPPS used by MAPF-LNS2 runs five

times (or more) faster than space-time A* and can be used to speed up a variety of MAPF

algorithms. For example, it almost doubles the success rate of EECBS with a runtime limit

of five minutes in our experiments.

• The combination of MAPF-LNS and MAPF-LNS2 leads to a strong anytime MAPF algo-

rithm that solves 80% of the most challenging MAPF-benchmark instances within a runtime

limit of five minutes and finds MAPF solutions whose costs are smaller, in most cases, than

those of other non-optimal MAPF algorithms, including EECBS with different suboptimality

factors, PPR, and PPS.

6.5 Extensions

Just like CBS-based MAPF algorithms, LNS-based MAPF algorithms are flexible and can be easily

generalized to different variants of MAPF problems. For example, we have applied MAPF-LNS to

the 2020 Flatland Challenge, a NeurIPS competition about planning conflict-free paths for trains

on rail networks [98]. We won both rounds of the competition, and MAPF-LNS was an essential

algorithm in our software which helped to improve our score by 0.010 (= 3 times the difference

in score to the team in second place) in Round 1 and 0.709 (= 61% of the difference in score to

the team in second place) in Round 2. More details can be found in [110]. In the 2021 Flatland

182

Challenge, trains have different speeds and different departure and arrival time windows. We

modified the neighborhood selection methods and objectives of MAPF-LNS to take these changes

into account and won the competition again. In addition, we also showed that MAPF-LNS could

be used to not only find conflict-free paths during planning but also reduce the costs of existing

paths during execution. Applying MAPF-LNS during planning and execution improved our score

by 0.205 and 0.264, respectively.

MAPF-LNS can be further improved by using machine learning to generate neighbor-

hoods [87] and using simulated annealing to determine runtime limits [110].

183

Chapter 7

Conclusions and Future Work

Coordinating large teams of agents is a computationally challenging yet important problem for

many applications. This dissertation builds the algorithmic foundations for solving one of the key

multi-agent coordination problems, namely Multi-Agent Path Finding (MAPF), efficiently and

effectively by exploiting the combinatorial structure of the MAPF problem and combining ideas

from both artificial intelligence and operations research. We studied a variety of MAPF algorithms,

including optimal, bounded-suboptimal, and unbounded-suboptimal MAPF algorithms:

• We studied optimal MAPF algorithms in Chapters 3 and 4. Since state-of-the-art opti-

mal MAPF algorithms, such as CBS, have to perform a systematic search in the conflict-

resolution space to prove optimality, we introduced two techniques to reduce the search ef-

fort, namely adding admissible heuristics, which prunes the search space that leads to costly

solutions, and symmetry reasoning, which reduces the search space by eliminating symmetry

conflicts. Specifically:

– In Chapter 3, we developed the admissible heuristics CG, DG, and WDG to focus the

search of CBS. Theoretically, the WDG heuristic is provably at least as informed as

the DG heuristic, which in turn is provably at least as informed as the CG heuristic.

Empirically, adding any one of thees three admissible heuristics to CBS can reduce its

number of expanded CT nodes and its runtimes. The WDG heuristic performs the best,

reducing its runtime by up to a factor of fifty.

184

– In Chapter 4, we developed symmetry reasoning techniques, including generalized

rectangle, target, and generalized corridor reasoning, to reduce the search space of

optimal CBS. Every symmetry reasoning technique has different performances on dif-

ferent maps. Their combination performs the best. It scales up CBS by up to a factor

of thirty in terms of number of agents and reduces its number of expanded CT nodes

by up to four orders of magnitude.

• We studied bounded-suboptimal MAPF algorithms in Chapter 5. Like optimal MAPF algo-

rithms, bounded-suboptimal MAPF algorithms need to perform a systematic search in the

conflict-resolution space to prove bounded optimality, so the techniques that we developed

for optimal MAPF solving in Chapters 3 and 4 can be applied here as well. Unlike optimal

MAPF algorithms, bounded-suboptimal MAPF algorithms have the flexibility to greedily

find MAPF solutions that are not optimal, so we developed a learned heuristic to focus the

search of bounded-suboptimal CBS that trades off solution quality for runtime. The resulting

algorithm EECBS significantly outperforms the state-of-the-art bounded-suboptimal MAPF

algorithm ECBS and can, for example, find MAPF solutions that are provably at most 2%

worse than optimal for large MAPF instances with up to 1,000 agents within just one minute.

We showed in Chapter 6 that EECBS can be sped up further by replacing state-time A* with

SIPPS on its low level.

• We studied unbounded-suboptimal MAPF algorithms in Chapter 6. Sometimes, we are in-

terested in good solutions but not necessarily proof of how good the solutions are. We thus

developed a first framework based on Large Neighborhood Search (LNS) for solving MAPF

greedily with no theoretical guarantees. Our framework can significantly improve the solu-

tion quality of any non-optimal MAPF algorithms, including the bounded-suboptimal MAPF

algorithm EECBS developed in Chapter 5, and scales significantly better than them. It solved

80% of the most challenging instances in the MAPF benchmark suite and found near-optimal

solutions in most cases.

185

Figure 7.1: Success rates (= percentages of solved instances within one minute) on map
Paris 1 256. Solid lines correspond to the MAPF algorithms introduced in this dissertation and
dashed lines to existing MAPF algorithms. EECBS* is EECBS with SIPPS. The numbers shown
on the top and bottom with colors indicate the largest numbers of agents that the corresponding
MAPF algorithm can solve with a 100% success rate and a non-zero success rate, respectively.
The solutions found by MAPF-LNS2 are, for example, 32% and 44% worse than optimal averaged
over instances with 2,500 agents and 3,800 agents, respectively, where the optimal sum of cost is
underestimated by ∑ai∈A dist(si,gi).

With these techniques, we have developed the state-of-the-art optimal MAPF algorithm

CBSH2-RTC1 (see Algorithm 4.6), the state-of-the-art bounded-suboptimal MAPF algorithm

EECBS2 (see Algorithm 5.1), and the state-of-the-art unbounded-suboptimal MAPF algorithm

MAPF-LNS23 (see Algorithm 6.8), that scale to a few hundred agents, a thousand agents, and a

few thousand agents, respectively. Figure 7.1 highlights the performance of these algorithms on

map Paris 1 256 (see Figure 6.7v) from the MAPF benchmark suite in comparison to the ex-

isting optimal MAPF algorithms A* (i.e., performing A* in the joint-state space of the agents),

CBS [153] (see Algorithm 2.1), and ICBS [28].4 We have also developed the state-of-the-art any-

time MAPF algorithm MAPF-LNS,5 that dominates the existing anytime MAPF algorithms in

1https://github.com/Jiaoyang-Li/CBSH2-RTC
2https://github.com/Jiaoyang-Li/EECBS
3https://github.com/Jiaoyang-Li/MAPF-LNS2
4We conducted experiments on Amazon EC2 “m4.xlarge” instances with 16 GB of memory and used instances

from the “random” scenario from the MAPF benchmark suite, yielding 25 instances per number of agents. Since
these instances contain only 1,000 pairs of start and target vertices, we generated start and target vertices uniformly at
random when we needed more than 1,000 agents.

5https://github.com/Jiaoyang-Li/MAPF-LNS

186

https://github.com/Jiaoyang-Li/CBSH2-RTC
https://github.com/Jiaoyang-Li/EECBS
https://github.com/Jiaoyang-Li/MAPF-LNS2
https://github.com/Jiaoyang-Li/MAPF-LNS

terms of scalability, runtime to the initial solution, and speed of improving the solution. It rapidly

reduces the solution cost of non-optimal MAPF algorithms by up to 36 times within just a minute

and up to 110 times within five minutes (see Chapter 6).

The techniques introduced in this dissertation could be further enhanced to solve MAPF even

more efficiently and effectively. Possible future work includes:

• Reasoning about admissible heuristics and symmetries for more than two agents. Our

techniques for both computing admissible heuristics and breaking symmetries focus on pairs

of agents: CG, DG, and WDG heuristics are computed based on pairwise dependency graphs

of the agents, and generalized rectangle, target, and generalized corridor symmetries are

studied between pairs of agents as well. The challenges of reasoning about groups of more

than two agents are two-fold:

– When we reason about two agents, there are
(m

2

)
pairs of agents, and this number can

be significantly reduced by considering only pairs of agents whose paths are in conflict.

However, when we reason about more than two agents, the number of groups of agents

that we need to consider is significantly larger, and considering only the agents whose

paths are in conflict is not sufficient any longer. Therefore, we need to design clever

strategies to select groups of highly-coupled agents to perform such reasoning on.

– For admissible heuristics, although we can use similar ideas for building dependency

graphs and solving modified versions of the minimum vertex cover problem when rea-

soning about groups of more than two agents, the runtime overhead of both building the

dependency graphs and solving the vertex cover problems becomes larger. For symme-

try reasoning, it is unclear whether it is possible to design a binary branching strategy

to resolve symmetry conflicts among more than two agents. We thus might have to

develop new types of symmetry-breaking constraints.

Nevertheless, there is some recent work that shows promise. Gange et al. [67] apply the

nogood learning technique to CBS which allows them to discover groups of highly-coupled

187

agents from the CT and obtain lower bounds on their sum of costs. Mogali et al. [126] project

sub-MAPF problems to lower-dimensional “templates” and build a template database offline

for groups of three agents, which one can use to compute lower bounds on their sum of costs

via Lagrangian Relax-and-Cut. Han and Yu [75] focus on four-neighbor grids and build a

MAPF solution database for agents within a small region, e.g., a 2×3 grid.

• Developing more informed learned heuristics for bounded-suboptimal MAPF algo-

rithms. The focus of Chapter 5 was building the EECBS framework where one can de-

ploy (potentially inadmissible) learned heuristics to find MAPF solutions with bounded-

suboptimal guarantees. The learned heuristic that we use in EECBS is very simple and has

potential for large improvements. There are many recent works on learning heuristics for A*

search and its variants [202, 7, 160, 1] that show promise. In the context of MAPF, Huang

et al. [86] use imitation learning to learn CT node selection rules and significantly speed up

ECBS. It is thus interesting to design more advanced learned heuristics for EECBS.

• Providing theoretical guarantees for LNS-based MAPF frameworks. MAPF-LNS and

MAPF-LNS2 exhibit good empirical performance but provide neither completeness nor opti-

mality guarantees. Therefore, it is interesting future work to develop versions of MAPF-LNS

that are bounded-suboptimal and/or complete. Possible approaches include:

– To develop a version of MAPF-LNS that is bounded-suboptimal, we can use LNS to

simultaneously find MAPF solutions of decreasing costs and provide increasing lower

bounds on the cost of the optimal MAPF solution. MAPF-LNS in Chapter 6 can already

find MAPF solutions of decreasing costs. To provide increasing lower bounds, we can

repeatedly select subsets of agents, find optimal MAPF solutions for them, and use

their optimal costs to underestimate the cost of the optimal solution for all agents via a

generalized weighted dependency graph, just like how we compute the WDG heuristic.

188

– To develop a version of MAPF-LNS that is complete, we can design adaptive methods

for determining the sizes of the neighborhoods and the MAPF algorithms used for

replanning.

In addition to the directions mentioned above, it is also interesting to study how these tech-

niques apply to additional generalized MAPF problems.

189

Bibliography

[1] Forest Agostinelli, Stephen McAleer, Alexander Shmakov, and Pierre Baldi. Solving the
Rubik’s cube with deep reinforcement learning and search. Nature Machine Intelligence, 1
(8):356–363, 2019.

[2] Faten Aljalaud and Nathan R. Sturtevant. Finding bounded suboptimal multi-agent path
planning solutions using increasing cost tree search (extended abstract). In Proceedings of
the International Symposium on Combinatorial Search (SoCS), pages 203–204, 2013.

[3] Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry breaking for
Boolean satisfiability. IEEE Transactions on Computers, 55(5):549–558, 2006.

[4] Anton Andreychuk. Multi-agent path finding with kinematic constraints via conflict based
search. In Proceedings of the Russian Conference on Artificial Intelligence (RCAI), pages
29–45, 2020.

[5] Anton Andreychuk, Konstantin S. Yakovlev, Dor Atzmon, and Roni Stern. Multi-agent
pathfinding with continuous time. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 39–45, 2019.

[6] Anton Andreychuk, Konstantin S. Yakovlev, Eli Boyarski, and Roni Stern. Improving
continuous-time conflict based search. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence (AAAI), pages 11220–11227, 2021.

[7] Shahab Jabbari Arfaee, Sandra Zilles, and Robert C. Holte. Learning heuristic functions for
large state spaces. Artificial Intelligence, 175(16-17):2075–2098, 2011.

[8] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták, and Neng-Fa Zhou.
Robust multi-agent path finding. In Proceedings of the International Symposium on Com-
binatorial Search (SoCS), pages 2–9, 2018.

[9] Dor Atzmon, Amit Diei, and Daniel Rave. Multi-train path finding. In Proceedings of the
International Symposium on Combinatorial Search (SoCS), pages 125–129, 2019.

[10] Dor Atzmon, Roni Stern, Ariel Felner, Nathan R. Sturtevant, and Sven Koenig. Proba-
bilistic robust multi-agent path finding. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 29–37, 2020.

[11] Dor Atzmon, Roni Stern, Ariel Felner, Glenn Wagner, Roman Barták, and Neng-Fa Zhou.
Robust multi-agent path finding and executing. Journal of Artificial Intelligence Research,
67:549–579, 2020.

190

[12] Dor Atzmon, Shahar Idan Freiman, Oscar Epshtein, Oran Shichman, and Ariel Felner.
Conflict-free multi-agent meeting. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 16–24, 2021.

[13] Vincenzo Auletta, Angelo Monti, Mimmo Parente, and Pino Persiano. A linear-time algo-
rithm for the feasibility of pebble motion on trees. Algorithmica, 23(3):223–245, 1999.

[14] Rolf Backofen and Sebastian Will. Excluding symmetries in constraint-based search. In
Proceedings of the International Conference on Principles and Practice of Constraint Pro-
gramming (CP), pages 73–87, 1999.

[15] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni. Intractability of time-optimal mul-
tirobot path planning on 2D grid graphs with holes. IEEE Robotics and Automation Letters,
2(4):1941–1947, 2017.

[16] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In Proceedings of the
International Symposium on Combinatorial Search (SoCS), pages 19–27, 2014.

[17] Roman Barták, Jiri Svancara, and Marek Vlk. A scheduling-based approach to multi-agent
path finding with weighted and capacitated arcs. In Proceedings of the International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 748–756, 2018.

[18] Matteo Bellusci, Nicola Basilico, and Francesco Amigoni. Multi-agent path finding in con-
figurable environments. In Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS), pages 159–167, 2020.

[19] Gleb Belov, Wenbo Du, Maria Garcia de la Banda, Daniel Harabor, Sven Koenig, and Xinrui
Wei. From multi-agent pathfinding to 3D pipe routing. In Proceedings of the International
Symposium on Combinatorial Search (SoCS), pages 11–19, 2020.

[20] Belaid Benhamou. Study of symmetry in constraint satisfaction problems. In Proceedings of
the Workshop on Principles and Practice of Constraint Programming (CP), pages 246–254,
1994.

[21] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Optimizing schedules for pri-
oritized path planning of multi-robot systems. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 271–276, 2001.

[22] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Finding and optimizing solv-
able priority schemes for decoupled path planning techniques for teams of mobile robots.
Robotics and Autonomous Systems, 41(2-3):89–99, 2002.

[23] Alexander Berndt, Niels Van Duijkeren, Luigi Palmieri, and Tamas Keviczky. A feedback
scheme to reorder a multi-agent execution schedule by persistently optimizing a switchable
action dependency graph. In ICAPS Workshop on Distributed and Multi-Agent Planning
(DMAP), pages 1–9, 2020.

191

[24] Gustav Björdal, Pierre Flener, Justin Pearson, Peter J. Stuckey, and Guido Tack. Solv-
ing satisfaction problems using large-neighbourhood search. In Proceedings of the Inter-
national Conference on Principles and Practice of Constraint Programming (CP), pages
55–71, 2020.

[25] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90(1-2):281–300, 1997.

[26] Dragan Bosnacki and Mark Scheffer. Partial order reduction and symmetry with multiple
representatives. In Proceedings of the International Symposium on NASA Formal Methods
(NFM), pages 97–111, 2015.

[27] Eli Boyarski, Ariel Felner, Guni Sharon, and Roni Stern. Don’t split, try to work it out: By-
passing conflicts in multi-agent pathfinding. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), pages 47–51, 2015.

[28] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony. ICBS: Improved conflict-based search algorithm for multi-agent
pathfinding. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 740–746, 2015.

[29] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and
Solomon Eyal Shimony. ICBS: Improved conflict-based search algorithm for multi-agent
pathfinding. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 740–746, 2015.

[30] Eli Boyarski, Ariel Felner, Daniel Harabor, Peter J. Stuckey, Liron Cohen, Jiaoyang Li, and
Sven Koenig. Iterative-deepening conflict-based search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 4084–4090, 2020.

[31] Eli Boyarski, Ariel Felner, Pierre Le Bodic, Daniel Harabor, Peter J. Stuckey, and Sven
Koenig. f-aware conflict prioritization & improved heuristics for conflict-based search. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 12241–12248,
2021.

[32] Kyle Brown, Oriana Peltzer, Martin A. Sehr, Mac Schwager, and Mykel J. Kochenderfer.
Optimal sequential task assignment and path finding for multi-agent robotic assembly plan-
ning. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 441–447, 2020.

[33] Michal Cáp, Peter Novák, Alexander Kleiner, and Martin Selecký. Prioritized planning
algorithms for trajectory coordination of multiple mobile robots. IEEE Transactions on
Automation Science and Engineering, 12(3):835–849, 2015.

[34] Michal Cáp, Jean Gregoire, and Emilio Frazzoli. Provably safe and deadlock-free execution
of multi-robot plans under delaying disturbances. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 5113–5118, 2016.

192

[35] Shao-Hung Chan, Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Graeme Gange, Liron
Cohen, and Sven Koenig. Nested ECBS for bounded-suboptimal multi-agent path finding.
In IJCAI Workshop on Multi-Agent Path Finding (WoMAPF), 2020.

[36] Shao-Hung Chan, Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, and Sven
Koenig. Flex distribution for bounded-suboptimal multi-agent path finding. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pages 9313–9322, 2022.

[37] Jingkai Chen, Jiaoyang Li, Chuchu Fan, and Brian C. Williams. Scalable and safe multi-
agent motion planning with nonlinear dynamics and bounded disturbances. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pages 11237–11245, 2021.

[38] Jingkai Chen, Jiaoyang Li, Yijiang Huang, Caelan Reed Garrett, Dawei Sun, Chuchu Fan,
Andreas G. Hofmann, Caitlin Mueller, Sven Koenig, and Brian C. Williams. Cooperative
task and motion planning for multi-arm assembly systems. CoRR, abs/2203.02475, 2022.

[39] Zhe Chen, Daniel Harabor, Jiaoyang Li, and Peter J. Stuckey. Symmetry breaking for k-
robust multi-agent path finding. In Proceedings of the AAAI Conference on Artificial Intel-
ligence (AAAI), pages 12267–12274, 2021.

[40] Zhe Chen, Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. Multi-train path
finding revisited. In Proceedings of the International Symposium on Combinatorial Search
(SoCS), pages 38–46, 2022.

[41] Peng Cheng, Emilio Frazzoli, and Steven M. LaValle. Improving the performance of
sampling-based motion planning with symmetry-based gap reduction. IEEE Transactions
on Robotics, 24(2):488–494, 2008.

[42] Shushman Choudhury, Jayesh K. Gupta, Mykel J. Kochenderfer, Dorsa Sadigh, and Jean-
nette Bohg. Dynamic multi-robot task allocation under uncertainty and temporal constraints.
In Proceedings of the Conference on Robotics: Science and Systems (RSS), 2020.

[43] Shushman Choudhury, Kiril Solovey, Mykel J. Kochenderfer, and Marco Pavone. Efficient
large-scale multi-drone delivery using transit networks. Journal of Artificial Intelligence
Research, 70:757–788, 2021.

[44] David A. Cohen, Peter Jeavons, Christopher Jefferson, Karen E. Petrie, and Barbara M.
Smith. Symmetry definitions for constraint satisfaction problems. Constraints, 11(2-3):
115–137, 2006.

[45] Liron Cohen. Efficient Bounded-Suboptimal Multi-Agent Path Finding and Motion Planning
via Improvements to Focal Search. PhD thesis, University of Southern California, 2020.

[46] Liron Cohen, Tansel Uras, T. K. Satish Kumar, Hong Xu, Nora Ayanian, and Sven Koenig.
Improved solvers for bounded-suboptimal multi-agent path finding. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pages 3067–3074, 2016.

[47] Liron Cohen, Matias Greco, Hang Ma, Carlos Hernández, Ariel Felner, T. K. Satish Kumar,
and Sven Koenig. Anytime focal search with applications. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 1434–1441, 2018.

193

[48] Liron Cohen, Glenn Wagner, David M. Chan, Howie Choset, Nathan R. Sturtevant, Sven
Koenig, and T. K. Satish Kumar. Rapid randomized restarts for multi-agent path finding
solvers. In Proceedings of the International Symposium on Combinatorial Search (SoCS),
pages 148–152, 2018.

[49] Liron Cohen, Tansel Uras, T. K. Satish Kumar, and Sven Koenig. Optimal and bounded-
suboptimal multi-agent motion planning. In Proceedings of the International Symposium
on Combinatorial Search (SoCS), pages 44–51, 2019.

[50] Adem Coskun and Jason M. O’Kane. Online plan repair in multi-robot coordination with
disturbances. In Proceedings of the International Conference on Robotics and Automation
(ICRA), pages 3333–3339, 2019.

[51] James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Proceedings of the International Conference on
Principles of Knowledge Representation and Reasoning (KR), pages 148–159, 1996.

[52] Emrah Demir, Tolga Bektas, and Gilbert Laporte. An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Operational Research, 223
(2):346–359, 2012.

[53] Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Enhanced symmetry breaking
in cost-optimal planning as forward search. In Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS), pages 343–347, 2012.

[54] Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Symmetry breaking: Satisfic-
ing planning and landmark heuristics. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 298–302. AAAI, 2013.

[55] Rodney G. Downey and Micheal R. Fellows. Parameterized computational feasibility. In
Feasible Mathematics II, pages 219–244, 1995.

[56] Kurt Dresner and Peter Stone. A multiagent approach to autonomous intersection manage-
ment. Journal of Artificial Intelligence Research, 31:591–656, 2008.

[57] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal Methods
System Design, 9(1/2):105–131, 1996.

[58] Esra Erdem, Doga Gizem Kisa, Umut Öztok, and Peter Schüller. A general formal frame-
work for pathfinding problems with multiple agents. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 290–296, 2013.

[59] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Algorithmica, 2
(1-4):477, 1987.

[60] Ariel Felner, Richard E. Korf, and Sarit Hanan. Additive pattern database heuristics. Journal
of Artificial Intelligence Research, 22:279–318, 2004.

194

[61] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg, Guni
Sharon, Nathan R. Sturtevant, Glenn Wagner, and Pavel Surynek. Search-based optimal
solvers for the multi-agent pathfinding problem: Summary and challenges. In Proceedings
of the International Symposium on Combinatorial Search (SoCS), pages 29–37, 2017.

[62] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar, and
Sven Koenig. Adding heuristics to conflict-based search for multi-agent pathfinding. In Pro-
ceedings of the International Conference on Automated Planning and Scheduling (ICAPS),
pages 83–87, 2018.

[63] Cornelia Ferner, Glenn Wagner, and Howie Choset. ODrM* optimal multirobot path plan-
ning in low dimensional search spaces. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 3854–3859, 2013.

[64] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, Justin Pearson,
and Toby Walsh. Breaking row and column symmetries in matrix models. In Proceedings of
the International Conference on Principles and Practice of Constraint Programming (CP),
pages 462–476, 2002.

[65] Maria Fox and Derek Long. The detection and exploitation of symmetry in planning prob-
lems. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 956–961, 1999.

[66] Maria Fox and Derek Long. Extending the exploitation of symmetries in planning. In
Proceedings of the International Conference on Artificial Intelligence Planning Systems
(AIPS), pages 83–91, 2002.

[67] Graeme Gange, Daniel Harabor, and Peter J. Stuckey. Lazy CBS: Implicit conflict-based
search using lazy clause generation. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 155–162, 2019.

[68] Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten Schaub, Orkunt Sabuncu, Van
Nguyen, and Tran Cao Son. Experimenting with robotic intra-logistics domains. Theory
and Practice of Logic Programming, 18(3-4):502–519, 2018.

[69] Daniel Gnad, Álvaro Torralba, Alexander Shleyfman, and Jörg Hoffmann. Symmetry break-
ing in star-topology decoupled search. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 125–134, 2017.

[70] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley, 1989.

[71] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan R. Sturtevant, Robert C.
Holte, and Jonathan Schaeffer. Enhanced partial expansion A. Journal of Artificial Intelli-
gence Research, 50:141–187, 2014.

[72] Rodrigo N. Gómez, Carlos Hernández, and Jorge A. Baier. A compact answer set program-
ming encoding of multi-agent pathfinding. IEEE Access, 9:26886–26901, 2021.

195

[73] Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin. Cooperative multi-agent
path finding: Beyond path planning and collision avoidance. In Proceedings of the Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS), pages 20–28, 2021.

[74] Naveed Haghani, Jiaoyang Li, Sven Koenig, Gautam Kunapuli, Claudio Contardo, Amelia
Regan, and Julian Yarkony. Multi-robot routing with time windows: A column generation
approach. CoRR, abs/2103.08835, 2021.

[75] Shuai D. Han and Jingjin Yu. DDM: Fast near-optimal multi-robot path planning using
diversified-path and optimal sub-problem solution database heuristics. IEEE Robotics and
Automation Letters, 5(2):1350–1357, 2020.

[76] Daniel Damir Harabor and Alban Grastien. Online graph pruning for pathfinding on grid
maps. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 1114–
1119, 2011.

[77] Christian Henkel and Marc Toussaint. Optimized directed roadmap graph for multi-agent
path finding using stochastic gradient descent. In Proceedings of the Annual ACM Sympo-
sium on Applied Computing (SAC), pages 776–783, 2020.

[78] Christian Henkel, Jannik Abbenseth, and Marc Toussaint. An optimal algorithm to solve
the combined task allocation and path finding problem. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 4140–4146, 2019.

[79] Florence Ho, Ana Salta, Rúben Geraldes, Artur Goncalves, Marc Cavazza, and Helmut
Prendinger. Multi-agent path finding for UAV traffic management. In Proceedings of the
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
131–139, 2019.

[80] Khoi D. Hoang, Ferdinando Fioretto, William Yeoh, Enrico Pontelli, and Roie Zivan. A
large neighboring search schema for multi-agent optimization. In Proceedings of the In-
ternational Conference on Principles and Practice of Constraint Programming (CP), pages
688–706, 2018.

[81] Wolfgang Hönig, T. K. Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian, and
Sven Koenig. Multi-agent path finding with kinematic constraints. In Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS), pages 477–485,
2016.

[82] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and Nora Ayanian.
Conflict-based search with optimal task assignment. In Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 757–765,
2018.

[83] Wolfgang Hönig, James A Preiss, T. K. Satish Kumar, Gaurav S Sukhatme, and Nora Aya-
nian. Trajectory planning for quadrotor swarms. IEEE Transactions on Robotics, 34(4):
856–869, 2018.

196

[84] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and Nora Ayanian. Per-
sistent and robust execution of MAPF schedules in warehouses. IEEE Robotics and Au-
tomation Letters, 4(2):1125–1131, 2019.

[85] Shuli Hu, Daniel Harabor, Graeme Gange, Peter J. Stuckey, and Nathan R. Sturtevant.
Multi-agent path finding with temporal jump point search. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pages 169–173, 2022.

[86] Taoan Huang, Bistra Dilkina, and Sven Koenig. Learning node-selection strategies in
bounded-suboptimal conflict-based search for multi-agent path finding. In Proceedings of
the International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 611–619, 2021.

[87] Taoan Huang, Jiaoyang Li, Sven Koenig, and Bistra Dilkina. Anytime multi-agent path
finding via machine learning-guided large neighborhood search. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 9368–9376, 2022.

[88] Taoan Huang, Vikas Shivashankar, Michael Caldara, Joseph W. Durham, Jiaoyang Li, Bistra
Dilkina, and Sven Koenig. Deadline-aware multi-agent tour planning. In IJCAI Workshop
on Heuristic Search in Industry (HSI), 2022.

[89] M. Renee Jansen and Nathan R. Sturtevant. Direction maps for cooperative pathfinding. In
Proceedings of the Artificial Intelligence and Interactive Digital Entertainment Conference
(AIIDE), pages 185–190, 2008.

[90] Omri Kaduri, Eli Boyarski, and Roni Stern. Algorithm selection for optimal multi-agent
pathfinding. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), pages 161–165, 2020.

[91] Michael Katz and Carmel Domshlak. Optimal additive composition of abstraction-based ad-
missible heuristics. In Proceedings of the International Conference on Automated Planning
and Scheduling (ICAPS), pages 174–181, 2008.

[92] Justin Kottinger, Shaull Almagor, and Morteza Lahijanian. Conflict-based search for ex-
plainable multi-agent path finding. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), pages 692–700, 2022.

[93] Justin Kottinger, Shaull Almagor, and Morteza Lahijanian. Conflict-based search for multi-
robot motion planning with kinodynamic constraints. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), page (in print), 2022.

[94] Ngai Meng Kou, Cheng Peng, Hang Ma, T. K. Satish Kumar, and Sven Koenig. Idle time
optimization for target assignment and path finding in sortation centers. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pages 9925–9932, 2020.

[95] Edward Lam and Pierre Le Bodic. New valid inequalities in branch-and-cut-and-price for
multi-agent path finding. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 184–192, 2020.

197

[96] Edward Lam, Pierre Le Bodic, Daniel Damir Harabor, and Peter J. Stuckey. Branch-and-cut-
and-price for multi-agent pathfinding. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 1289–1296, 2019.

[97] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter J. Stuckey. Branch-and-cut-and-
price for multi-agent path finding. Computers and Operations Research, 144:105809, 2022.

[98] Florian Laurent, Manuel Schneider, Christian Scheller, Jeremy D. Watson, Jiaoyang Li,
Zhe Chen, Yi Zheng, Shao-Hung Chan, Konstantin Makhnev, Oleg Svidchenko, Vladimir
Egorov, Dmitry Ivanov, Aleksei Shpilman, Evgenija Spirovska, Oliver Tanevski, Aleksan-
dar Nikov, Ramon Grunder, David Galevski, Jakov Mitrovski, Guillaume Sartoretti, Zhiyao
Luo, Mehul Damani, Nilabha Bhattacharya, Shivam Agarwal, Adrian Egli, Erik Nygren,
and Sharada P. Mohanty. Flatland competition 2020: MAPF and MARL for efficient train
coordination on a grid world. In Proceedings of Machine Learning Research (PMLR), pages
275–301, 2020.

[99] Yat-Chiu Law and Jimmy Ho-Man Lee. Symmetry breaking constraints for value symme-
tries in constraint satisfaction. Constraints, 11(2-3):221–267, 2006.

[100] Duong Le and Erion Plaku. Cooperative, dynamics-based, and abstraction-guided multi-
robot motion planning. Journal of Artificial Intelligence Research, 63:361–390, 2018.

[101] Christopher Leet, Jiaoyang Li, and Sven Koenig. Shard systems: Scalable, robust and
persistent multi-agent path finding with performance guarantees. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages 9386–9395, 2022.

[102] Jiaoyang Li, Ariel Felner, Eli Boyarski, Hang Ma, and Sven Koenig. Improved heuristics
for multi-agent path finding with conflict-based search. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 442–449, 2019.

[103] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Ariel Felner, Hang Ma, and Sven Koenig.
Disjoint splitting for conflict-based search for multi-agent path finding. In Proceedings of
the International Conference on Automated Planning and Scheduling (ICAPS), pages 279–
283, 2019.

[104] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig. Symmetry-
breaking constraints for grid-based multi-agent path finding. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pages 6087–6095, 2019.

[105] Jiaoyang Li, Pavel Surynek, Ariel Felner, Hang Ma, T. K. Satish Kumar, and Sven Koenig.
Multi-agent path finding for large agents. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence (AAAI), pages 7627–7634, 2019.

[106] Jiaoyang Li, Han Zhang, Mimi Gong, Zi Liang, Weizi Liu, Zhongyi Tong, Liangchen Yi,
Robert Morris, Corina Pasareanu, and Sven Koenig. Scheduling and airport taxiway path
planning under uncertainty. In Proceedings of the AIAA Aviation Forum, 2019.

198

[107] Jiaoyang Li, Graeme Gange, Daniel Harabor, Peter J. Stuckey, Hang Ma, and Sven Koenig.
New techniques for pairwise symmetry breaking in multi-agent path finding. In Proceedings
of the International Conference on Automated Planning and Scheduling (ICAPS), pages
193–201, 2020.

[108] Jiaoyang Li, Kexuan Sun, Hang Ma, Ariel Felner, T. K. Satish Kumar, and Sven Koenig.
Moving agents in formation in congested environments. In Proceedings of the International
Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 726–
734, 2020.

[109] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. Anytime multi-
agent path finding via large neighborhood search. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 4127–4135, 2021.

[110] Jiaoyang Li, Zhe Chen, Yi Zheng, Shao-Hung Chen, Daniel Harabor, Peter J. Stuckey, Hang
Ma, and Sven Koenig. Scalable rail planning and replanning: Winning the 2020 flatland
challenge. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), pages 477–485, 2021.

[111] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Graeme Gange, and Sven Koenig.
Pairwise symmetry reasoning for multi-agent path finding search. Artificial Intelligence,
301:103574, 2021.

[112] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. EECBS: Bounded-suboptimal search for
multi-agent path finding. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 12353–12362, 2021.

[113] Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph W. Durham, T. K. Satish Kumar, and Sven
Koenig. Lifelong multi-agent path finding in large-scale warehouses. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages 11272–11281, 2021.

[114] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. MAPF-LNS2:
Repairing multi-agent path finding via large neighborhood search. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pages 10256–10265, 2022.

[115] Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and path planning for multi-
agent pickup and delivery. In Proceedings of the International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pages 1152–1160, 2019.

[116] Ryan Luna and Kostas E. Bekris. Push and swap: Fast cooperative path-finding with com-
pleteness guarantees. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 294–300, 2011.

[117] Hang Ma and Sven Koenig. Optimal target assignment and path finding for teams of agents.
In Proceedings of the International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 1144–1152, 2016.

199

[118] Hang Ma, Craig A. Tovey, Guni Sharon, T. K. Satish Kumar, and Sven Koenig. Multi-agent
path finding with payload transfers and the package-exchange robot-routing problem. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 3166–3173,
2016.

[119] Hang Ma, T. K. Satish Kumar, and Sven Koenig. Multi-agent path finding with delay prob-
abilities. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
3605–3612, 2017.

[120] Hang Ma, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. Lifelong multi-agent path
finding for online pickup and delivery tasks. In Proceedings of the International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 837–845, 2017.

[121] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Kumar, and Sven Koenig. Feasibility study:
Moving non-homogeneous teams in congested video game environments. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AI-
IDE), pages 270–272, 2017.

[122] Hang Ma, Glenn Wagner, Ariel Felner, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig.
Multi-agent path finding with deadlines. In Proceedings of the International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 417–423, 2018.

[123] Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig. Searching with
consistent prioritization for multi-agent path finding. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pages 7643–7650, 2019.

[124] Ellips Masehian and Azadeh Hassan Nejad. Solvability of multi robot motion planning
problems on trees. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5936–5941, 2009.

[125] Christopher Mears, Maria J. Garcı́a de la Banda, Mark Wallace, and Bart Demoen. A novel
approach for detecting symmetries in CSP models. In Proceedings of the International
Conference on Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR), pages 158–172, 2008.

[126] Jayanth Krishna Mogali, Willem-Jan van Hoeve, and Stephen F. Smith. Template matching
and decision diagrams for multi-agent path finding. In Proceedings of the International Con-
ference on Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR), pages 347–363, 2020.

[127] James Motes, Read Sandström, Hannah Lee, Shawna L. Thomas, and Nancy M. Amato.
Multi-robot task and motion planning with subtask dependencies. IEEE Robotics and Au-
tomation Letters, 5(2):3338–3345, 2020.

[128] Aniello Murano, Giuseppe Perelli, and Sasha Rubin. Multi-agent path planning in known
dynamic environments. In Proceedings of the International Conference on Principles and
Practice of Multi-Agent Systems (PRIMA), pages 218–231, 2015.

200

[129] Bernhard Nebel. On the computational complexity of multi-agent pathfinding on di-
rected graphs. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), pages 212–216, 2020.

[130] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William Yeoh. Gen-
eralized target assignment and path finding using answer set programming. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1216–1223,
2017.

[131] Ayano Okoso, Keisuke Otaki, and Tomoki Nishi. Multi-agent path finding with priority for
cooperative automated valet parking. In Proceedings of the IEEE Intelligent Transportation
Systems Conference (ITSC), pages 2135–2140, 2019.

[132] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. Priority in-
heritance with backtracking for iterative multi-agent path finding. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pages 535–542, 2019.

[133] Keisuke Okumura, Yasumasa Tamura, and Xavier Défago. winPIBT: Expanded prioritized
algorithm for iterative multi-agent path finding. In AAAI Workshop on Multi-Agent Path
Finding (WoMAPF), 2020.

[134] Judea Pearl and Jin H. Kim. Studies in semi-admissible heuristics. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 4(4):392–399, 1982.

[135] Oriana Peltzer, Kyle Brown, Mac Schwager, Mykel J. Kochenderfer, and Martin A. Sehr.
STT-CBS: A conflict-based search algorithm for multi-agent path finding with stochastic
travel times. CoRR, abs/2004.08025, 2020.

[136] Mike Phillips and Maxim Likhachev. SIPP: Safe interval path planning for dynamic environ-
ments. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 5628–5635, 2011.

[137] Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Exploiting problem symmetries in
state-based planners. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 1004–1009, 2011.

[138] Florian Pommerening, Gabriele Röger, and Malte Helmert. Getting the most out of pattern
databases for classical planning. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 2357–2364, 2013.

[139] Florian Pommerening, Gabriele Röger, Malte Helmert, and Blai Bonet. Heuristics for cost-
optimal classical planning based on linear programming. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 4303–4309, 2015.

[140] Jean-Francois Puget. On the satisfiability of symmetrical constrained satisfaction problems.
In Proceedings of International Symposium on the Methodologies for Intelligent Systems
(ISMIS), pages 350–361, 1993.

201

[141] Jean-Francois Puget. Symmetry breaking using stabilizers. In Proceedings of the Inter-
national Conference on Principles and Practice of Constraint Programming (CP), pages
585–599, 2003.

[142] Jean-Francois Puget. Automatic detection of variable and value symmetries. In Proceed-
ings of the International Conference on Principles and Practice of Constraint Programming
(CP), pages 475–489, 2005.

[143] Arthur Queffelec, Ocan Sankur, and François Schwarzentruber. Conflict-based search for
connected multi-agent path finding. CoRR, abs/2006.03280, 2020.

[144] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Multi-objective conflict-based
search for multi-agent path finding. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 8786–8791, 2021.

[145] Gabriele Röger, Silvan Sievers, and Michael Katz. Symmetry-based task reduction for
relaxed reachability analysis. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pages 208–217, 2018.

[146] Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation Science, 40(4):455–472,
2006.

[147] Malcolm R. K. Ryan. Exploiting subgraph structure in multi-robot path planning. Journal
of Artificial Intelligence Research, 31:497–542, 2008.

[148] Malcolm R. K. Ryan. Constraint-based multi-robot path planning. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), pages 922–928, 2010.

[149] Qandeel Sajid, Ryan Luna, and Kostas E. Bekris. Multi-agent pathfinding with simultaneous
execution of single-agent primitives. In Proceedings of the International Symposium on
Combinatorial Search (SoCS), 2012.

[150] Meinolf Sellmann and Pascal Van Hentenryck. Structural symmetry breaking. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 298–303,
2005.

[151] Tomer Shahar, Shashank Shekhar, Dor Atzmon, Abdallah Saffidine, Brendan Juba, and Roni
Stern. Safe multi-agent pathfinding with time uncertainty. Journal of Artificial Intelligence
Research, 70:923–954, 2021.

[152] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing cost tree search
for optimal multi-agent pathfinding. Artificial Intelligence, 195:470–495, 2013.

[153] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search for
optimal multi-agent pathfinding. Artificial Intelligence, 219:40–66, 2015.

[154] Paul Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In Proceedings of the International Conference on Principles and Practice of
Constraint Programming (CP), volume 1520, pages 417–431, 1998.

202

[155] Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan Sievers, and Martin Wehrle.
Heuristics and symmetries in classical planning. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 3371–3377, 2015.

[156] Devon Sigurdson, Vadim Bulitko, William Yeoh, Carlos Hernández, and Sven Koenig.
Multi-agent pathfinding with real-time heuristic search. In Proceedings of the IEEE Con-
ference on Computational Intelligence and Games (CIG), pages 1–8, 2018.

[157] David Silver. Cooperative Pathfinding. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment Conference (AIIDE), pages 117–122,
2005.

[158] Juan Irving Solis Vidana, James Motes, Read Sandstrom, and Nancy Amato.
Representation-optimal multi-robot motion planning using conflict-based search. IEEE
Robotics and Automation Letters, 54(7):111–118, 2021.

[159] Jialin Song, ravi lanka, Yisong Yue, and Bistra Dilkina. A general large neighborhood
search framework for solving integer programs. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 20012–20023, 2020.

[160] Markus Spies, Marco Todescato, Hannes Becker, Patrick Kesper, Nicolai Waniek, and Meng
Guo. Bounded suboptimal search with learned heuristics for multi-agent systems. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 2387–2394, 2019.

[161] Trevor Scott Standley. Finding optimal solutions to cooperative pathfinding problems. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 173–178, 2010.

[162] Trevor Scott Standley and Richard E. Korf. Complete algorithms for cooperative pathfinding
problems. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pages 668–673, 2011.

[163] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T. Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski, and Roman
Bartak. Multi-agent pathfinding: Definitions, variants, and benchmarks. In Proceedings of
the International Symposium on Combinatorial Search (SoCS), pages 151–159, 2019.

[164] Charlie Street, Bruno Lacerda, Manuel Mühlig, and Nick Hawes. Multi-robot planning
under uncertainty with congestion-aware models. In Proceedings of the International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1314–1322, 2020.

[165] Nathan R. Sturtevant. Benchmarks for grid-based pathfinding. IEEE Transactions on Com-
putational Intelligence and AI in Games, 4(2):144–148, 2012.

[166] Pavel Surynek. A novel approach to path planning for multiple robots in bi-connected
graphs. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 3613–3619, 2009.

[167] Pavel Surynek. Unifying search-based and compilation-based approaches to multi-agent
path finding through satisfiability modulo theories. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 1177–1183, 2019.

203

[168] Pavel Surynek. Lazy compilation of variants of multi-robot path planning with satisfiability
modulo theory (SMT) approach. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3282–3287, 2019.

[169] Pavel Surynek. Bounded sub-optimal multi-robot path planning using satisfiability mod-
ulo theory (SMT) approach. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 11631–11637, 2020.

[170] Pavel Surynek. Multi-goal multi-agent path finding via decoupled and integrated goal vertex
ordering. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
12409–12417, 2021.

[171] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient SAT approach to multi-
agent path finding under the sum of costs objective. In Proceedings of the European Con-
ference on Artificial Intelligence (ECAI), pages 810–818, 2016.

[172] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Sub-optimal sat-based approach
to multi-agent path-finding problem. In Proceedings of the International Symposium on
Combinatorial Search (SoCS), pages 90–105, 2018.

[173] Pavel Surynek, Jiaoyang Li, Han Zhang, T. K. Satish Kumar, and Sven Koenig. Mutex
propagation for SAT-based multi-agent path finding. In Proceedings of the International
Conference on Principles and Practice of Multi-Agent Systems (PRIMA), 2020.

[174] Jordan T. Thayer and Wheeler Ruml. Bounded suboptimal search: A direct approach using
inadmissible estimates. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), pages 674–679, 2011.

[175] Jordan T. Thayer, Wheeler Ruml, and Jeff Kreis. Using distance estimates in heuristic
search: A re-evaluation. In Proceedings of the International Symposium on Combinatorial
Search (SoCS), 2009.

[176] Jordan T. Thayer, Austin J. Dionne, and Wheeler Ruml. Learning inadmissible heuristics
during search. In Proceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), pages 250–257, 2011.

[177] Shyni Thomas, Dipti Deodhare, and M. Narasimha Murty. Extended conflict-based search
for the convoy movement problem. IEEE Intelligent Systems, 30(6):60–70, 2015.

[178] David Tolpin, Tal Beja, Solomon Eyal Shimony, Ariel Felner, and Erez Karpas. Toward
rational deployment of multiple heuristics in A*. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pages 674–680, 2013.

[179] Jur van den Berg and Mark H. Overmars. Prioritized motion planning for multiple robots. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 430–435, 2005.

[180] Jur van den Berg, Jack Snoeyink, Ming C. Lin, and Dinesh Manocha. Centralized path
planning for multiple robots: Optimal decoupling into sequential plans. In Proceedings of
the Conference on Robotics: Science and Systems (RSS), 2009.

204

[181] Sumanth Varambally, Jiaoyang Li, and Sven Koenig. Which MAPF model works best for
automated warehousing? In Proceedings of the International Symposium on Combinatorial
Search (SoCS), pages 190–198, 2022.

[182] Kyle Vedder and Joydeep Biswas. X*: Anytime multi-agent path finding for sparse domains
using window-based iterative repairs. Artificial Intelligence, 291:103417, 2021.

[183] Glenn Wagner. Subdimensional expansion: A framework for computationally tractable
multirobot path planning. PhD thesis, Carnegie Mellon University, 2015.

[184] Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot path planning.
Artificial Intelligence, 219:1–24, 2015.

[185] Glenn Wagner and Howie Choset. Path planning for multiple agents under uncertainty.
In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 577–585, 2017.

[186] Thayne T. Walker, Nathan R. Sturtevant, and Ariel Felner. Generalized and sub-optimal
bipartite constraints for conflict-based search. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 7277–7284, 2020.

[187] Thayne T. Walker, Nathan R. Sturtevant, Han Zhang, Jiaoyang Li, Ariel Felner, and
T. K. Satish Kumar. Conflict-based increasing cost search. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), pages 385–395, 2021.

[188] Toby Walsh. General symmetry breaking constraints. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming (CP), pages 650–664,
2006.

[189] Qian Wan, Chonglin Gu, Sankui Sun, Mengxia Chen, Hejiao Huang, and Xiaohua Jia. Life-
long multi-agent path finding in A dynamic environment. In Proceedings of the Interna-
tional Conference on Control, Automation, Robotics and Vision (ICARCV), pages 875–882,
2018.

[190] Hanlin Wang and Michael Rubenstein. Walk, stop, count, and swap: Decentralized multi-
agent path finding with theoretical guarantees. IEEE Robotics and Automation Letters, 5
(2):1119–1126, 2020.

[191] Jiangxing Wang, Jiaoyang Li, Hang Ma, Sven Koenig, and T. K. Satish Kumar. A new
constraint satisfaction perspective on multi-agent path finding. In Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
2253–2255, 2019.

[192] Ko-Hsin Cindy Wang and Adi Botea. Fast and memory-efficient multi-agent pathfinding.
In Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS), pages 380–387, 2008.

[193] Ko-Hsin Cindy Wang and Adi Botea. MAPP: A scalable multi-agent path planning al-
gorithm with tractability and completeness guarantees. Journal of Artificial Intelligence
Research, 42:55–90, 2011.

205

[194] Wenjie Wang and Wooi Boon Goh. An iterative approach for makespan-minimized multi-
agent path planning in discrete space. Autonomous Agents and Multi-Agent Systems, 29(3):
335–363, 2015.

[195] Charles W. Warren. Multiple robot path coordination using artificial potential fields. In
Proceedings of the IEEE International Conference on Robotics and Automation (IRCA),
pages 500–505, 1990.

[196] Martin Wehrle, Malte Helmert, Alexander Shleyfman, and Michael Katz. Integrating partial
order reduction and symmetry elimination for cost-optimal classical planning. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI), pages 1712–
1718, 2015.

[197] Licheng Wen, Yong Liu, and Hongliang Li. CL-MAPF: Multi-agent path finding for car-like
robots with kinematic and spatio-temporal constraints. Robotics and Autonomous Systems,
150:103997, 2022.

[198] Wenying Wu, Subhrajit Bhattacharya, and Amanda Prorok. Multi-robot path deconfliction
through prioritization by path prospects. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 9809–9815, 2020.

[199] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating hundreds of co-
operative, autonomous vehicles in warehouses. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 1752–1760, 2007.

[200] Hong Xu, Kexuan Sun, Sven Koenig, and S. T. Satish Kumar. A warning propagation-based
linear-time-and-space algorithm for the minimum vertex cover problem on giant graphs. In
Proceedings of the International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research (CPAIOR), pages 567–584, 2018.

[201] Fan Yang, Joseph C. Culberson, Robert Holte, Uzi Zahavi, and Ariel Felner. A general
theory of additive state space abstractions. Journal of Artificial Intelligence Research, 32:
631–662, 2008.

[202] Sung Wook Yoon, Alan Fern, and Robert Givan. Learning heuristic functions from relaxed
plans. In Proceedings of the International Conference on Automated Planning and Schedul-
ing (ICAPS), pages 162–171, 2006.

[203] Jingjin Yu. Intractability of optimal multirobot path planning on planar graphs. IEEE
Robotics and Automation Letters, 1(1):33–40, 2016.

[204] Jingjin Yu. Constant factor time optimal multi-robot routing on high-dimensional grids. In
Proceedings of the Conference on Robotics: Science and Systems (RSS), 2018.

[205] Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal multi-robot path
planning on graphs. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 1444–1449, 2013.

206

[206] Jingjin Yu and Steven M. LaValle. Optimal multirobot path planning on graphs: Com-
plete algorithms and effective heuristics. IEEE Transactions on Robotics, 32(5):1163–1177,
2016.

[207] Jingjin Yu and Daniela Rus. Pebble motion on graphs with rotations: Efficient feasibility
tests and planning algorithms. In Proceedings of the International Workshop on the Algo-
rithmic Foundations of Robotics (WAFR), pages 729–746, 2014.

[208] Han Zhang, Jiaoyang Li, Pavel Surynek, Sven Koenig, and T. K. Satish Kumar. Multi-agent
path finding with mutex propagation. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), pages 323–332, 2020.

[209] Han Zhang, Mingze Yao, Ziang Liu, Jiaoyang Li, Lucas Terr, Shao-Hung Chan, T. K. Satish
Kumar, and Sven Koenig. A hierarchical approach to multi-agent path finding. In ICAPS
Workshop on Hierarchical Planning (HPLAN), 2021.

[210] Han Zhang, Jingkai Chen, Jiaoyang Li, Brian C. Williams, and Sven Koenig. Multi-agent
path finding for precedence-constrained goal sequences. In Proceedings of the International
Joint Conference on Autonomous Agents and Mult-Agent Systems (AAMAS), pages 1464–
1472, 2022.

[211] Han Zhang, Yutong Li, Jiaoyang Li, S. K. Satish Kumar, and Sven Koenig. Mutex prop-
agation in multi-agent path finding for large agents. In Proceedings of the International
Symposium on Combinatorial Search (SoCS), pages 249–253, 2022.

[212] Han Zhang, Pavel Surynek, Jiaoyang Li, T. K. Satish Kumar, and Sven Koenig. Multi-agent
path finding with mutex propagation. Artificial Intelligence, page 103766, 2022.

[213] Shuyang Zhang, Jiaoyang Li, Taoan Huang, Sven Koenig, and Bistra Dilkina. Learning a
priority ordering for prioritized planning in multi-agent path finding. In Proceedings of the
International Symposium on Combinatorial Search (SoCS), pages 208–216, 2022.

[214] Yi Zheng, Srivatsan Ravi, Sven Koenig Erik Kline, and T. K. Satish Kumar. Conflict-based
search for the virtual network embedding problem. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pages 423–433, 2022.

[215] Xinyi Zhong, Jiaoyang Li, Sven Koenig, and Hang Ma. Optimal and bounded-suboptimal
multi-goal task assignment and path finding. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 10731–10737, 2022.

207

Appendices

A Proof for the CG Heuristic

In order to help explain the proof of Theorem 3.1, we define another type of MDDs, called extended

MDDs, that ignores constraints, i.e., its MDDs include MDD nodes prohibited by constraints. All

MDDs that we discuss in this section are extended MDDs.

Definition A.1 (Extended MDDs). An extended MDD MDDµ

i for agent ai is a directed acyclic

graph that consists of all paths of agent ai from its start vertex si to it target vertex gi that are at

most µ timesteps long. In particular, MDDµ

i is empty iff µ < dist(si,gi). We say that a MDD node

(x, t) ∈MDDµ

i iff MDDµ

i has vertex x at level t, i.e., there is a path from vertex si at timestep 0 to

vertex x at timestep t and then to vertex gi by timestep µ .

Extended MDDs have the following two properties.

Property A.1. (x, t) ∈MDDµ

i ⇐⇒ dist(si,x)≤ t ∧dist(x,gi)≤ µ− t.

Proof. The property follows from Definition A.1.

Property A.2. For any path p of agent ai, if (p[t], t) /∈MDDµ

i , then (p[t ′], t ′) /∈MDDµ

i for all t ′≥ t.

Proof. This property holds because, by contradiction, if (p[t ′], t ′) ∈MDDµ

i for some timestep t ′ ≥

t, then there is a sub-path p′ in MDDµ

i from vertex p[t ′] at timestep t ′ to vertex gi at timestep µ .

The path that follows a prefix of path p from vertex si at timestep 0 to vertex p[t ′] at timestep

t ′ and then follows sub-path p′ to vertex gi at timestep µ visits vertex p[t] at timestep t, i.e.,

(p[t], t) ∈MDDµ

i .

208

Figure 7.2: Illustration of constructing a path of length µ + 1 for agent ai. The solid and dashed
diamonds include all MDD nodes in MDDµ

i and MDDµ+1
i , respectively.

Property A.2 implies that, once a path leaves an extended MDD, it will never revisit this ex-

tended MDD.

We say that MDDµ

i includes all MDD nodes prohibited by a set of constraints C iff MDDµ

i has

vertex v at level t for any vertex constraint ⟨ai,v, t⟩ ∈C and edge (u,v) from level t− 1 to level t

for any edge constraint ⟨ai,u,v, t⟩ ∈C.

Lemma A.1. Let C be a set of constraints and µ be a sufficiently large integer such that MDDµ

i is

not empty and includes all nodes prohibited by C. If agent ai has a path that satisfies the constraints

in C, then agent ai has a path no longer than µ +1 that satisfies the constraints in C.

Proof. By assumption, agent ai has a path p that satisfies the constraints in C. If length(p)≤ µ+1,

then we are done. Otherwise, as shown in Figure 7.2, we will construct a path of length µ +1 by

letting agent ai (1) first follow the prefix of p to the border of MDDµ

i , (2) then cross the border to

a MDD node in MDDµ+1
i , and (3) finally follow a path in MDDµ+1

i to vertex gi at timestep µ +1.

This new path satisfies C because p satisfies C and any MDD nodes or edges outside of MDDµ

i

also satisfy C. The existence of such a path is proved as follows.

The first MDD node (si,0) visited by path p is in MDDµ

i , and the last MDD node (gi, length(p))

visited by path p is not in MDDµ

i (because length(p)> µ). So, there exists a timestep t < length(p)

such that (p[t], t) ∈MDDµ

i and (p[t + 1], t + 1) /∈MDDµ

i . Let x and y represent p[t] and p[t + 1],

respectively (Figure 7.2(left)). We distinguish two cases and show how to construct a path of length

µ +1 that satisfies the constraints in C for each case.

209

• Case 1: (y, t + 1) ∈MDDµ+1
i (Figure 7.2(middle)). There exists a sub-path p′ in MDDµ+1

i

from vertex y at timestep t +1 to vertex gi at timestep µ +1. By applying (y, t +1) /∈MDDµ

i

to Property A.2, we know that sub-path p′ does not visit any MDD node in MDDµ

i and thus

does not violate any constraints. Therefore, a path that follows a prefix of path p from vertex

si at timestep 0 to vertex y at timestep t + 1 and then follows sub-path p′ to vertex gi at

timestep µ +1 is a path of length µ +1 that satisfies the constraints in C.

• Case 2: (y, t + 1) /∈ MDDµ+1
i (Figure 7.2(right)). Since MDD node (y, t + 1) is visited by

path p, we know that dist(si,y) ≤ t +1. Then, from Property A.1, it holds that dist(y,gi) >

(µ +1)− (t +1), which leads to dist(y,gi)≥ µ− t +1. Rearranging the terms yields

µ ≤ t +dist(y,gi)−1 (A.1)

≤ t +dist(y,x)+dist(x,gi)−1 (A.2)

≤ t +dist(x,gi) (A.3)

≤ µ. (A.4)

Inequality (A.2) is based on the the triangle inequality; Inequality (A.3) follows from

dist(y,x) ≤ 1; and Inequality (A.4) is obtained by applying (x, t) ∈MDDµ

i to Property A.1.

Comparing the first and last lines of these inequalities shows that all lines are actually equal.

Specifically, we know from the last line that

t +dist(x,gi) = µ. (A.5)

Since MDD node (x, t) is visited by path p, we know that dist(si,x)≤ t. From Equation (A.5)

and Property A.1, we know that (x, t +1) /∈MDDµ

i and (x, t +1) ∈MDDµ+1
i . Hence, there

is a sub-path p′′ in MDDµ+1
i from vertex x at timestep t + 1 to vertex gi at timestep µ + 1.

From Property A.2, we know that sub-path p′′ does not visit any MDD node in MDDµ

i and

thus does not violate any constraints in C. Therefore, a path that follows a prefix of path

210

p from vertex si at timestep 0 to vertex x at timestep t, waits for one timestep, and then

follows sub-path p′′ to vertex gi at timestep µ +1 is a path of length µ +1 that satisfies the

constraints in C.

Therefore, the lemma holds.

Finally, we prove Theorem 3.1 based on Lemma A.1.

Theorem 3.1. Suppose that CBS chooses to resolve a conflict between agents ai and a j at timestep

t at a CT node N and successfully generates two child CT nodes N1 (with an additional constraint

imposed on ai) and N2 (with an additional constraint imposed on a j). If the conflict occurs after one

of the agents, say ai, completes its path, i.e., t ≥ length(N.plan[ai]), then cost(N1) = cost(N)+ t+

1− length(N.plan[ai]) and cost(N2) ∈ {cost(N),cost(N)+1}. Otherwise (i.e., the conflict occurs

before both agents have completed their paths), cost(N1),cost(N2) ∈ {cost(N),cost(N)+1}.

Proof. Without loss of generality, we focus only on child CT node N1. Every constraint in

N.constraints imposed on agent ai was generated due to a vertex or edge conflict that occurred

on one of the old paths of agent ai, i.e., paths of agent ai in the plans of any ancestor CT nodes of

CT node N. The length of any old path of agent ai is no longer than length(N.plan[ai]). Therefore,

MDDlength(N.plan[ai])
i includes all MDD nodes prohibited by N.constraints.

If the chosen conflict occurs before agent ai completes its path (i.e., t < length(N.plan[ai])),

then MDDlength(N.plan[ai])
i includes all MDD nodes prohibited by N1.constraints. From Lemma A.1,

we know that agent ai has a path no longer than length(N.plan[ai]) + 1 that satisfies the con-

straints in N1.constraints. So, the length of the shortest path of agent ai in CT node N1 is at most

length(N.plan[ai])+1, and thus cost(N1) ∈ {cost(N),cost(N)+1}.

If the chosen conflict occurs after agent ai completes its path (i.e., t ≥ length(N.plan[ai])), then

the chosen conflict is ⟨ai,a j,gi, t⟩, and the additional constraint added to CT node N1 is ⟨ai,gi, t⟩.

MDDt
i includes all nodes prohibited by N1.constraints, and thus, by Lemma A.1, agent ai has a path

no longer than t + 1 that satisfies N1.constraints. On the other hand, since agent ai is prohibited

from being at vertex gi at timestep t, its shortest path is of length at least t + 1. Therefore, the

211

length of the shortest path of agent ai in CT node N1 is t + 1. So, cost(N1) = cost(N)+ t + 1−

length(N.plan[ai]).

B Proof for the WDG Heuristic

Property 3.4. The WDG heuristic strictly dominates the greedy WDG heuristic.

Proof. By definition, the WDG heuristic hWDG is equal to the solution value of the following

integer linear program:

min ∑
vi∈VD

xi (B.1)

s.t. xi + x j ≥ ∆i j ∀(vi,v j) ∈ ED

xi ∈ N ∀vi ∈VD.

The solution value h1 of the linear programming relaxation of Problem B.1 (i.e., replacing xi ∈ N

with xi ≥ 0 in Problem B.1) satisfies h1 ≤ hWDG. The dual problem of this linear programming

relaxation is

max ∑
(vi,v j)∈ED

∆i jyi j (B.2)

s.t. ∑
(vi,v j)∈ED

yi j ≤ 1 ∀vi ∈VD

0≤ yi j ≤ 1 ∀(vi,v j) ∈ ED

By the weak duality theorem, we know that the solution value h2 of Problem B.2 satisfies h2≤ h1. if

we turn Problem B.2 into an integer linear program by replacing 0≤ yi j ≤ 1 with yi j ∈ {0,1}, then

the resulting solution value h3 satisfies h3 ≤ h2. This integer version of Problem B.2 is identical

to the weighted maximum problem, a problem that finds the matching that maximizes the sum of

the weights of the selected edges (i.e., yi j = 1 indicates a selected edge, and yi j = 0 indicates an

212

unselected edge). Since the greedy WDG heuristic h′WDG is the value of a maximal matching, it

satisfies h′WDG ≤ h3. Therefore, h′WDG ≤ h3 ≤ h2 ≤ h1 ≤ hWDG.

C Supplement for the Rectangle Reasoning Techniques

We first present the equations for calculating the four corners Rs,Rg,R1, and R2 from the start

and target nodes S1,S2,G1, and G2 and then provide proofs of the properties and theorems for the

rectangle reasoning techniques.

C.1 Calculating Corner Nodes

Recall the definition of the four corners in Definition 4.4. We analyze all combinations of the

relative locations of start and target nodes and come up with the following way of calculating the

locations of Rs and Rg:

Rs.x =


S1.x, S1.x = G1.x

max{S1.x,S2.x}, S1.x < G1.x

min{S1.x,S2.x}, S1.x > G1.x

(C.1)

Rg.x =


G1.x, S1.x = G1.x

min{G1.x,G2.x}, S1.x < G1.x

max{G1.x,G2.x}, S1.x > G1.x.

(C.2)

We calculate Rs.y and Rg.y by replacing all “x” with “y” in Equations (C.1) and (C.2). We calculate

the locations of R1 and R2 as follows:

213

• If (S1.x−S2.x)(S2.x−Rg.x)≥ 0, then

R1.x = Rg.x (C.3)

R1.y = S1.y (C.4)

R2.x = S2.x (C.5)

R2.y = Rg.y. (C.6)

• Otherwise,

R1.x = S1.x (C.7)

R1.y = Rg.y (C.8)

R2.x = Rg.x (C.9)

R2.y = S2.y. (C.10)

Finally, we calculate the timesteps of all corner nodes Ri for i = 1,2,s,g as follows:

Ri.t = S1.t + |S1.x−Ri.x|+ |S1.y−Ri.y|. (C.11)

When we use Rectangle Reasoning Technique II, the aforementioned method can miscalculate

R1 and R2 when S1.x = S2.x, such as for the rectangle conflict in Figure 4.3b. Instead, we calculate

R1 and R2 with the following method when S1.x = S2.x:

214

• If (S1.y−S2.y)(S2.y−Rg)≤ 0, then

R1.x = Rg.x (C.12)

R1.y = S1.y (C.13)

R2.x = S2.x (C.14)

R2.y = Rg.y. (C.15)

• Otherwise,

R1.x = S1.x (C.16)

R1.y = Rg.y (C.17)

R2.x = Rg.x (C.18)

R2.y = S2.y. (C.19)

C.2 Proof for the Rectangle Reasoning Techniques

Property 4.2. If Rectangle Reasoning Technique I identifies a rectangle conflict between agents

a1 and a2, then any path of agent a1 that visits a node on its exit border R1Rg also visits a node on

its entry border RsR2, and any path of agent a2 that visits a node on its exit border R2Rg also visits

a node on its entry border RsR1.

Proof. We assume that the vertex conflict between agents a1 and a2 is at node C. We also assume

that S1.x ≤ G1.x and S1.y ≤ G2.y without loss of generality (because MAPF is invariant under

rotations of axes). From Equations (4.3) and (4.4), we know that S2.x ≤ G2.x and S2.y ≤ G2.y.6

Since Equations (4.1) and (4.2) ensure that the path of each agent ai for i = 1,2 from its start node

6Note that, when S1.x = G1.x, it is possible that S2.x > G2.x according to Equation (4.3). In this case, we flip the
x-axis so that S1.x≤ G1.x and S2.x≤ G2.x both hold. We proceed the y-axis similarly.

215

to its target node is within its Si-Gi rectangle, we know that node C is within the intersection of the

S1-G1 and S2-G2 rectangles, i.e., the cell of node C is within the conflicting area:

max{S1.x,S2.x} ≤C.x≤min{G1.x,G2.x} (C.20)

max{S1.y,S2.y} ≤C.y≤min{G1.y,G2.y}. (C.21)

Then, by Property 4.1, we know

(C.x−S1.x)+(C.y−S1.y) = (C.x−S2.x)+(C.y−S2.y), (C.22)

which can be simplified to

S1.x+S1.y = S2.x+S2.y. (C.23)

We assume that S1.x ≥ S2.x without loss of generality (because MAPF is invariant under swaps

of the indexes of agents), which implies that S1.y ≤ S2.y. According to the definition of the four

corners of the rectangle in Definition 4.4 (or the equations in Section C.1), we have

Rs.x = S1.x (C.24)

Rs.y = S2.y (C.25)

Rg.x = min{G1.x,G2.x} ≥ S1.x (C.26)

Rg.y = min{G1.y,G2.y} ≥ S2.y (C.27)

R1.x = S1.x (C.28)

R1.y = Rg.y (C.29)

R2.x = Rg.x (C.30)

R2.y = S2.y. (C.31)

216

Thus,

S1.x≤ S2.x = Rs.x = R2.x≤ Rg.x = R1.x (C.32)

S2.y≤ S1.y = Rs.y = R1.y≤ Rg.y = R2.y. (C.33)

Consequently, the relative locations of the start, target, and rectangle corner nodes are exactly the

same as the ones given in Figure 4.2. Since the S1-Rg and Rs-Rg rectangles are of the same width

(i.e., |S1.x−Rg.x|= |Rs.x−Rg.x|= |R1.x−Rg.x|) and any sub-path p1 from node S1 to a node on

border R1Rg is Manhattan-optimal, sub-path p1 visits a node on border RsR2. Similarly, since the

S2-Rg and Rs-Rg rectangles are of the same length (i.e., |S2.y−Rg.y|= |Rs.y−Rg.y|= |R2.y−Rg.y|)

and any sub-path from node S2 to a node on border R2Rg is Manhattan-optimal, any sub-path p2

visits a node on border RsR1. Therefore, the property holds.

Property 4.6. If Rectangle Reasoning Technique II identifies a rectangle conflict between agents

a1 and a2, then any path of agent a1 that visits a node constrained by B(a1,R1,Rg) also visits a

node on its entry border RsR2, and any path for agent a2 that also visits a node constrained by

B(a2,R2,Rg) visits a node on its entry border RsR1.

Proof. According to Property 4.5, we need to prove that any path of agent a1 from its start node

S1 to one of the nodes constrained by B(a1,R1,Rg) visits a node on the entry border RsR2 and any

path of agent a2 from its start node S2 to one of the nodes constrained by B(a2,R2,Rg) visits a

node on the entry border RsR1, which can be done by the proof of Property 4.2 after replacing

Equation (C.23) by Equation (4.7).

D Proof for the Generalized Rectangle Reasoning Technique

For a given generalized rectangle G = (V ,E), we use V ′ = {u|(u, t) ∈ V } to denote the vertices

in the conflicting area.

217

Lemma D.2. Any path of agent ai for i = 1,2 that visits a node in V also traverses an entry edge

in Ei.

Proof. Consider an arbitrary path p of agent ai that visits a node in V . Since path p starts from the

node (si,0) that is not in V , there exists an edge e = ((p[t], t),(p[t +1], t +1)) such that (p[t], t) /∈

V and (p[t + 1], t + 1) ∈ V . Since (p[t + 1], t + 1) ∈ V , node (p[t + 1], t + 1) is in MDDi. By

Property 4.4, node (p[t], t) is also in MDDi. By the definition of the entry edges in Definition 4.6,

it holds that e ∈ Ei. Therefore, the lemma holds.

Lemma D.3. Any path of agent ai for i = 1,2 that visits a node in V also traverses an entry edge

in Eb
i .

Proof. According to Lemma D.2 and the fact that Ei =Eb
i ∪Eh

i , we only need to prove that any path

of agent ai that visits an entry edge in Eh
i also traverses an entry edge in Eb

i . Consider an arbitrary

path p of agent ai that traverses an entry edge e = ((p[t], t),(p[t +1], t +1)) ∈ Eh
i . Since vertex si

is outside of the conflicting area while vertex u is in a hole, geometry requires that path p visits

at least one vertex in V ′. We use τ to denote the earliest timestep when path p visits a vertex in

V ′ (indicating that τ < t, p[τ−1] /∈ V ′, and p[τ] ∈ V ′) and (p[τ],τ ′) to denote the corresponding

node in V . By Definition 4.5, node (p[τ],τ ′) is the only MDD node in MDDi at vertex p[τ].

By Property 4.4 and (p[t + 1], t + 1) ∈ MDDi (because e ∈ Eh
i), all nodes before timestep t + 1

visited by path p, including node (p[τ],τ), are in MDDi. So, τ = τ ′. Thus, (p[τ−1],τ−1) /∈ V ,

(p[τ],τ) ∈ V , and both of them are in MDDi. Therefore, edge e′ = ((p[τ−1],τ−1),(p[τ],τ)) is

an entry edge in Eb
i , and the lemma holds.

Property 4.8. For all combinations of paths of agents a1 and a2 with a generalized rectangle

conflict, if one path violates B(a1,R1,Rg) and the other path violates B(a2,R2,Rg), then the two

paths have one or more vertex conflicts within the generalized rectangle.

Proof. Since all nodes prohibited by B(ai,Ri,Rg) for i = 1,2 are in V , from Lemma D.3, any

path of agent ai for i = 1,2 that visits a node prohibited by B(ai,Ri,Rg) traverses an entry edge

in Eb
i . The four nodes Rs,Rg,R1, and R2 partition the border of the generalized rectangle G into

218

four segments RsR2, R2Rg, RgR1, and R1Rs, denoted Seg1,Seg2,Seg3, and Seg4, respectively. The

endpoint nodes of all entry edges in Eb
1 are on Seg1, and the endpoint nodes of all entry edges in

Eb
2 are on segment Seg4. The nodes prohibited by B(a1,R1,Rg) are on segment Seg3, and the nodes

prohibited by B(a2,R2,Rg) are on segment Seg2. Therefore, we only need to prove that any path

p1 of agent a1 that visits a node on Seg1 and a node on segment Seg3 conflicts with any path p2

of agent a2 that visits a node on Seg4 and a node on segment Seg2. According to geometry, paths

p1 and p2 cross each other, i.e., visit at least one common vertex u. According to Section 4.3.2.3,

vertex u is not in one of the holes, i.e., u ∈ V ′. Let node (u, tu) be the corresponding node in V .

Then, both paths p1 and p2 visit node (u, tu), i.e., they conflict at vertex u at timestep tu. Therefore,

the property holds.

E Proof for the Corridor Reasoning Technique

Property 4.9. For all combinations of paths of agents a1 and a2 with a corridor conflict, if one path

violates ⟨a1,e1, [0,min(t ′1(e1)−1, t2(e2)+ k)]⟩ and the other path violates ⟨a2,e2, [0,min(t ′2(e2)−

1, t1(e1)+ k)]⟩, then the two paths have one or more vertex or edge conflicts inside the corridor.

Proof. Let path p1 be an arbitrary path of agent a1 that visits vertex e1 at timestep τ1 ∈

[0,min(t ′1(e1)− 1, t2(e2) + k)] and path p2 be an arbitrary path of agent a2 that visits vertex e2

at timestep τ2 ∈ [0,min(t ′2(e2)−1, t1(e1)+ k)]. We need to prove that paths p1 and p2 have one or

more vertex or edge conflicts inside the corridor.

Since τ1 ≤ min(t ′1(e1)− 1, t2(e2) + k) ≤ t ′1(e1)− 1 < t ′1(e1) (recall that t ′1(e1) is the earliest

timestep when agent a1 can reach vertex e1 without using corridor C), path p1 traverses the corridor.

Similarly, path p2 traverses the corridor as well.

Since τ1 ≤ min(t ′1(e1)− 1, t2(e2) + k) ≤ t2(e2) + k (recall that k = dist(e1,e2)), the latest

timestep when path p1 visits vertex e2 is no larger than timestep t2(e2). t2(e2) is the earliest

timestep when path p2 can visit vertex e2, so path p1 visits vertex e2 before path p2. Similarly,

219

path p2 visits vertex e1 before path p1. Thus, paths p1 and p2 have a conflict in the corridor

between vertices e1 and e2. Therefore, the property holds.

F Proof for the Corridor-Target Reasoning Technique

Property 4.10. For all combinations of paths of agents a1 and a2 with a corridor-target conflict, if

one path violates constraint set C1 and the other path violates constraint set C2, then the two paths

have one or more vertex or edge conflicts inside the corridor.

Proof. Since any path of agent a1 cannot violate the length constraints l1 > l and l1 ≤ l simulta-

neously, we only need to consider the case where a path of agent a1 violates l1 > l and a path of

agent a2 violates ⟨a2,e2, [0, t ′2(e2)−1]⟩ (Case 1) or l2 > t ′2(g2) (Case 2).

Case 1 We first consider the case where the target vertex of agent a2 is outside of the corridor. Let

path p1 be an arbitrary path of agent a1 that is no longer than l and path p2 be an arbitrary path of

agent a2 that visits vertex e2 at timestep τ2 ∈ [0, t ′2(e2)−1]. We need to prove that paths p1 and p2

have one or more vertex or edge conflicts inside the corridor. Since τ2 ≤ t ′2(e2)−1 < t ′2(e2) (recall

that t ′2(e2) is the earliest timestep when agent a2 can reach vertex e2 without using the corridor

between vertices e1 and e2), path p2 traverses the corridor. Since the target vertex of agent a1 is

inside the corridor, path p1 eventually enters the corridor via endpoints e1 or e2 without leaving it

220

again. Assume that path p1 enters the corridor via endpoint ei for i = 1,2 at timestep τ1 (without

leaving it again). Then,

τ1 ≤ length(p1)−dist(ei,g1) (F.1)

≤ l−dist(ei,g1) (F.2)

= min
j=1,2
{max{t1(e j)−1, t2(e j)}+dist(e j,g1)}−dist(ei,g1) (F.3)

≤ (max{t1(ei)−1, t2(ei)}+dist(ei,g1))−dist(ei,g1) (F.4)

= max{t1(ei)−1, t2(ei)} (F.5)

≤max{τ1−1, t2(ei)} (F.6)

= t2(ei), (F.7)

Inequality (F.1) holds because agent a1 needs at least dist(ei,g1) timesteps to move from vertex ei

to vertex g1, i.e., length(p1)− τ1 ≥ dist(ei,g1). Inequality (F.2) holds because of the assumption

that length(p1)≤ l. Equation (F.3) holds because of Equation (4.8). Inequality (F.4) holds because

min{x,y} ≤ x holds for any x and y. Equation (F.5) rearranges the terms. Inequality (F.6) holds

because of the definition of t1(ei). Equation (F.7) holds because, otherwise, from Inequality (F.1),

we would have τ1 ≤ τ1−1. These inequalities result in

τ1 ≤ t2(ei), (F.8)

which indicates that path p1 enters the corridor via endpoint ei (without leaving it again) no later

than path p2 visits endpoint ei. Since path p2 traverses the corridor, paths p1 and p2 have one or

more vertex or edge conflicts inside the corridor.

Case 2 We then consider the case where the target vertices of both agents are inside the corridor.

Let path p1 be an arbitrary path of agent a1 that is no longer than l and path p2 be an arbitrary

path of agent a2 that is no longer than t ′2(g2)−1. We need to prove that paths p1 and p2 have one

221

or more vertex or edge conflicts inside the corridor. Since length(p2)≤ t ′2(g2)−1 < t ′2(g2) (recall

that t ′2(g2) is the earliest timestep when agent a2 can reach its target vertex g2 via endpoint e2),

path p2 reaches its target vertex g2 via endpoint e1, i.e., path p2 reaches its target vertex g2 via

vertex g1. Since the target vertex of a1 is inside the corridor, path p1 eventually enters the corridor

via endpoint e1 or e2 without leaving it again. (1) If path p1 enters the corridor via endpoint e2,

then path p1 reaches its target vertex g2 via vertex g1. So, paths p1 and p2 have one or more

vertex or edge conflicts inside the corridor. (2) If path p1 enters the corridor via endpoint e1, say

at timestep τ1, then, according to Inequality (F.8), we know that τ1 ≤ t2(e1), which indicates that

path p1 enters the corridor via endpoint e1 (without leaving it again) no later than path p2 visits

endpoint e1 when it traverses the corridor. Therefore, paths p1 and p2 have one or more vertex or

edge conflicts inside the corridor.

Therefore, the property holds.

222

	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	Abbreviations
	Abstract
	Chapter Introduction
	Motivations
	Why CBS
	Why Heuristic Search and Symmetry Reasoning
	Why Large Neighborhood Search

	Contributions

	Chapter Background
	Definition of Multi-Agent Path Finding (MAPF)
	MAPF Instances Used in the Experiments in This Dissertation

	Overview of MAPF Algorithms
	Optimal MAPF Algorithms
	Bounded-Suboptimal MAPF Algorithms
	Unbounded-Suboptimal MAPF Algorithms

	Overview of Conflict-Based Search (CBS) and Its Variants
	Vanilla CBS
	CBS Improvements
	Suboptimal Variants of CBS
	Variants of CBS for Generalized MAPF Problems

	Chapter Speeding up Optimal CBS via Admissible Heuristics
	The CG Heuristic
	Cardinal Conflict Graphs
	Constructing Cardinal Conflict Graphs
	Properties of Cardinal Conflict Graphs

	The DG Heuristic
	Pairwise Dependency Graphs
	Constructing Pairwise Dependency Graphs
	Merging MDDs

	The WDG Heuristic
	Weighted Pairwise Dependency Graphs
	Constructing Weighted Pairwise Dependency Graphs
	The Two-Agent MAPF Problem

	Runtime Reduction Techniques
	Lazy Computation of Heuristics
	Memoization

	Empirical Evaluation
	Small Maps
	Large Maps
	Comparison with the Perfect Heuristic
	Possible Slowdown

	Summary
	Extensions

	Chapter Speeding up Optimal CBS via Symmetry Reasoning
	Background
	Principle of Designing Constraints for CBS
	Related Work on Symmetry Reasoning

	Rectangle Symmetry
	Rectangle Reasoning Technique I: For Entire Paths
	Rectangle Reasoning Technique II: For Path Segments

	Generalized Rectangle Symmetry
	High-Level Idea
	Algorithm
	Theoretical Analysis
	Empirical Evaluation

	Target Symmetry
	Identifying Target Conflicts
	Resolving Target Conflicts
	Classifying Target Conflicts
	Theoretical Analysis
	Empirical Evaluation

	Corridor Symmetry
	Identifying Corridor Conflicts
	Resolving Corridor Conflicts
	Classifying Corridor Conflicts
	Theoretical Analysis

	Generalized Corridor Symmetry
	Pseudo-Corridor Conflicts
	Corridor Conflicts with Start Vertices inside the Corridor
	Corridor-Target Conflicts
	Summary on Generalized Corridor Symmetry
	Empirical Evaluation

	Symmetry Reasoning Framework
	Framework
	Empirical Evaluation
	Empirical Comparison with Mutex Propagation

	Combining Symmetry Breaking with the WDG Heuristic
	Empirical Evaluation

	Summary
	Extensions

	Chapter Speeding up Bounded-Suboptimal CBS via Inadmissible Heuristics
	Background: Enhanced CBS (ECBS)
	Explicit Estimation CBS (EECBS)
	Limitations of ECBS
	Explicit Estimation Search (EES)
	Explicit Estimation CBS (EECBS)
	Online Learning of the Cost-To-Go Heuristic

	Bringing CBS Improvements to EECBS
	Bypassing Conflicts
	Prioritizing Conflicts
	Symmetry Reasoning
	WDG Heuristic

	Empirical Evaluation
	Summary
	Extensions

	Chapter Improving MAPF Solutions via Large Neighborhood Search
	MAPF-LNS: Reducing the Cost of MAPF Solutions
	Background: Anytime MAPF Algorithms
	MAPF-LNS Framework
	Neighborhood Selection
	Empirical Evaluation

	MAPF-LNS2: Repairing Infeasible MAPF Solutions
	MAPF-LNS2 Framework
	Pathfinding with Dynamic Obstacles
	Neighborhood Selection
	Empirical Evaluation

	Combining MAPF-LNS and MAPF-LNS2
	Empirical Evaluation

	Summary
	Extensions

	Chapter Conclusions and Future Work
	Bibliography
	Appendices
	Proof for the CG Heuristic
	Proof for the WDG Heuristic
	Supplement for the Rectangle Reasoning Techniques
	Calculating Corner Nodes
	Proof for the Rectangle Reasoning Techniques

	Proof for the Generalized Rectangle Reasoning Technique
	Proof for the Corridor Reasoning Technique
	Proof for the Corridor-Target Reasoning Technique

