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Abstract

When developing a space system, many properties of the design space are initially
unknown and are discovered during the development process. Therefore, the problem
exhibits deep uncertainty. Deep uncertainty refers to the condition where the full
range of outcomes of a decision is not knowable. A key strategy to mitigate deep
uncertainty is to update decisions when new information is learned. NASA’s current
uncertainty management processes do not emphasize revisiting decisions and therefore
are vulnerable to deep uncertainty. Examples from the development of the James
Webb Space Telescope are provided to illustrate these vulnerabilities.

In this research, the spacecraft development problem is modeled as a dynamic,
chance-constrained, stochastic optimization problem. The Model-based Adaptive De-
sign under Uncertainty (MADU) framework is introduced, in which conflict-directed
search is combined with reuse of conflicts to solve the problem efficiently. The frame-
work is built within a Model-based Systems Engineering (MBSE) paradigm in which
a SysML model contains the design and conflicts identified during search. Changes
between problems can involve the addition or removal a design variable, expansion
or contraction of the domain of a design variable, addition or removal of constraints,
or changes to the objective function. These changes are processed to determine their
effect on the set of known conflicts. Using Python, an optimization problem is com-
posed from information in the SysML model, including conflicts from past problems,
and is solved using IBM ILOG CP Optimizer. The framework is tested on a case
study drawn from the thermal design of the REgolith X-ray Imaging Spectrometer
(REXIS) instrument and a case study based on the Starshade exoplanet direct imag-
ing mission concept which is sizeable at 35 design variables, 40 constraints, and 1010

possible solutions. In these case studies, the MADU framework performs 58% faster
on average than an algorithm that doesn’t reuse information. Adding a requirement
or changing the objective function are particularly efficient types of changes. With
this framework, designers can more efficiently explore the design space and perform
updates to a design when new information is learned.
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Nomenclature

Abbreviations

ADCS Attitude Control and Determination Subsystem

ASDS Automated Spaceport Drone Ship

BDD Block Definition Diagram

BWG Beam Waveguide

C&DH Command and Data Handling

CBE Current Best Estimate

COPV Composite-Overwrapped Pressure Vessel

CRM Continuous Risk Management

CSP Constraint Satisfaction Problem

DoD Department of Defense

DRM Design Reference Mission

FIFO First-In-First-Out

IBD Interface Block Diagram

IMU Inertial Measurement Unit

MADU Model-based Adaptive Design under Uncertainty

MBSE Model-based Systems Engineering
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MEV Maximum Expected Value

MGA Medium Gain Antenna

MILP Mixed-Integer Linear Programming

MLI multi-layer insulation

MON Mixed Oxides of Nitrogen

OLC Object Constraint Language

OMG Object Management Group

OPM Object Process Methodology

OSIRIS-REx Origins Spectral Interpretation Resource Identification Security Re-

golith EXplorer

PAR Parametric Diagram

REXIS REgolith X-ray Imaging Spectrometer

RIDM Risk-Informed Decision Making

SDD Silicon Drift Detector

SDST Small Deep Space Transponder

SUV Sport Utility Vehicle

SXM Solar X-ray Monitor

SysML Systems Modeling Language

TCM Trajectory Correction Maneuver

TMS Truth Maintenance System

TWTA Traveling Wave Tube Amplifier

UML Unified Modeling Language

Symbols

𝑎(𝑥) set constraint

𝐴 cross sectional area

𝐴𝑎𝑟𝑟𝑎𝑦 area of a solar array
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𝑐 set of constraints

𝑐𝑏𝑎𝑡𝑡 battery capacity

𝐶 set of known conflicts

𝐶 updated set of conflicts after conflict extraction is complete

𝐶𝑠𝑢𝑛 solar constant

𝑑𝑏𝑎𝑡𝑡 energy density of a battery

𝑑𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒 duration of safe mode

𝑑𝑦𝑒𝑎𝑟𝑙𝑦 yearly degradation of a solar array

𝐷𝑎𝑟𝑟𝑎𝑦 degradation factor for combining solar cells into a solar array

𝐷𝑂𝐷 depth of discharge of battery

𝑒 efficiency of a solar array

𝑒𝑎𝑚𝑝 efficiency of X-band TWTA

𝐸 Young’s modulus

𝐸(𝐶𝑖) explanation of the conflict 𝐶𝑖

𝐸𝑏

𝑁0
signal to noise ratio

𝑓 fill level of a propellant tank in the Starshade case study

𝑓(𝑥, 𝑦) objective function

𝑓𝑎𝑥𝑖𝑎𝑙 axial natural frequency

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 lateral natural frequency

𝑓𝑟𝑎𝑑 fraction of bus face taken up by radiator

𝑔 acceleration of gravity

𝑔(𝑥, 𝑦) inequality constraint

𝐺𝑟 receive gain

𝐺𝑡 transmit gain
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ℎ height

ℎ(𝑥, 𝑦) equality constraint

𝐼 area moment of inertia

𝐼𝑠𝑝 specific impulse

𝑘 thermal conductivity

𝑘 equivalent thermal conductivity of part after accounting for inter-

face resistance

𝑙 side length

𝐿 length

𝐿𝑙 line loss

𝐿𝑝 path loss

𝐿𝑠 space loss

𝐿𝑠𝑐 lifetime of a spacecraft

𝑚 mass

𝑚𝑎 mass per unit area of solar array

𝑚𝑑𝑟𝑦 dry mass

𝑚𝑤𝑒𝑡 wet mass

𝑀 mixture ratio

𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝑠 number of stars that the Starshade mission will observe

𝑂 decision outcome

𝑝 minimum probability of satisfaction for an inequality constraint

𝑝𝑎𝑚𝑝 input power to X-band TWTA

𝑝𝐴𝐷𝐶𝑆 power draw of the ADCS subsystem

𝑝𝐶&𝐷𝐻 power draw of the C&DH subsystem

10



𝑝ff power draw of formation flying package

𝑝𝑚𝑎𝑖𝑛 power draw of main engine

𝑝𝑝𝑒𝑎𝑘 peak power draw of the Starshade bus

𝑝𝑠 pressurant tank selector in the Starshade case study

𝑝𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒 power draw of Starshade bus in safe mode

𝑝𝑆−𝑏𝑎𝑛𝑑 power draw of X-band transmitter

𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 power draw of one thruster

𝑝𝑡𝑟𝑎𝑛𝑠 power draw of X-band transmitter

𝑃 pressure

𝑃𝑎𝑟𝑟𝑎𝑦 power produced by a solar array in the Starshade case study

𝑃𝑡 transmit power

𝑞 heat load

𝑟 radius

𝑅 decision rationale

𝑅𝑑 data rate

𝑅𝐻𝑒 universal gas constant of helium

𝑠 volumetric cost of material

𝑆 cost

𝑡 set of known satisfying states

𝑡𝑠 thruster tank selector in the Starshade case study

𝑡𝑡𝑎𝑟𝑔𝑒𝑡 average time that the Starshade mission observes a star

𝑇 temperature

𝑇𝑠 system noise temperature

𝒰(𝑎, 𝑏) uniform random variable defined over the interval [𝑎, 𝑏]
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𝑣𝑖 set of design variable alternatives defining the domain of a single

design variable

𝑣𝑖𝑗 a single design variable alternative

𝑉 volume

𝑤 wall thickness

𝑥 set of design variables

𝑥𝑐 candidate solution generated by the relaxed problem

𝑦 set of model parameters

𝛼 limit of an inequality constraint

𝛼𝑏 absorptivity of Starshade bus

∆𝑉 change in velocity

∆𝑉𝑐𝑜𝑛𝑡 contingency ∆𝑉 provided for retargeting

∆𝑉𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 ∆𝑉 required to dispose of the Starshade

∆𝑉𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 ∆𝑉 required to rendezvous with the Starshade telescope at Earth-

Sun L2

∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔 ∆𝑉 required to perform an average retargeting maneuver

∆𝑉𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑒𝑝𝑖𝑛𝑔 ∆𝑉 per day needed to fly in formation with the Starshade telescope

∆𝑉𝑡𝑐𝑚1 ∆𝑉 required to perform TCM 1

∆𝑉𝑡𝑐𝑚2 ∆𝑉 required to perform TCM 2

∆𝑉𝑡𝑐𝑚3 ∆𝑉 required to perform TCM 3

𝜖𝑏 emissivity of Starshade bus radiator

𝜃 angle of Sun on Starshade bus

𝜃𝑤𝑜𝑟𝑠𝑡 worst case solar array illumination angle

𝜌 density of material

Subscripts and Superscripts

(·)* optimal solution
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(·)𝐴𝐷𝐶𝑆 property of the ADCS subsystem in the Starshade case study

(·)𝑏 property of Starshade bus

(·)𝐵 property of an ideal beam

(·)𝑐ℎ𝑎𝑛𝑔𝑒𝑑 new problem formulation after changes have been made

(·)𝑐𝑜𝑚𝑚 property of the Communications subsystem in the Starshade case

study

(·)𝐶&𝐷𝐻 property of the C&DH subsystem in the Starshade case study

(·)𝐷𝐴𝑀 property of the DAM in the REXIS detector thermal design case

study

(·)𝐷𝐴𝑆𝑆 property of the DASS in the REXIS detector thermal design case

study

(·)𝐷𝐴𝑆𝑆−𝑇𝐼𝐿 property of the DASS to TIL interface in the REXIS detector ther-

mal design case study

(·)𝐸𝑂𝐿 end of life property

(·)𝑔𝑎𝑠 property of the gas in a pressurant tank in the Starshade case study

(·)𝑔𝑎𝑠1 property of the gas in pressurant tank 1 in the Starshade case study

(·)𝑔𝑎𝑠2 property of the gas in pressurant tank 2 in the Starshade case study

(·)𝑖𝑛𝑡 property of the interior of the bus in the Starshade case study

(·)𝑚𝑎𝑖𝑛 property of the main engine in the Starshade case study

(·)𝑚𝑙𝑖 property of MLI in the Starshade case study

(·)𝑛𝑒𝑤 design variable, constraint, design variable alternative, etc. that is

being added to the problem

(·)𝑜𝑟𝑖𝑔 original problem formulation before changes are made

(·)𝑝𝑜𝑠𝑠 a set of conflicts of satisfying states that apply to an individual

sampled problem

(·)𝑝𝑜𝑤𝑒𝑟 property of the Power subsystem in the Starshade case study
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(·)𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 property of a pressurant tank in the Starshade case study

(·)𝑝𝑟𝑒𝑠1 property of pressurant tank 1 in the Starshade case study

(·)𝑝𝑟𝑒𝑠2 property of pressurant tank 2 in the Starshade case study

(·)𝑝𝑟𝑜𝑝1 property of the propellant in propellant tank 1 in the Starshade

case study

(·)𝑝𝑟𝑜𝑝2 property of the propellant in propellant tank 2 in the Starshade

case study

(·)𝑃𝑟𝑜𝑝 property of the Propulsion subsystem in the Starshade case study

(·)𝑃𝑟𝑜𝑝,𝑤𝑒𝑡 property of the Propulsion subsystem including propellant in the

Starshade case study

(·)𝑟𝑎𝑑 property of a radiator

(·)𝑟𝑒𝑙 relaxed inequality constraint

(·)𝑟𝑒𝑚 design variable, constraint, design variable alternative, etc. that is

being removed from the problem

(·)𝑠𝑝𝑎𝑐𝑒 property of space

(·)𝑠𝑡𝑎𝑟𝑠ℎ𝑎𝑑𝑒 property of the starshade in the Starshade case study

(·)𝑠𝑡𝑟𝑢𝑐𝑡 property of the Structures subsystem in the Starshade case study

(·)𝑡𝑎𝑛𝑘 property of a propellant tank in the Starshade case study

(·)𝑡𝑎𝑛𝑘1 property of propellant tank 1 in the Starshade case study

(·)𝑡𝑎𝑛𝑘2 property of propellant tank 2 in the Starshade case study

(·)𝑡ℎ𝑒𝑟𝑚𝑎𝑙 property of the Thermal subsystem in the Starshade case study

(·)𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 property of the thrusters in the Starshade case study

(·)𝑇𝐼𝐿 property of the TIL in the REXIS detector thermal design case

study

(·)𝑇𝐼𝐿−𝐷𝐴𝑀 property of the TIL to DAM interface in the REXIS detector ther-

mal design case study
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(·)𝑇𝑆 property of the Thermal Strap in the REXIS detector thermal de-

sign case study
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Chapter 1

Introduction

NASA has established processes designed to meet the challenge of developing sys-

tems that accomplish difficult tasks in the unforgiving environment of space. These

processes have evolved over the years and have produced many successful space mis-

sions. Still, some missions struggle with cost and schedule overruns and technical

failures [24]. The discipline assigned to balance performance demands against cost,

schedule, and risk constraints is called systems engineering. Within NASA, systems

engineering is defined as "a methodical, multi-disciplinary approach for the design, re-

alization, technical management, operations, and retirement of a system" [82]. Good

systems engineering requires the integration of a disparate set of needs, desires, and

constraints that commonly conflict with one another.

The role of a systems engineer evolves over the lifecycle. The systems engineering

Vee Model shown in Figure 1-1 is one common model of how systems engineering

tasks evolve [90]. In the earliest phases of a project, a systems engineer focuses on

interfacing with the customer to understand the desired system and to establish a set

of requirements. In the next phases of development, the systems engineering archi-

tects the system, develops system concepts, and iteratively refines the design through

analysis and trade studies. In the bottom of the Vee model, the systems engineer

finalizes the detailed design and builds the system. Prototypes may be built to iden-

tify the best design choices or to understand difficult manufacturing steps. Beginning

on the right hand side of the Vee, the systems engineer integrates the system while
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Figure 1-1: The systems engineering Vee model, a common model of how systems
engineering tasks evolve over the lifecycle [90]

performing verification and validation to ensure that the system meets requirements

and satisfies the customer. Finally, the system is deployed, operated, and retired.

Throughout the lifecycle, the systems engineering team must track and mitigate risks,

manage the cost, schedule, and configuration of the system, and balance the concerns

of subsystem engineers.

The space system development process is a series of decisions, made over time,

with an increasing level of detail and maturity in the design [82] [46]. The process

is highly iterative with decisions made at higher levels being used to frame the set

of options at lower levels. Decisions made later in the lifecycle benefit from the

additional knowledge about the design space that is gained as the system is designed.

Traditional design frameworks don’t take advantage of the fact that more information

is available later in the design process to revisit decisions made early in the design

process.

Uncertainty is prevalent in space system development [112]. System performance

is difficult to measure before launch and so tests and models are used to raise the

likelihood of the system performing as intended after launch. These tests and mod-

els are imperfect reproductions of the actual operational environment and therefore
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performance estimates are uncertain. Space systems involve many tightly integrated

components and therefore uncertainty arises from the difficulty in accurately quanti-

fying all of the system interactions. Finally, system properties may not be accurately

known and therefore cannot be modeled precisely. Many techniques exist to develop

space systems under these types of uncertainty [12] [109] [20]. However, these ap-

proaches make the assumption that all uncertainty can be modeled a priori and this

assumption does not always hold as the probability of some events that can occur dur-

ing the development process cannot be accurately estimated. This type of uncertainty

is called deep uncertainty [65].

The definition of deep uncertainty taken from Lempert et al. and used in this

thesis is as follows [65] [117]:

"the condition in which analysts do not know, or the parties to a decision cannot

agree on, (1) the appropriate models to describe the interactions among a system’s

variables, (2) the probability distributions to represent uncertainty about key variables

and parameters in the models and/or (3) how to value the desirability of alternative

outcomes."

Many events that may occur during the development process fall into the category

of deep uncertainty. For example, a component may break during handling, a new

technology may not work as intended, or unexpected interactions between system

elements may emerge. These events are difficult or impossible to predict beforehand

with confidence.

This research introduces the Model-based Adaptive Design under Uncertainty

(MADU) framework for use in developing space systems. The framework looks for

opportunities to improve past decisions when new information is learned while also

handling deep uncertainty by updating the system design after unforeseen events

occur. The framework is enabled by Model-based Systems Engineering (MBSE) where

system information is captured in a descriptive system model instead of separate

documents, spreadsheets, and slide decks [29]. MBSE is a key enabler of MADU

because it supports descriptive modeling of the system, the design space, and decisions
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made about the system design. Frequent redesigns can be wasteful and so incremental

search techniques based on conflict learning are used to perform the design update

efficiently. With this framework, uncertainty can be more completely accounted for

during the design process, saving rework, improving system performance, and lowering

cost.

1.1 Motivation

Space systems commonly experience cost overruns and programmatic delays. One

root cause of these issues is that current uncertainty management techniques do not

adequately handle unforeseen events and don’t emphasize revisiting decisions in light

of new information. In contrast, strategies for dealing with deep uncertainty rely upon

adaptation to address unforeseen events. NASA’s uncertainty management processes

generally seek to avoid or minimize change. With the introduction of model-based

systems engineering, uncertainty management processes can be improved to incor-

porate efficient adaptation of the design in light of new information that is learned

during the development process. Efficient design updates minimize the effort needed

to perform design adaptation and enable more analyses to be conducted, improving

insight into the system.

1.1.1 Limitations in Uncertainty Management in Space Sys-

tem Design

Historical data shows that, despite mature uncertainty management processes, space

systems commonly experience issues related to uncertainty management during de-

velopment. Deep uncertainty is a root cause of these issues. This section reviews pro-

grammatic performance data across many NASA and DOD projects and dives into

the issues experienced during the development of the James Webb Space Telescope to

show how current uncertainty management processes do not effectively handle deep

uncertainty.
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Figure 1-2: The ratio of actual cost to estimated cost is plotted on the horizontal axis
and the ratio of actual schedule to estimated schedule is plotted on the vertical axis
for a set of selected NASA missions under development between 1992 and 2007. The
average cost overrun is 27% and the average schedule overrun is 22% with cost and
schedule overruns being correlated. [24]

Chronic Programmatic Overruns

NASA and Department of Defense DoD space missions commonly experience cost

and schedule overruns. A summary of the cost and schedule performance of forty

NASA missions [24] is shown in Figure 1-2. The ratio of actual cost to estimated

cost is plotted on the horizontal axis and the ratio of actual schedule to estimated

schedule is plotted on the vertical axis for a set of selected NASA missions under

development between 1992 and 2007. The vast majority of mission experience both

cost and schedule overruns with the average cost overrun being 27% and the average

schedule overrun being 22%.

DoD space systems have not performed any better. A GAO report from 2005

recorded many programmatic issues with major space acquisitions [31]. The Advanced

Extremely High Frequency (AEHF) program experienced cost increases of over 50%

and schedule delays of over three years. The National Polar-orbiting Operational

Environmental Satellite System (NPOESS) experienced a cost increase of over 10%.

Worst of all, the Space Based Infrared System High (SBIRS-High) experienced a unit
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cost increase of over 150% and schedule delays of at least six years.

The reasons for such extensive programmatic breaches include repeated changes

to requirements, reliance on immature technology, and reliance on immature software

[87]. These root causes are all manifestations of deep uncertainty. If requirements

constantly change, constant rework is needed to update the system design to ensure

that it satisfies the latest set of requirements. This difficulty is a form of deep un-

certainty because the development team may be able to agree on an approximate

set of requirements but does not have enough knowledge to bound the correct set of

requirements. Relying on immature technology or software increases the dependence

on effective uncertainty management processes because unforeseen issues may arise

when those items are matured. This reliance is also a form of deep uncertainty be-

cause the models available to the design team do not fully scope the technology or

software development effort necessary to build the system.

James Webb Space Telescope Development Issues

The James Webb Space Telescope (JWST) is a next generation space telescope that

will greatly expand humanity’s knowledge of the universe [39]. However, it has ex-

perienced unprecedented extensive delays during development. The cost of JWST

has increased 93% to $9.6 billion and the launch date of the telescope has slipped 81

months to March 2021 [38] since it was baselined in 2009 [81]. This section will re-

view some of the difficulties experienced by the project and trace them to inadequate

handling of deep uncertainty.

The delays experienced by JWST can be largely divided into three categories:

mismanagement of the project, workmanship issues, and integration and test schedule

issues. During the detailed design phase, the project was underscoped, resulting in

insufficient funds to accomplish the tasks necessary to ensure a timely completion of

the telescope [11]. The budget that the project was working under was not based on

a detailed estimate of the effort necessary to complete the project. Additionally, the

budget reserves that could be used to pay for the completion of unforeseen tasks or

tasks that took longer than anticipated were too low because they were established
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against a subset of the actual work that needed to take place. Essentially, the project

was budget constrained and therefore would push work to following fiscal years when

it ran out of money. While this stance allowed the project to stay on budget in a

given year, it greatly increased the overall cost of the project. Delaying work tends to

increase the cost of that work because other tasks that rely upon the completion of

that work are delayed as well. These management issues are manifestations of deep

uncertainty because the project was struggling with issues that it could not predict.

While assembling and testing the telescope, repeated flight hardware was repeat-

edly mishandled. In 2014, cryocooler delivery was delayed three weeks because of

unauthorized work on the compressor and an additional three weeks because of a

manufacturing error [32]. In October 2015, some hardware was damaged while being

vacuum sealed for transport [35]. This issue delayed the project three weeks. In Jan-

uary 2016, a deficient test cable caused a vibration test anomaly resulting in a two

week delay [35]. In April 2017, too much voltage was applied to pressure transducers

on board the spacecraft, damaging them [36]. Combined with other issues, this inci-

dent delayed the schedule by five weeks. In May 2017, some propulsion system valves

leaked beyond permissible levels and needed refurbishment [37]. The root cause of

the leaking was that the valves were cleaned with an incorrect solvent. The rework

caused by this incident delayed the schedule by two months.

Workmanship issues are a good example of deep uncertainty because they are

nearly impossible to predict ahead of time. Humans can make mistakes in unpre-

dictable ways. While workmanship issues can occur on any project, they are typically

addressed by building sufficient margin into the schedule. However, JWST consis-

tently struggled to predict the amount of schedule margin needed to accommodate

the issues that were occurring [35]. The rate at which JWST was consuming schedule

margin would result in the depletion of schedule margin before the desired launch

date. Such a delay eventually occurred when all options to add schedule margin were

exhausted. As can be seen from these problems, the project did not adequately deal

with deep uncertainty related to workmanship issues.

The integration and test phase of JWST has experienced many issues beyond
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workmanship mishaps that have delayed the launch of the telescope. These issues are

all related to underestimation of the time that is required to accomplish integration

and test tasks. In 2016, the integration of the instrument section of the telescope was

delayed one month because of greater than expected complexity with accomplishing

the necessary work [35]. For example, more than 900 thermal blankets needed to be

installed and access issues prevented blanket installation from being done in parallel.

An additional two weeks of reserve were consumed when the installation and welding

of propellant lines were more complicated than expected. In September 2017, three

and a half months of reserve were consumed because the prime contractor underesti-

mated the amount of time it would take to complete the integration and test of the

spacecraft [36]. Again, tasks could not be performed in parallel because the work was

elevated and an insufficient number of lifts were available. Also in September 2017,

when lessons from the initial sunshade folding operation were incorporated into the

schedule, an additional three months of schedule margin were consumed.

Like workmanship issues, integration and test issues are good examples of deep

uncertainty because they are unpredictable. Their unpredictability arises from the

lack of sufficiently accurate models to understand how the time allocated to accom-

plish a certain task compares with the true time that it will take to accomplish that

task. Historical data is less reliable for one-of-a-kind systems and therefore models of

how integration and test will proceed may be less accurate. Again, schedule margin

is allocated to cover these unforeseen delays but JWST did not allocate sufficient

schedule margin to cover the magnitude of delays that were experienced.

1.1.2 Weaknesses in NASA’s Uncertainty Management Pro-

cesses

The NASA space system design process utilizes two processes for making design deci-

sions under uncertainty: the Decision Analysis process and the Technical Risk Man-

agement process [82]. Decision Analysis is a framework for making design decisions

while considering all reasonable decision alternatives and accounting for uncertainties
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Figure 1-3: Flow diagram of the eight steps of the decision analysis process [82].

that may affect the ranking of alternatives. As shown in Figure 1-3, Decision Analysis

consists of eight steps. First, guidelines are established to identify design decisions

that require analysis and to determine the appropriate level of formality for each

decision. Second, the criteria for comparing design alternatives are defined. Third,

the set of alternatives to be considered is identified. Fourth, the evaluation methods

are identified. Fifth, the alternatives are analyzed per the methods determined in

the previous step. Sixth, the results of the analysis of alternatives are analyzed to

select which alternative will be recommended. Seventh, the results of the analysis

are documented and reported to stakeholders. Eighth, the products of the decision

process are captured. If uncertainty affects the decision, it is incorporated into the

analysis and the selection of the recommended alternative. No criteria are established

that define when to revisit the decision.

The NASA Risk Management process is the combination of two subprocesses:

Risk Informed Decision Making (RIDM) and Continuous Risk Management (CRM)

[20]. RIDM and CRM are complementary processes. The RIDM process is invoked

whenever key decisions on the system architecture, system design, or requirements are
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made. The CRM process manages the process of achieving performance commitments

[20].

The Risk Informed Decision Making (RIDM) process defines how to incorporate

risk analysis into architecture and design decisions, requirement changes, and trade

studies, and other important decisions [20]. RIDM is composed of three steps as shown

in Figure 1-4. The first step is the Identification of Alternatives. In this step, stake-

holder goals are identified and assigned a performance measure. The performance

measure should quantify the extent to which each alternative fulfills a stakeholder

goal. After the performance objectives have been identified, a set of feasible alter-

natives that accomplish the objectives are compiled. The second step is the Risk

Analysis of Alternatives. In this step, models are used to predict the performance

of the alternatives identified in the first step while accounting for the uncertainty in

how well each alternative accomplishes stakeholder goals. The output of this step is

a probability distribution over the range of possible values of a set of performance

parameters for each alternative. The third step is Risk-Informed Alternative Se-

lection. In this step, the stakeholders and decision makers review the performance

of each alternative with respect to the performance measures and either decide on

an alternative, decide to eliminate some alternatives, or suggest new alternatives.

Commitments made through an RIDM process are passed to the CRM process so

that progress towards meeting the commitments can be managed. The NASA Risk

Management Handbook notes that RIDM may be an iterative process but does not

provide guidance within the RIDM process for how to revisit a decision made using

RIDM.

The Continuous Risk Management (CRM) process tracks risks to ensure that all

commitments are met [20]. Commitments in this context refer to requirement defini-

tions, architecture or design decisions, or use of key technologies. CRM is composed

of five steps as shown in Figure 1-5. The first step is to identify commitments that

have a chance of not being met. The next step is to analyze the risk identified in the

previous step to calculate a likelihood that the risk manifests and the consequence of

the risk, or impact of the manifested risk on the system. The likelihood and conse-
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Figure 1-4: The three steps of the Risk Informed Decision Making (RIDM) process
[20].

quence are typically presented in a 5x5 risk chart [83]. The third step is to plan what

actions must be taken in reaction to the identified risk. The possible actions are: to

accept the risk for the time being, to mitigate the risk to an acceptable level, to watch

the risk to see how it evolves, to research the drivers of the risk to better understand

their uncertainties, to elevate the risk to the next level higher in the project organiza-

tional hierarchy if the risk cannot be managed at the current level, or to close the risk

if all risk drivers can be shown to be insignificant. The fourth step is to track the risk

to evaluate how it changes as the design evolves or as mitigation plans are executed.

The fifth step is to control the risk if it is not tracking in a favorable direction. The

steps form a loop as the CRM process is continuously applied to track risks as more

knowledge is gained on their possible effects on the mission. If a commitment is at

severe risk of not being met, despite implementation of a risk mitigation strategy,

the CRM process passes the risk back to the RIDM process for re-consideration of

the choices that led to that risk. This feedback is the only way for a decision to be

revisited within the NASA risk management framework.

Revisiting a decision only when the commitment entailed by that decision cannot
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Figure 1-5: The five steps of the Continuous Risk Management (CRM) process [20].

be met has several disadvantages. Firstly, because revisiting a decision is only done

after failure of the risk mitigation strategy, opportunities to improve the design that

were unknown at the time of the original decision will not be identified or imple-

mented. Secondly, suboptimal risk mitigation strategies will continue to be employed

as long as they are succeeding at mitigating the risk. Improved mitigation strategies

will not necessarily be employed. Thirdly, the CRM process as a whole must succeed

in order for decisions to be revisited. If the CRM process has a flaw and does not

properly detect uncontrolled risks, then the decisions that lead to that uncontrolled

risk will never be revisited.

Issues with Revisiting Decisions from JWST

Examples from JWST reinforce the issues with revisiting decisions present in NASA’s

risk management processes. The JWST project was very reluctant to adapt in light

of new information. For example, the GAO repeatedly recommended that a detailed

update be made to cost and schedule predictions, without any action from NASA

or the project [36]. The project was confident that its basic uncertainty manage-
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ment process would detect and mitigate risks. In reality, many issues flew under the

radar until they ballooned into significant issues that severely impacted cost and/or

schedule. During the integration and test phase of the project, the GAO found that

70% of reserve funding was being spent on issues that had not been predicted by the

project [32]. The budget established in 2008 that was followed for the first several

years of the project did not incorporate information such as known risks to cost or

schedule or prior performance of contractors [11]. Furthermore, the project did not do

a detailed bottoms-up cost estimate in preparation for several major reviews prior to

2008. A cryocooler replan performed in 2013 did not account for risks to the schedule

[33]. Unsurprisingly, the cryocooler subsequently took much longer to develop than

predicted and cost much more than predicted [34].

Personnel at the prime contractor consistently exceeded estimates by significant

amounts. In December 2015, the required workforce had exceeded the planned work-

force for 20 consecutive months [34]. Despite firm evidence that the required person-

nel levels were well beyond the planned levels, workforce levels continued to exceed

planned levels through February 2018 by which time it had exceeded planned levels for

44 consecutive months [36]. Figure 1-6 is from a GAO report and shows the predicted

versus actual full time equivalents at Northrop Grumman, the prime contractor, for

fiscal years 2016 and 2017 [36]. The exceedances were not minor, in some months

they were close to or above 50%. Even during the replanning done for the start of

fiscal year 2017 in October 2016, the planned workforce is still significantly below

the actual workforce. The inability of the prime contractor to manage its workforce

numbers was the primary contributor to the cost overrun proposal submitted by the

prime contractor in July 2016 [35]. From these examples, it is clear that the project

suffered from an inability to rigorously update its plans based on information gained

during development.

1.1.3 Building on Model-based Systems Engineering

Model-based Systems Engineering (MBSE) is the formalized application of modeling

to support systems requirements, design, analysis, verification, validation, and oper-
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Figure 1-6: Planned versus actual full time equivalents at Northrop Grumman, the
prime contractor for JWST [36]. The light blue line shows the planned workforce each
month whereas the dark blue line shows the actual workforce each month. The actual
workforce needed far outstripped the planned workforce each month. Reproduced
from GAO-18-273.

ations [29] [26]. MBSE can provide excellent support for implementing strategy to

effectively handle deep uncertainty for three reasons. Firstly, with a systems model

written in a formal language, the process of identifying how the design is impacted

by new information should be much more straightforward than in a document-based

paradigm. Given sufficient modeling detail of assumptions made for each decision,

a query should be able to retrieve decisions that were impacted by a change to an

assumption. In document-based systems engineering, such an analysis would a large

amount of effort by engineers to cross reference information spread across many dif-

ferent documents. Secondly, the system model can be connected to analysis models

to enable streamlined re-execution of decisions and trade studies when necessary.

Thirdly, the system model serves as an interface between the design team and algo-

rithms that assist with decision making. The design team can use the system model

both as an information repository, as well as a human-readable interface for system

information.
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1.1.4 Revisiting Decisions Efficiently

Constantly revisiting decisions when new information is learned can result in wasted

work if the new information has no impact on previous decisions. Therefore, the

decision revisiting process should be made as efficient as possible. Beyond reducing

wasted work, efficient revisiting of decisions allows more analyses to be performed

and therefore enables deeper insight into the system. On JWST, an integrated model

was used to support decisions [75]. However, performing a decision cycle with the

integrated model took three to six months. Therefore, only a few cycles were possible

between major design reviews. As information is constantly learned during the devel-

opment process, the impact of new information may takes months to quantify with

such a slow analysis process. The use of MBSE can shorten the length of the analysis

process through connection of the system model to analysis models, but other oppor-

tunities for improving analysis time, such as more efficient optimization techniques,

should also be used. This thesis combines both MBSE and efficient optimization tech-

niques to produce a framework that can efficiently update the optimal design when

new information is learned.

1.2 Problem Statement and Research Questions

The problem statement for this thesis is:

How can MBSE be leveraged to combine strategies for decision making

under deep uncertainty and constraint learning techniques to create a de-

sign framework that can efficiently handle deep uncertainty in the iterative

development of space systems?

To refine the scope of the thesis, this problem statement is broken down into more

specific research questions about the design framework presented in this thesis:

1. How can the framework perform space system design under deep uncertainty?

2. How can a system model be used to perform space system design while consid-

ering uncertainty?
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3. Does the framework perform updates efficiently?

1.2.1 Contributions

The primary contribution of this thesis is a model-based framework for development

of space systems under deep uncertainty. An implementation of the framework is pre-

sented and exercised on two case studies. The results from the case studies show that

the framework is able to efficiently identify an optimal design, even when unforeseen

changes are made to the problem. The contributions with respect to each research

question are:

1. A framework is developed that addresses deep uncertainty in space

system design through design adaptation. Deep uncertainty is handled

through an update process where design decisions are revisited when new infor-

mation is learned. This strategy allows the consequences of unforeseen events

on the design to be quantified. This information can be used by the design team

to inform design decisions. The current state of the practice of space system

development doesn’t always examine the implications of new information when

it is learned. Therefore, the framework presented in this thesis is less vulnerable

to unforeseen events than current practices.

2. A system model is incorporated into the design framework. The system

model contains information on known system uncertainties, information about

design decisions, and integrates with optimizers used to quantify the impact of

new information. Current space system design practices rarely utilize a system

model. Because the framework presented in this thesis utilizes a system model,

traceability between design decisions and information learned about the system

during development is improved over current practices.

3. Constraint learning techniques are used to perform efficient design

updates. Conflicts and satisfying states from previous optimizations are stored

in the system model and reused in new optimizations. Reuse of these artifacts
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reduces the design space searched in new optimizations. Efficiency is demon-

strated using two case studies. Current state-of-the-art algorithms for solving

constraint optimization problems don’t reuse information between optimiza-

tions. Across both case studies, the framework presented in this thesis is able

to consistently find the new optimal design faster than an algorithm with an

identical search strategy that doesn’t reuse information. The average savings

in runtime and number of optimizer calls across the two case studies is 58%.

1.2.2 Scope

While uncertainty management is performed across the entire project lifecycle, this

research will only examine uncertainty management processes during the development

of a space system. The development phase of the project is defined as beginning in

Pre-Phase A and stretching until launch. During this period, the amount of infor-

mation known about the system evolves enormously, so re-evaluation of decisions is

critical. This thesis will only focus on addressing deep uncertainty in space system

development but deep uncertainty is present in the development of other types of

complex systems. The framework developed in this thesis could be used to assist in

the development of those systems as well. Out of the many types of space systems,

this framework will be more useful to those that use new technology, explore new

environments, or support new markets. Systems with strong heritage will see less

benefit from the framework because unforeseen events are less likely to occur during

development. The framework does not address ways in which information can be

learned. It focuses solely on how to handle new information after it has been learned

to update the system design.

1.3 Thesis Roadmap

This thesis is organized into six chapters as shown in Figure 1-7. Chapter one con-

tains the introduction, motivation, and research questions. Chapter two contains the

background and literature review. Chapter three presents the design framework de-
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Figure 1-7: Roadmap for this thesis.

veloped in this research. Chapter four applies the design framework to an example

problem based on the REXIS thermal subsystem in order to explore its computational

properties. Chapter five applies the framework to the Starshade mission concept in

order to illustrate its advantages over the traditional uncertainty management pro-

cess. Appendix A provides supporting information for Chapter five. Chapter six is

the conclusion containing a summary of the thesis, a list of thesis contributions, and

several directions for future work.
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Chapter 2

Background and Literature Review

This chapter reviews several topics to provide background information on foundational

concepts relevant to the design framework developed in this thesis. Additionally, a

review of the relevant literature is performed to understand how previous research

has approached the challenge of space system design under deep uncertainty.

2.1 Background

In this section, background information on Model-based Systems Engineering (MBSE),

deep uncertainty, and constraint satisfaction problems is presented. The work pre-

sented in this thesis is enabled by MBSE and utilizes principles from constraint satis-

faction and so understanding these is important to provide context. Deep uncertainty

is a primary motivating factor for this work and so this section defines deep uncer-

tainty and presents different types of deep uncertainty.

2.1.1 Model-based Systems Engineering

Model-based systems engineering (MBSE) is the formalized application of modeling

to support systems requirements, design, analysis, verification, validation, and oper-

ations [29] [26]. As opposed to traditional document-based methods, MBSE methods

store system information in a descriptive system model. The systems model is usually
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represented using a systems description language such as the Systems Modeling Lan-

guage (SysML) or the Object Process Methodology (OPM) [91] [21]. A central idea

behind a system model is to serve as a "single source of truth" for system informa-

tion [120]. In this paradigm, system information is only stored in one place, avoiding

duplication and making updates straightforward. Additionally, the formalism of a

systems description language improves communication among systems engineers by

reducing ambiguity and enables automated system analysis. With these advantages,

MBSE is expected to result to improve the ability of systems engineers to manage

complex systems.

Currently, the most prominent MBSE modeling language is the Object Manage-

ment Group’s (OMG) Systems Modeling Language (SysML). SysML is a graphical,

descriptive modeling language developed for complex systems [91]. The system mod-

els used in this thesis are written in SysML. It is a sibling of the Unified Modeling

Language (UML) used to describe software. SysML is able to describe the form of

a system, the interfaces within a system, requirements on a system, the behavior of

the system, and more. It has a diagrammatic syntax meaning that concepts can be

expressed using visual elements. General information about SysML can be found in

the SysML specification or any of several books on SysML modeling [91] [30] [120].

SysML defines nine diagram types that display modeling elements. The nine

diagram types are shown in Figure 2-1 grouped into structural and behavioral cate-

gories, with the Requirements Diagram fitting in neither category. The diagram types

used in this research are the Block Definition Diagram, Internal Block Diagram, and

Parametric Diagram (shown in bold in the figure). Each type of diagram displays a

subset of the system model using a subset of the SysML modeling elements. A Block

Definition Diagram (BDD) captures system form and relationships between system

elements such as part-whole relationships and general-specific relationships. An In-

ternal Block Diagram (IBD) captures the interfaces within a system. A Parametric

Diagram (PAR) expresses mathematical or logical relationships between system prop-

erties.
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Figure 2-1: The nine SysML diagram types grouped into structural and behavioral
categories, with the Requirements Diagram fitting in neither category [91]. The
diagram types used in this research are the Block Definition Diagram, Internal Block
Diagram, and Parametric Diagram.

2.1.2 Deep Uncertainty

Deep uncertainty refers to the situation where the probability of some future events

cannot be accurately estimated. The framework developed in this thesis is focused

on addressing deep uncertainty in the space system development process and utilizes

the following definition of deep uncertainty taken from Lempert et al. [65] [117]:

"the condition in which analysts do not know, or the parties to a decision cannot

agree on, (1) the appropriate models to describe the interactions among a system’s

variables, (2) the probability distributions to represent uncertainty about key variables

and parameters in the models and/or (3) how to value the desirability of alternative

outcomes."

Deep uncertainty is related to the economic concept of Knightian uncertainty which

refers to the inability to quantify all factors that affect a decision [58]. Deep un-

certainty is commonly discussed as on a spectrum between total certainty and total

ambiguity [14] [117]. Total certainty is the situation where everything is precisely

known. Total ignorance is the situation where nothing is known. Neither extreme is

realistic but they serve as two ends of a scale. Courtney defines four levels of uncer-

tainty between these two extremes. Level one uncertainty is the situation where slight
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uncertainty exists but has a negligible impact on the system. Level two uncertainty is

the situation where uncertainty exists and can be described statistically. Level three

uncertainty is the situation where a range of possible outcomes exist but only a rep-

resentative set of outcomes can be identified and quantified, with other outcomes not

ruled out. Level four uncertainty is the situation where a large variety of outcomes

exist, with no understanding of where a more likely outcome lies within the range of

possibilities. The full range of possibilities may be unknowable. Level three and level

four uncertainties are collectively referred to as deep uncertainty [15].

2.1.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a mathematical problem in which each

variable within a set of variables must be assigned a value such that all constraints

present in the problem are satisfied [101]. This thesis will build on algorithms that

solve CSPs in order to create an optimization algorithm that can be used within the

MADU framework. Constraint problems are typically solved using an algorithm that

incrementally constructs a series of candidate solutions. Using propagation methods,

after a variable has been assigned a value, constraints can be used to prune the

set of allowed assignments to unassigned variables. If all possible values are pruned

from the domain of an unassigned variable, then the search algorithm backtracks by

unassigning variables and proceeds down a different branch of the search tree. The

algorithm terminates when a satisfying solution is found.

A particularly useful concept for efficient search algorithms is that of conflict learn-

ing. A conflict is a partial set of variable assignments that cannot be extended into a

full assignment that satisfies all constraints [107]. Conflicts can be used during search

to identify and avoid unsatisfiable regions of the search space. A powerful algorithm

called conflict-directed A* solves CSPs by combining conflict-directed search with the

A* informed search algorithm [123]. Conflict-directed A* works by finding the most

promising partial assignment that resolves all conflicts. Each potential solution is

then checked for satisfiability. If the potential solution is unsatisfiable, then conflicts

are extracted and a new solution is constructed that resolves both the old and new
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conflicts. This process is repeated until a solution is found that is satisfiable. The

conflict-directed A* algorithm is able to find the global optimum to a non-convex,

combinatorial problem.

Constraint problems that incorporate models of uncertainty are called stochastic

constraint satisfaction problems (stochastic CSPs) [119]. These problems involve

random variables and maximize expected utility. Constraints within stochastic CSPs

can take different forms. A particular type of constraint that is used in this research

is called a chance constraint. Chance constraints specify that a constraint over a

set of random variables must be satisfied with some minimum probability [56]. Such

constraints are used to ensure that the solution to a constraint satisfaction is likely

to be satisfiable while accounting for probabilistic uncertainty in the problem.

2.2 Literature Review

This literature review will examine previous work in three areas: decision making

under deep uncertainty, computational design with MBSE, and incremental search

techniques. The approaches for making decisions under uncertainty are reviewed with

a goal of understanding what strategies are necessary to handle unforeseen events.

The computational design with MBSE literature is reviewed in order to evaluate how

existing approaches deal with uncertainty. Finally, established incremental search

techniques are reviewed to determine if any existing techniques enable efficient up-

dating of a system design when new information is learned. The framework developed

in this thesis implements strategies from existing decision under deep uncertainty ap-

proaches using established incremental search algorithms within a MBSE paradigm.

2.2.1 Decision Making under Deep Uncertainty

The concept of deep uncertainty has been developed in the fields of economics, policy,

and climate change. In the context of those fields, principles and strategies for making

decisions under deep uncertainty have been developed.

Strategies to make decisions under deep uncertainty utilize one or more of four
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principles: resistance, resilience, robustness, or adaptation [118] [117]. Strategies can

be categorized by whether they proactively predict future conditions and attempt to

make good decisions in light of those future conditions or if they reactively change

decisions when new information emerges. The resistance principle is proactive and

entails making decisions that are viable in the worst possible future condition. The

resilience principle involves making decisions that can be easily recovered from if

they turn out to be incorrect based on information that emerges in the future. The

robustness principle is proactive and aims to make decisions that perform well in

many conceivable situations. The adaptation principle is reactive and quickly changes

decisions when new information emerges.

A single strategy can implement combinations of these strategies. However, dif-

ferent strategies are better suited to different levels of deep uncertainty. Resistance-

focused strategies are only suitable for Level one and Level two uncertainty where the

worst future case can be identified. Resilience-focused strategies may be suboptimal

in the near term and also require that all conceivable future scenarios be identified

in order to guarantee that any adverse future can be recovered from. Therefore, it is

only suitable for Level one, two, and three uncertainty. Robustness-focused strategies

also require that all future scenarios be identified in order to show that the chosen so-

lution is acceptable in all futures. Therefore it too is only suitable for Level one, two,

and three uncertainty. Adaptation-focused strategies are the only type of strategy

that can effectively deal with Level four uncertainty because they are able to change

decisions after an unforeseen event manifests.

Current NASA processes for uncertainty management adhere mostly to the re-

silience strategy. They don’t emphasize revisiting decisions when new information is

learned. The framework developed in this thesis focuses on adaptation in order to im-

prove the handling of deep uncertainty over current NASA uncertainty management

processes.

Lempert et al. present a multifaceted approach to making decisions under deep

uncertainty called robust decision making [65]. Their approach is made up of four

elements: consider a large number of possible, plausible future scenarios, seek ro-
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bust, rather than optimal, strategies, use adaptive strategies that evolve over time

in response to new information, and support interaction between the computer tools

running the analyses and the human decision makers. They then illustrate such a

strategy on the problem of sustainable development. A later paper described the

implementation of this strategy to manage water in the American west [66].

Ben-Haim introduced information-gap analysis which supports robust decisions

under uncertainty by quantifying how wrong models or data must be before impacting

the outcome of a decision [5]. This approach has been used to evaluate decisions to

protect the Sumatran rhino [99].

Marchau et al. introduced a process for making adaptive policies [68]. Their ap-

proach has four steps. In the first step, objectives, constraints, and policy alternatives

are identified. In the second step, a basic policy is defined. This basic policy may

have weaknesses or vulnerabilities to uncertainty. Those vulnerabilities are identified

in the third step, along with actions to remedy those vulnerabilities and signposts for

identifying if the policy needs to change. The fourth step is the implementation and

monitoring of the policy. If necessary, the policy can be scrapped and a new policy

developed by restarting from the first step with the benefit of the knowledge gained

while implementing the original policy. This framework is illustrated by developing

hypothetical policies for transit planning.

A range of methodologies and principles to address deep uncertainty have been

developed. In particular, adaptation is a powerful way of mitigating the most un-

predictable types of deep uncertainty. These methodologies can both establish plans

that are robust against known uncertainty and adapt to continue performing well

when unforeseen events occur. However, to the best of the author’s knowledge, this

research is the first application of the concept of deep uncertainty to the develop-

ment of space systems. This research will focus on incorporating the robustness and

adaptability aspects of strategies for making decisions under deep uncertainty into

the space system development process.
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2.2.2 System Design with Model-based Systems Engineering

Many different methodologies for designing systems within the MBSE paradigm have

been developed. This section will present several different design methodologies and

discuss their capabilities and limitations.

Some MBSE design methodologies utilize model transformation techniques to ex-

plore the design space and select an optimal design and are in essence a form of design

synthesis through compilation. Model transformation techniques are suited for topo-

logical optimization where the topology of the system is allowed to vary, along with

system parameters [48] [114]. Model transformation algorithms apply a series of rules

or patterns to generate a suite of alternatives that meet constraints. Herzig et al.

developed an algorithm to perform automated architecture synthesis of satellite con-

stellations using model transformations [50]. The optimization is performed using the

MOMoT framework which enables model transformation technologies like Henshin to

be combined with optimization technologies like genetic algorithms [27]. Spyropoulos

and Baras integrated SysML and Consol-Optcad to develop a trade-off analysis frame-

work based on a systems model [106]. To enable transfer of information between those

tools, they created meta-models of both in Ecore and defined transformation rules

using eMoflon. Their case study centered on the design of an electrical microgrid.

The structure of the microgrid was modeled in SysML using Blocks and constraints

between model parameters were represented using parametric diagrams. The model

was then transformed to Consol-Optcad and solved using gradient-based methods.

Other methodologies represent architecture alternatives within a system model

and pass the system model to an optimizer to select among those alternatives. Several

authors at Lockheed Martin have built a composable architecture system in SysML

to model a satellite product line to help a design team find attractive designs [97] [76].

Spacecraft architecture variants are modeled in SysML, pruned based on compatibility

by comparing variants against a rules database, and then a visualization tool enables

a design team to compare and choose among the valid architectures. Variability

is expressed by modeling architectural decisions and using those decisions to map
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abstract system elements to concrete system elements. The pruning rules are based on

realistic models of spacecraft subsystems implemented in Excel spreadsheets outside

of the system model. Because of the complexity of those subsystem models, the

variants must be computed offline, instead of in an interactive manner.

Arifin et al. utilized a genetic algorithm to perform component selection within

a defined architecture [3]. They defined an architecture within SysML using Blocks

and used instances of those Blocks to define options for each component. The genetic

algorithm then selected a set of components that met the constraints and maximized

a fitness function. The optimization was conducted directly in the SysML tool using

a plugin.

Leserf et al. demonstrated modeling of a variety of architectures and an optimiza-

tion context in SysML and then extracted that information from the system model

and solved a constraint satisfaction multicriteria optimization problem in order to

find the optimal architecture [67]. Variability is captured in SysML using custom ex-

tensions of the «Comment» stereotype and could represent choice among alternatives

of a component, replication of components within the system, or the range of possible

values of a Value Property. The optimization is constructed through generation of an

intermediate text file that serves as an input to the chosen optimizer.

LaSorda et al. present an optimization of a system-of-systems satellite constella-

tion architecture with information drawn from a SysML model [63]. They define a

Variability Block Definition Diagram that describes variants of a system through a

series of trades. The set of outcomes of the trades defines a configuration. Constraints

are captured in parametric diagrams. The information from the model was extracted

using Phoenix Model Center and optimized using a genetic algorithm.

Herzig et al. used a MILP framework to design robotic assembly cells from infor-

mation contained in a SysML model [49]. Variability was expressed through a library

of resources to draw from. Constraints were expressed using both SysML constraints

and the Object Constraint Language (OCL). System information was extracted from

the model and transformed to a format that could be solved using a commercial MILP

solver. The results of the optimization were then transformed back to SysML.
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One important limitation of the above approaches is that they don’t consider

uncertainty. Given the significance of uncertainty in space system development, this

limitation hampers the applicability of these approaches. An approach introduced by

Singh and Willcox that does consider uncertainty uses information gained during the

design process into the next generation of products using Bayesian inference [105].

Importantly, this approach considers uncertainty in design parameters and how that

uncertainty is reduced through tests and operations. These observations can be used

to update uncertainty distributions before designing the next generation of a product.

While this methodology doesn’t explicitly use MBSE, it is presented in the context

of the Digital Thread, a related concept where information about a system over its

lifecycle is linked together to support decision making [61].

A general limitation of the established methodologies to perform computational

design with MBSE are that they are static and do not provide avenues to revisit

decisions when new information emerges. As described in section 2.2.1, revisiting

decisions using an adaptive strategy enables level four uncertainty to be handled. The

framework introduced in this research uses an adaptive strategy for computational

design with MBSE.

2.2.3 Incremental Search Algorithms

To support adaptive design under deep uncertainty, efficient search techniques are

needed to minimize the work needed when new information is learned. Incremental

search algorithms are designed to be efficient when relatively small changes are made

to a problem and therefore should perform well within an adaptive design framework.

This section explores different types of incremental search algorithms and identifies

the incremental strategy that is used in this research.

Many incremental search algorithms for constraint satisfaction problems can trace

their roots to work on truth maintenance systems (TMS) and the idea of incremental

propagation of information [22]. A truth maintenance system maintains a set of beliefs

as information is learned. The original implementation of a TMS used justifications,

or the reasons to believe that certain statement is true. Justifications may rely upon
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other beliefs within the TMS and so changes to justifications must be propagated

through the graph of beliefs. Many types of TMS’s have been developed that address

issues with the original implementation such as difficulty in switching between sets of

beliefs or to avoid reprocessing justifications that do not change when new information

is learned [17] [16] [88].

Incremental search algorithms can be divided into two categories: those that

change the cost of states explored during search when the problem changes and those

that change the set of valid states when the problem changes. Algorithms in the first

category are generally used in the path planning and temporal reasoning communi-

ties who both frame their decision problems in terms of weighted graphs. For path

planning problems, a robot trying to navigate in an unknown environment must find

the shortest path from a start node to a goal node as the obstacles in the environment

change. For temporal problems, deadlines can be revised to be earlier or later. One of

the first incremental search algorithms for the shortest path problem is the Dynamic

SWSF-FP algorithm developed by Ramalingam and Reps [98]. When a change occurs

to the problem, this algorithm can efficiently find a new path by repairing the cost of

states whose cost was changed by the change to the problem. By repairing nodes in

a specific order, the algorithm will eventually repair all nodes affected by the change,

including the goal node if it was affected, at which point the algorithm terminates

because the minimum cost path to the goal can be computed through an algorithm

that traverses from the goal node to the start node by always choosing the lowest

cost neighbor node.

This algorithm was improved by Koenig et al. by combining it with the A*

heuristic search algorithm to produce the Lifelong Planning A* algorithm [60]. This

algorithm utilizes a heuristic to only recompute the cost of nodes that close to the

optimal path from the start node to the goal node, thereby saving computational

effort wasted on repairing nodes that are not relevant to the optimization. A further

extension to the Lifelong Planning A* algorithm is the popular D* Lite algorithm by

Koenig and Likhachev [59]. D* Lite extends Lifelong Planning A* to handles cases

where the problem changes in a way such that the goal node is redefined.
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Sun et al. developed a slightly different approach in the Generalized Adaptive A*

algorithm [110]. This algorithm is still based on the A* search algorithm but improves

its heuristic estimate of the distance to the goal between searches. After the true cost

to the goal is found after an initial search, the heuristic value for a given node can

be updated with the knowledge of where the goal is. If the problem is updated, the

heuristic value can be changed according to the type of change in such a way that it

is still guaranteed to be admissible but maintains some information from the previous

search, making it better informed than a heuristic that didn’t utilize information from

the previous search. A better informed heuristic results in a more efficient search.

The second type of incremental search algorithms utilize information about how

the set of satisfying and unsatisfying states are changed when the problem changes.

If some unsatisfying states can be identified before search begins, the search tree

can be pruned, resulting in a smaller search space and therefore a more efficient

search. These algorithms are used to solve dynamic constraint satisfaction problems.

A dynamic constraint satisfaction problem is a sequence of constraint problems where

some elements in each CSP have been changed from the previous one [19]. Such a

framework closely mirrors the space system design process because the space system

design process is iterative and the set of design constraints is evolving and maturing

throughout the lifecycle. Therefore, this problem structure is used to develop the

framework introduced in this thesis.

Algorithms to solve dynamic constraint satisfaction problems are divided into

two general categories: proactive approaches that use information provided by the

modeler about the types of problem changes that may occur and reactive approaches

that try to use knowledge from the solution of the previous search to help in finding

the solution to the next search [115]. Proactive solution methods levy constraints on

possible changes between CSPs which reduces the generality of the problem but allows

search algorithms to find solutions that are robust against the types of changes that

are allowed or to easily adapt when the allowed type of changes are introduced. A

robust solution can be found by adding possible future changes to the current problem

as soft constraints and maximizing the amount to which the solution of the current
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problem meets these soft constraints [13]. Hebrard et al. introduce the idea of super

solutions [47]. A super solution is a solution to a constraint satisfaction problem such

that, if a limited number of variables have their values changed, consistency can be

restored by changing the values of a bounded number of other variables.

Methods that rely on offline compilation to identify conflicts are also types of

proactive solutions because they rely on bounded set of possible problem forms.

Chung et al. developed a method to perform model-based diagnosis using conflicts

that are computed offline. A similar method for planning was developed by Kim et al.

that utilizes a temporal plan network (TPN), a generalization of a simple temporal

network that contains all feasible plans [57]. The TPN is used offline to find a feasible

plan and used online to repair plans if necessary. Because proactive algorithms make

assumptions about the types of future changes, they are not able to handle unpre-

dictable changes as is necessary to properly handle deep uncertainty in space system

design.

A variety of types of reactive solution algorithms exist that make different assump-

tions about what information is available after the problem changes. One approach

is to locally perturb the solution to the previous problem guided by a min-conflicts

heuristic until a solution to the new problem is found [77] [116]. These algorithms

naturally find a solution that minimizes changes between the old solution and new

solution. Other reactive algorithms prepare for changes to the problem by recording

useful information during search. Van Hentenryck and Le Provost developed the ora-

cles algorithm that records the path through the search tree to the solution and reuses

portions of that search tree if they are not made invalid by the changes to the problem

[113]. A different approach, used by Jussien, is to record explanations for why search

decisions such as the pruning of a variable domain are made [54]. The explanation is

the set of constraints that imply the search decision. If the problem changes, the set

of explanations can be checked to identify which search decisions will still apply in the

new problem. A common and useful search decision is the identification of a conflict.

By recording the set of constraints that imply a conflict, conflicts can potentially be

carried over to a new problem if the constraints that explain that conflict are not

59



affected by the change to the problem. This approach has been used in several DCSP

algorithms [6] [18] [111]. These algorithms focus on how to maintain arc consistency

across changes to the problem by restoring values to the domains of variables if a

constraint is removed from the problem. The more efficient versions of these algo-

rithms restore as few variable values as possible for each constraint that is removed.

Schiex and Verfaillie used a similar approach that focused on using explanations to

reuse conflicts across problems [103].

Based on the form of the space system development problem, the framework de-

veloped in this research utilizes an explanation-based reactive algorithm that reuses

conflicts when the problem changes. Reactive algorithms are preferred over proactive

algorithms so that no assumptions need to be made about how the problem may

change. Therefore, level four uncertainty can be handled by the algorithm. Conflicts

are chosen to be reused because important aspects of the space system development

problem have a natural mapping to conflicts. Requirements and physics-based formu-

las can be modeled as constraints and then used to identify conflicts. Requirements

changes are an important driver of cost and schedule increases as discussed in section

1.1.1 and so efficient handling of requirements changes may have significant benefits.

2.2.4 Research Gap

The preceding sections examines the literature in the areas of decision making under

deep uncertainty, computational design with MBSE, and incremental search algo-

rithms. In the deep uncertainty literature, several strategies for making robust de-

cisions are identified. Adaptation in particular is a necessary attribute for handling

Level four uncertainty. However, none of the strategies outlined are tailored for the

space system design process. In the computational design with MBSE literature,

many techniques for automated design exist but none account for uncertainty and

none utilize an adaptive strategy to update the design in light of new information.

Therefore, extensions to existing methods in this area are needed to design space

systems under deep uncertainty.

In the incremental search algorithm literature, the dynamic constraint satisfaction
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problem framework is a good model of the space system design process. An algorithm

for solving dynamic constraint satisfaction problems is identified that gains efficiency

by reusing conflicts and other information between individual constraint satisfaction

problems. The conflicts and other information are checked against the updated prob-

lem formulation by reasoning against the explanations for those artifacts. A research

gap exists for a design framework that stitches these three fields together to develop a

framework capable of leveraging information in a system model to optimize a design

under deep uncertainty by efficiently updating the design when new information is

learned. Such a framework can address issues related to deep uncertainty exhibited

by current uncertainty management processes.
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Chapter 3

Methodology

This chapter presents the Model-based Adaptive Design under Uncertainty (MADU)

design framework. This framework models the spacecraft design problem as a dy-

namic, chance-constrained, stochastic optimization problem, solves that problem us-

ing incremental, informed, conflict-directed search that performs efficient updates to

the optimal solution when changes to the problem occur. Furthermore, the frame-

work uses a descriptive system model to store the system architecture and to express

how the system may vary. The chapter is split into two sections. The first section

presents the MADU framework and conceptual approach while the second section

explains the implementation of the framework used to demonstrate its value in the

following chapters.

3.1 The Model-based Adaptive Design under Uncer-

tainty (MADU) Framework

This section introduces the Model-based Adaptive Design under Uncertainty (MADU)

design framework. It presents the formulation of the space system design problem as

a dynamic, chance-constrained, stochastic optimization problem. Then, the general

method for solving that problem is presented. The MADU framework differs from

current NASA uncertainty management processes because it requires that design
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decisions are revisited when new information is learned. In order to minimize the

work needed to re-analyze decisions when new information is learned, MADU only

revisits decisions whose outcome is affected by the new information. The MADU

framework can be applied to guide a design team during the development process

or it can be implemented computationally as an automated optimization algorithm.

This thesis focuses on a computational implementation of the framework in order to

evaluate the benefits of the framework.

3.1.1 Problem Formulation

The space system design problem is defined as a series of finite domain, chance-

constrained, stochastic optimization problems. Changes to problem structure can

occur between solutions of these problems. The types of changes that are allowed

are discussed in section 3.1.2. The goal for each individual optimization problem is

to find the best solution that satisfies all constraints and minimizes the objective

function. Nothing is known about the form of future problems, modeling level four

deep uncertainty where future events cannot be predicted.

The formulation for an individual optimization is shown in equation 3.1. The

problem is to optimize the assignments to a set of design variables while meeting

constraints and considering uncertainty in the value of the design variables.

A toy problem is used to illustrate the problem formulation and the details of the

MADU optimization algorithm. The toy problem is defined in equation 3.2. The toy

problem minimizes the sum of three design variables 𝑥0, 𝑥1, and 𝑥2 and one constant

subject to the constraints that the sum of 𝑥0 and 𝑥1 is less than 4.97 and that the sum

of 𝑥1 and 𝑥2 is less than 8. Each design variable is a random variable. The domain

of each design variable is a set of random variables meaning that the value of each

design variable cannot be controlled precisely. Therefore, each summation constraint

must be met with a probability of at least 0.95. Furthermore, the assignments to 𝑥0

and 𝑥1 must fall within a list of acceptable assignments defined using sets.
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min
𝑥

𝑓(𝑥, 𝑦)

𝑥 = {𝑥1, ..., 𝑥𝑚}

𝑣𝑖 = {𝑣𝑖1, ..., 𝑣𝑖𝑛}

𝑥𝑖 ∈ 𝑣𝑖

𝑐 = {𝑐1, ..., 𝑐𝑘}

ℎ(𝑥, 𝑦) = 0

P(𝑔(𝑥, 𝑦) < 𝛼) > 𝑝

𝑝 ∈ [0, 1]

𝑎(𝑥) = {𝑣𝑖𝑗, ..., 𝑣𝑚𝑧}

𝑔(𝑥, 𝑦), ℎ(𝑥, 𝑦), 𝑎(𝑥) ∈ 𝑐

𝑦 = {𝑦1, ..., 𝑦𝑤}

(3.1)

The set 𝑥 represents the set of design variables that define the form of the system.

Each design variable must be assigned a random variable from its domain that satisfies

all constraints in the set of constraints 𝑐 while minimizing the objective function 𝑓 .

The toy problem has three design variables: 𝑥0, 𝑥1, and 𝑥2.

The set 𝑣𝑖 represents the domain for a design variable 𝑥𝑖. The set 𝑣𝑖 is made up of

the design variable alternatives 𝑣𝑖𝑗. Each design variable alternative 𝑣𝑖𝑗 is a random

variable to model the inability of the design team to precisely set system properties.

There are no restrictions on the distributions of random variables that make up the

set 𝑣𝑖. The set 𝑣𝑖 must be finite. The set of design variable alternatives for each design

variable in the toy problem is shown in Figure 3-1. Each design variable alternative

in the toy problem is a uniform random variable centered on an integer between 1

and 5 inclusive and with a width of 1% of the central value. Therefore, the lowest

possible assignment to a design variable is the alternative centered on 1 and with a

range from 0.99 to 1.01 and the highest possible assignment to a design variable is

the alternative centered on 5 with a range from 4.95 to 5.05.
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Figure 3-1: The set of design variable alternatives for each design variable in the toy
problem. Each design variable alternative is a uniform random variable centered on
an integer between 1 and 5 inclusive and with a width of 1% of the central value

min
𝑥

(𝑥0 + 𝑥1 + 𝑥2 + 𝑦0)

𝑥 = {𝑥0, 𝑥1, 𝑥2}

𝑣0, 𝑣1, 𝑣2 = {𝒰(0.99, 1.01),𝒰(1.98, 2.02),𝒰(2.97, 3.03),

𝒰(3.96, 4.04),𝒰(4.95, 5.05)}

𝑥0 ∈ 𝑣0, 𝑥1 ∈ 𝑣1, 𝑥2 ∈ 𝑣2

P(𝑥0 + 𝑥1 > 4.97) > 0.95

P(𝑥1 + 𝑥2 > 8) > 0.95

𝑎(𝑥0, 𝑥1) = {{𝒰(0.99, 1.01),𝒰(4.95, 5.05)},

{𝒰(1.98, 2.02),𝒰(4.95, 5.05)},

{𝒰(2.97, 3.03),𝒰(2.97, 3.03)},

{𝒰(3.96, 4.04),𝒰(0.99, 1.01)},

{𝒰(4.95, 5.05),𝒰(0.99, 1.01)}}

𝑦 = 𝑦0 = {3}

(3.2)

The set of constraints 𝑐 is divided into equality constraints ℎ(𝑥, 𝑦), inequality

constraints 𝑔(𝑥, 𝑦), and set constraints 𝑎(𝑥). Each equality constraint is defined by

a function ℎ(𝑥, 𝑦) that must be equal to zero. The toy problem has no equality

constraints. Each inequality constraint is made up of a function 𝑔(𝑥, 𝑦) and an upper

limit 𝛼, such that 𝑔(𝑥, 𝑦) must be less than 𝛼. The value 𝑝 represents the minimum

acceptable probability of meeting any inequality constraint. Therefore, the inequality

constraints in this formulation are chance constraints. The toy problem has two
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inequality constraints. The sum of 𝑥0 and 𝑥1 must be greater than 4.97 while the

sum of 𝑥1 and 𝑥2 must be greater than 8. Each inequality constraint must be met

with a minimum probability of 0.95.

Set constraints are used to represent valid combinations of design variable alter-

natives with set notation, as opposed to the algebraic notation used in equality and

inequality constraints and are defined over a subset of the design variables 𝑥. The

toy problem has one set constraint defined over 𝑥0 and 𝑥1. Each set constraint 𝑎(𝑥)

is a set of sets. Each inner set contains several design variable alternatives, one for

each design variable that is in the scope of the set constraint. The inner sets define

acceptable assignments to the design variables in the scope of the set constraint. If

a design variable is assigned an alternative that is contained in an inner set of a set

constraint, then the other design variables within the scope of that set constraint

must be assigned the alternatives within that same inner set. For example, in the toy

problem, if 𝑥0 is assigned the alternative whose central value is 1, then 𝑥1 must be

assigned the alternative with a central value equal to 5. However, if 𝑥0 is assigned

the alternative whose central value is 3, then 𝑥1 must be assigned the alternative

with a central value equal to 3. If a design variable is assigned a value that is not

contained in any inner set of any set constraint, then that assignment doesn’t place

any additional constraints on the set of satisfying assignments to the other design

variables.

The set 𝑦 is the set of parameters for the problem. Parameters denote constants

defined by the problem specification that cannot be chosen by the optimizer but

affect the value of the objective function and the satisfaction of constraints. The

toy problem only has one parameter, the constant 3 that is added to the objective

function.

3.1.2 Allowable Problem Changes

The set of possible changes within the MADU framework is defined by building on

an existing definition of possible changes within a dynamic CSP [28]. The types of

changes are summarized in Table 3.1 with examples drawn from space system design
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Table 3.1: Summary of the different types of changes that may be made to an opti-
mization problem within the MADU framework.

Type of Change Problem Formulation
Change

Example

Addition of Design
Variable

𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑥𝑜𝑟𝑖𝑔 ∪ 𝑦𝑖 ∧
𝑦𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑦𝑜𝑟𝑖𝑔 ∖ 𝑦𝑖

Addition of gravitational
slingshot maneuver to

trajectory
Removal of Design

Variable
𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑥𝑜𝑟𝑖𝑔 ∖ 𝑥𝑖 ∧
𝑦𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑦𝑜𝑟𝑖𝑔 ∪ 𝑥𝑖

Removal of redundant
component

Addition of Design
Variable Alternative

𝑣𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑣𝑜𝑟𝑖𝑔 ∪ 𝑣𝑛𝑒𝑤 New surface coating
developed

Removal of Design
Variable Alternative

𝑣𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑣𝑜𝑟𝑖𝑔 ∖ 𝑣𝑟𝑒𝑚 Material found to violate
contamination requirements

Addition of
Constraint

𝑔𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑔𝑜𝑟𝑖𝑔 ∪ 𝑔𝑛𝑒𝑤 ∨
ℎ𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← ℎ𝑜𝑟𝑖𝑔 ∪ ℎ𝑛𝑒𝑤 ∨
𝑎𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑎𝑜𝑟𝑖𝑔 ∪ 𝑎𝑛𝑒𝑤

Compatibility with
additional ground stations

desired
Removal of
Constraint

𝑔𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑔𝑜𝑟𝑖𝑔 ∖ 𝑔𝑟𝑒𝑚 ∨
ℎ𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← ℎ𝑜𝑟𝑖𝑔 ∖ ℎ𝑟𝑒𝑚 ∨
𝑎𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑎𝑜𝑟𝑖𝑔 ∖ 𝑎𝑟𝑒𝑚

Payload does not require
high data rate interface

Tightening of
Constraint

𝛼𝑐ℎ𝑎𝑛𝑔𝑒𝑑 < 𝛼𝑜𝑟𝑖𝑔 ∨
𝑝𝑐ℎ𝑎𝑛𝑔𝑒𝑑 > 𝑝𝑜𝑟𝑖𝑔

Customer requires tighter
pointing requirements

Relaxation of
Constraint

𝛼𝑐ℎ𝑎𝑛𝑔𝑒𝑑 > 𝛼𝑜𝑟𝑖𝑔 ∨
𝑝𝑐ℎ𝑎𝑛𝑔𝑒𝑑 < 𝑝𝑜𝑟𝑖𝑔

Launch vehicle capability
increased

Change Objective
Function

𝑓 ← 𝑓𝑛𝑒𝑤 Customer changes priority
from cost to schedule

given for each type of change. There is no limit on the number of changes that can

be made between optimizations within the MADU framework.

Firstly, a design variable can be added or removed from the set of design variables

𝑥. Following the established definition of changes to a dynamic CSP, in the MADU

framework, the only way to add a design variable to the problem is to transform

a parameter 𝑦𝑖, whose value is already specified in the problem formulation, into a

design variable. The domain of this new design variable must only have a single

member, a number that is equal to the value of the old parameter (𝑣𝑛𝑒𝑤 = 𝑦𝑖). In

such a transformation, the solution to the problem isn’t changed. Once a new design

variable has been introduced, other types of changes can be used to further change

the problem by modifying the domain of the new design variable. A design variable

can be removed from the problem only if it only has a domain with a single value
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and that value has no uncertainty. In that case, the design variable can be removed

from the set of design variables 𝑥 and added to the set of model parameters 𝑦. The

new parameter must have the same value as the single alternative of the old design

variable. This transformation means that the solution to the problem isn’t changed.

Other types of changes are used to restrict the domain of the design variable to

prepare it for removal.

Secondly, the domain of a design variable can be extended or contracted by adding

or removing an alternative from the set 𝑣𝑖. Sequential contractions and extensions

can be used to change a design variable alternative.

Thirdly, a constraint can be added to or removed from the set of constraints 𝑐.

Most changes to a constraint should be modeled as a removal of the old version of that

constraint and an addition of the new version of that constraint. However, certain

changes in inequality constraints are handled by a different process. An inequality

constraint can be tightened by decreasing its limit 𝛼 or by increasing the minimum

probability of satisfaction 𝑝. Similarly, an inequality constraint can be relaxed by

increasing its limit 𝛼 or by decreasing the minimum probability of satisfaction 𝑝.

These changes can be handled in one step because their effect on the set of possible

solutions is straightforward. In contrast, a general change to a constraint may have

subtle effects on the set of possible solutions and so must be handled through the

removal of the old version of the constraint and addition of the new version of the

constraint.

Fourthly, the objective function can be changed to a different functional form.

Within the MADU framework, there are no constraints on the form of the objective

function.

3.1.3 Approach

The MADU framework has four steps as shown in Figure 3-2: In step one, system

information is captured in a system model. In step two, information is extracted

from the system model and used to perform a design optimization. The optimiza-

tion records the rationales for certain design decisions. The decisions may be trade
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Figure 3-2: The four steps of the MADU framework

studies conducted by the design team or may be inferences made by the optimization

algorithm such as the identification of a conflict. The rationale for each decision is

recorded so that decisions can be revisited if necessary. A decision rationale is the rea-

son that the decision was made. A logical entailment relationship should exist between

the rationale and the decision outcome such that the rationale 𝑅 entails the decision

outcome 𝑂 (𝑅 |= 𝑂). In step three, the system model is updated with the optimal

design and the decision rationales. Adhering to the single-source-of-truth maxim for

MBSE, the decisions and rationales are stored in the system model alongside the de-

sign. The single-source-of-truth maxim dictates that all system information be stored

in the system model so that retrieval of information is simplified and duplication of

information is prevented. The results of the optimization are used by the design team

to inform the development of the system. Next, if system development is complete

and the design can no longer be changed, the framework ends, but if development

is not complete, the framework waits for the design team to learn new information.

In step four, the system model is updated to reflect the new information. The types

of changes that can be made to the system model is step four are shown in Table
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3.1. Any number of changes can be made to the model before completing step four.

Next, a design update is performed by returning to step two. Information from the

previous problem is reused in order to improve the efficiency of finding the optimal

solution to the changed problem. Once the new optimal design is found, step three

is repeated and the optimal design, along with the decisions that lead to it, are once

again captured in the system model. The subsequent sections go into detail for each

step. The toy problem defined in equation 3.2 is used to illustrate various details of

the algorithm.

Step One: Construct system model

The first step of the MADU framework is to capture system information in a system

model. The system model must contain the following pieces of information:

∙ A description of the design of the system

∙ Elements within the design that can be varied and a set of alternatives for each

variable

∙ Constraints defining the numerical or logical relationships within the system

∙ A measure of effectiveness to be optimized

Once each of these pieces of information is captured in the system model, step two

is triggered. For the toy problem, the information that goes into the system model is

the information contained in equation 3.2.

Step Two: Optimize design while recording rationales

In step two, information from the system model is extracted and used to find the

optimal design. The optimization is performed while recording the rationale for any

choices made during the optimization. The MADU framework uses conflict-directed

search to find the optimal design. The design decisions made in the optimization are

assignments to the design variables. Conflicts and satisfying states are identified and
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Figure 3-3: The architecture of the MADU optimization algorithm.

utilized during search. A conflict is defined as a set of design variable alternatives

that cannot be extended into any full assignments that satisfy a set of constraints

[107]. For each conflict, the rationale for the conflict is defined as the minimal set of

constraints that entail the conflict. That set of constraints is recorded as the conflict

explanation. A satisfying state is a set of design variables that can be extended to at

least one full solution that satisfies all constraints. In other words, a satisfying state

is a state that has been proven to not be a conflict nor a superset of a conflict. The

MADU framework doesn’t record rationales for satisfying states because the maximal

set of constraints that imply that a state is satisfying contains all constraints present

in the problem.

The algorithm to find the optimal solution follows the architecture of the conflict-

directed A* algorithm in which candidate solutions are generated with a relaxed

problem and a satisfiability checker determines if those candidate solutions meet con-

straints. This architecture is shown in Figure 3-3. Conflicts are stored in the list 𝐶

while satisfying states are stored in the list 𝑡.

Relaxed Problem

At the beginning of the problem, the set of design variables 𝑥, the design variable

domains 𝑣𝑖 for each 𝑥𝑖, the set constraints 𝑎, the objective function 𝑓 , and the set of

known conflicts 𝐶 are used to solve a relaxed problem. A relaxed problem is defined

as a problem that has fewer restrictions on design variable assignments than the

full problem [101]. The relaxed problem is used in order to compute an admissible

heuristic, equivalently a bounding function, for the cost of the solution to the full

problem. An admissible heuristic is an estimate of the cost of the solution to the

problem that is guaranteed to be an underestimate [101]. Such heuristics are useful
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Figure 3-4: The relaxed problem portion of the algorithm can be viewed as tree
search. The algorithm must assign a value to each design variable while avoiding
conflicts. Each layer of the tree corresponds to one design variable, each node in the
tree represents an assignment to a design variable, and a path from the root of the
tree to a leaf represents a complete assignment to all design variables. Conflicts are
shown as dark red nodes in this picture and the portion of the search tree pruned by
the conflicts is shown by the light red nodes. The chosen set of assignments is shown
in green.

because they can be used to provide a guarantee that an optimal solution can be found

[45]. The relaxed problem ignores the equality constraints ℎ(𝑥, 𝑦) and inequality

constraints 𝑔(𝑥, 𝑦) but resolves all known conflicts. With fewer restrictions on the

output of the relaxed problem, the solution that it generates will have a cost that is

less than or equal to the optimal solution to the full problem.

The goal of the relaxed problem is to find a full assignment of all design variables

that satisfies the set constraints 𝑎(𝑥) and is not a superset of any known conflict.

The solution approach to the relaxed problem can be thought of as a tree search

as shown in Figure 3-4. Each layer of the tree corresponds to one design variable,

each node in the tree represents an assignment to a design variable, and a path from

the root of the tree to a leaf node represents a complete assignment to all design

variables. Conflicts are depicted as dark red nodes in the tree. Each conflict prunes

all child nodes from the search space (shown in light red) as any superset of a conflict

is guaranteed to be unsatisfiable. Therefore, the algorithm must avoid any portion

of the tree with conflicts and might instead choose the green set of assignments as a

candidate solution.

Because the value of each design variable alternative cannot be precisely chosen,

each design variable alternative is a random variable. Therefore, uncertainty must

be considered in the relaxed problem. The MADU framework uses a Monte Carlo

sampling strategy where samples from the uncertainty distributions for each design
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variable alternative are repeatedly drawn and an optimization is performed with each

set of samples. For example, in the toy problem, a set of samples for the alternatives

for the variable 𝑥0 might be 0.994, 2.003, 3.002, 3.980, 4.998. To determine the number

of samples that are required, the algorithm applies a Bernoulli trial framework. There

are three conditions that must be met for a Bernoulli trial framework to apply [7]:

∙ Each trial results in either success or failure

∙ The probability of success remains constant across the trials

∙ The trials are independent

This application meets the first condition because a successful trial is defined as

finding a new solution with a cost lower than the current lowest cost. The second

condition is met because the values for each design variable alternative are sampled

using a consistent methodology and that current lowest cost remains fixed across

the trials. Because of this condition, each time a lower cost is found, the trial must

be restarted. The third condition is met because the samples for each variable are

independent within each trial and each trial is independent from the preceding and

following trials.

Samples continue to be drawn until the probability of finding a solution with a

lower cost than the current lowest cost is below a user-provided threshold. This con-

dition implies that the lowest cost solution has likely been found. To calculate the

probability of finding a solution with lower cost that the current lower cost solution,

the binomial proportion confidence interval is calculated [9]. Because the propor-

tion must be calculated for situations where a number of trials have been performed

without any successes, the "rule of three" is used [44]. The "rule of three" is an

approximation of the upper 95% confidence bound when estimating a binomial pro-

portion after a number of samples in which no successes have been observed. It states

that, after 𝑛 trials without any successes, it can be concluded with 95% confidence

that the probability of success lies below 3/𝑛.
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The pseudocode for solving the relaxed problem is shown in algorithm 1. The

procedure starts by using the user-defined value 𝑝cutoff to calculate the required num-

ber of Monte Carlo samples without a success to be confident that the true lowest

cost solution has been found. 𝑝cutoff should be set to a small value to ensure that the

solution produced by the relaxed algorithm is likely to be close to the true minimum

cost solution. A value of 0.01 is typical.

Next, the sample counter is initialized to zero and two variables are initialized to

hold the lowest known cost and the set of assignments to the design variables with the

lowest known cost. The lowest known cost is initially infinity and the set of design

variable that results in the lowest known cost is initially empty. Then, the algorithm

enters a loop on line 7 where samples are drawn from the uncertainty distributions and

optimizations are performed. The samples are drawn from the set of design variable

alternatives 𝑣𝑖 and stored in the set 𝑢𝑖. Therefore, 𝑢𝑖𝑗 is a value sampled from the

random distribution 𝑣𝑖𝑗. For example, in the toy problem, the set 𝑢0 for the variable

𝑥0 may be equal to {1.003, 1.999, 2.987, 3.978, 4.951}, the set 𝑢1 for the variable 𝑥1

may be equal to {0.999, 2.002, 3.024, 3.996, 5.014}, and the set 𝑢2 for the variable 𝑥2

may be equal to {0.993, 2.011, 3.007, 4.028, 4.989}.

This set of sampled values is passed to an optimizer to perform a discrete con-

strained optimization. The solver returns the cost and set of design variable as-

signments comprising the optimal solution 𝑥𝑡𝑒𝑚𝑝. A typical optimal solution for

a set of sampled values might result in the following design variables assignments

𝑥0 = 3.978, 𝑥1 = 0.999, 𝑥2 = 0.993 for an optimal cost of 8.97. Finally, a test is per-

formed to check if the new solution has a lower cost than the current known lowest

cost 𝑐𝑙𝑜𝑤𝑒𝑠𝑡. If it is lower, then the variables for lowest known cost and best set of

design variable assignments are overwritten and the sample counter is reset to zero

to restart the Bernoulli trial process. If the new solution has a higher cost than the

lowest known cost, then the sample counter is incremented in order to keep track of

the number of consecutive failures to find a better solution than the currently known

best solution. When this counter becomes equal to the maximum counter value as

calculated on line 3 using the "rule of three", the while loop is exited. After exiting
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the while loop, the best known set of design variable assignments is returned. The set

of variables assignments with the lowest known cost is defined using random variables

in the set 𝑣𝑖, not the sampled values of those random variables in the set 𝑢𝑖. There-

fore, the candidate solution generated by the relaxed problem is the set of variable

assignments that have the potential for the lowest cost.

Algorithm 1 relaxedProblem

1: procedure relaxedProblem(𝑥, 𝑣, 𝑎, 𝑓, 𝐶)
2: 𝑝cutoff ← 0.01
3: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑎𝑥 = 3/𝑝cutoff
4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
5: 𝑐𝑙𝑜𝑤𝑒𝑠𝑡 ←∞
6: 𝑥𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙
7: while 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑎𝑥 do
8: 𝑢← ∅
9: for 𝑣𝑖 ∈ 𝑣 do

10: 𝑢𝑖 ← ∅
11: for 𝑣𝑖𝑗 ∈ 𝑣𝑖 do
12: 𝑢𝑖𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑣𝑖𝑗)
13: 𝑢𝑖 ∪ 𝑢𝑖𝑗

14: end for
15: 𝑢 ∪ 𝑢𝑖

16: end for
17: 𝑐𝑜𝑠𝑡, 𝑥𝑡𝑒𝑚𝑝 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟(𝑥, 𝑢, 𝑎, 𝑓, 𝐶)
18: if 𝑐𝑜𝑠𝑡 < 𝑐𝑙𝑜𝑤𝑒𝑠𝑡 then
19: 𝑐𝑙𝑜𝑤𝑒𝑠𝑡 ← 𝑐𝑜𝑠𝑡
20: 𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑡𝑒𝑚𝑝

21: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
22: else
23: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + +
24: end if
25: end while
26: return 𝑥𝑏𝑒𝑠𝑡

27: end procedure

Conflict Extraction Next, the algorithm checks the satisfiability of the candidate

solution generated by the relaxed problem. An example candidate solution to the toy

problem that might be generated by the relaxed problem is 𝑥0 = 𝒰(3.96, 4.04), 𝑥1 =

𝒰(0.99, 1.01), 𝑥2 = 𝒰(0.99, 1.01). If it is satisfiable, then the solution candidate is
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returned as the optimal solution to the full problem. If it is unsatisfiable, then

conflicts are extracted, added to the set of known conflicts and the relaxed problem

is restarted. This candidate solution to the toy problem given above isn’t satisfiable

because 𝑥1 plus 𝑥2 is not greater than eight.

Conflicts are extracted in a black box manner by testing each member of the power

set of the candidate solution as shown in Figure 3-5. The figure shows an example for

a problem with three design variables. The root node in this diagram represents the

candidate solution generated by the relaxed problem which contains an assignment

to all design variables. The other nodes in the diagram are all subsets of the set

of assignments to the design variables in the candidate solution. All subsets must

be tested in order to find all conflicts for a given candidate solution. However, if a

subset is shown to be satisfiable, then large portions of the search space can be pruned

because all subsets of a satisfying state are also satisfiable. For example, the root of

the graph is shown in red in the figure to indicate that it is unsatisfiable. However,

if one of its children is found to be satisfiable, as shown by the dark blue color, then

all subsets of that node do not need to be tested because they are guaranteed to be

satisfiable. The members of the power set that can be pruned based on the satisfying

state are colored light blue. The conflict extractor continues to test other subsets

of the candidate solution until all subsets have been determined to be unsatisfiable,

determined to be satisfiable, or are a subset of a satisfiable state. If satisfying states

are known from the previous problem, portions of the conflict extraction search space

can be pruned without any satisfiability testing, increasing search efficiency.

Algorithm 2 shows the high level process of testing satisfiability and extracting

conflicts. The candidate solution 𝑥𝑐 and other data products are passed to a secondary

function called extractConflicts. That function returns a list of possible conflicts

𝐶𝑝𝑜𝑠𝑠 and a list of possible satisfying states 𝑡𝑝𝑜𝑠𝑠. The conflicts and satisfying states

are computed through Monte Carlo sampling and so may not be applicable to the

full problem. For example, if 𝑥0 was randomly assigned 3.965 and 𝑥1 was randomly

assigned 0.995, then 𝑥0 + 𝑥1 = 4.96 which violates the constraint that 𝑥0 + 𝑥1 > 4.97

and so 𝑥0 = 𝒰(3.96, 4.04), 𝑥1 = 𝒰(0.99, 1.01) would be recorded as a possible conflict.
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Figure 3-5: The conflict extraction portion of the algorithm viewed as search through
the power set of a candidate solution. Satisfiable states (shown in dark blue) can
prune large portions of the search space (shown in light blue) because all subsets of
a satisfiable state are guaranteed to be satisfiable and therefore are not conflicts.

However, it is very unlikely that 𝑥0 and 𝑥1 get assigned values low enough to violate

that constraint so, after repeated samples, the probability of that possible conflict

would be very low and so it would not be recorded as a conflict for the full problem.

To determine whether each possible conflict and satisfying state applies to the full

problem, the lower bound of the confidence interval of the detection probability for

each conflict and satisfying state 𝑝𝑚𝑖𝑛 is compared against the minimum acceptable

probability of meeting an inequality constraint 𝑝. A conflict whose detection proba-

bility lower bound is greater than 1 − 𝑝 will have an unacceptably high probability

of not meeting an inequality constraint in the full problem and therefore is a conflict

in the full problem. For example, the assignment 𝑥2 = 𝒰(0.99, 1.01) is a conflict with

a probability of one because no value within the domain of 𝑥1 can be combined with

the assignment 𝑥2 = 𝒰(0.99, 1.01) to meet the constraint 𝑥1 + 𝑥2 > 8. Therefore,

𝑥2 = 𝒰(0.99, 1.01) is recorded as a conflict to the full problem with the explanation

𝑥1 + 𝑥2 > 8.

A satisfying state whose lower bound on its detection probability is greater than

𝑝 will meet all inequality constraints with high confidence and is therefore a satisfying

state for the full problem. For example, the candidate solution 𝑥0 = 𝒰(0.99, 1.01), 𝑥1 =

𝒰(4.95, 5.05), 𝑥2 = 𝒰(1.98, 2.02) isn’t satisfying but contains the satisfying state 𝑥0 =

𝒰(0.99, 1.01), 𝑥1 = 𝒰(4.95, 5.05) which is a satisfying state because it can be extended

to the satisfying solution 𝑥0 = 𝒰(0.99, 1.01), 𝑥1 = 𝒰(4.95, 5.05), 𝑥2 = 𝒰(3.96, 4.04).

The procedure returns the candidate solution and the updated lists of conflicts and
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satisfying states.

Algorithm 2 satisfiabilityTester

1: procedure satisfiabilityTester(𝑥𝑐, 𝑣, 𝑔, ℎ, 𝑎, 𝐶, 𝑡, 𝑝)
2: 𝐶𝑝𝑜𝑠𝑠, 𝑡𝑝𝑜𝑠𝑠 ← 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑥𝑐, 𝑣, 𝑔, ℎ, 𝑎, 𝐶, 𝑡)
3: for 𝐶𝑖 ∈ 𝐶𝑝𝑜𝑠𝑠 do
4: if 𝐶𝑖.𝑝𝑚𝑖𝑛 > (1− 𝑝) then
5: 𝐶 ∪ 𝐶𝑖

6: end if
7: end for
8: for 𝑡𝑖 ∈ 𝑡𝑝𝑜𝑠𝑠 do
9: if 𝑡𝑖.𝑝𝑚𝑖𝑛 > 𝑝 then

10: 𝑡 ∪ 𝑡𝑖
11: end if
12: end for
13: return 𝑥𝑐, 𝑡, 𝐶
14: end procedure

The extractConflicts procedure shown in algorithm 3 finds all possible conflicts

and possible satisfying states in a candidate solution. It does this by taking Monte

Carlo samples from the distribution of each design variable alternative and performing

repeated satisfiability tests. To determine when sufficient samples have been taken,

a Bernoulli trial framework with convergence criteria on the calculated probabilities

is used. As discussed above, there are three criteria that need to be satisfied for a

Bernoulli trial framework to apply. The first criteria of a Boolean success definition

is satisfied by defining success as the detection of a conflict or satisfying state in the

candidate solution. The second criteria on the probability of success being constant is

satisfied because each Monte Carlo sample is taken using the same methodology. The

third criteria of independent trials is satisfied because all samples are taken indepen-

dently. The confidence bounds on the binomial proportion are calculated using the

Agresti-Coull interval [2]. Once the calculated probabilities have converged, defined

as an acceptably small difference between the previous value of the probability and

the updated value once the newest sample has been included in probability calcula-

tion, then the function returns the list of possible conflicts and satisfying states to

the SatisfiabilityTester algorithm.

The algorithm begins by declaring a number of variables. 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛 is a
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Boolean variable that determines if more samples need to be taken. It is initialized

to 𝑇𝑟𝑢𝑒. 𝑡𝑝𝑜𝑠𝑠 and 𝐶𝑝𝑜𝑠𝑠 are the list of possibly satisfying states and possible conflicts

respectively and are initialized to empty sets. 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is a counter for the total number

of Monte Carlo samples. 𝑐𝑜𝑛𝑣𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 is a user-configurable parameter that is used to

determine when the calculated binomial proportion has converged. It is applied as an

absolute difference threshold that two subsequent probability calculations fall beneath

and therefore should be set to a small value. A value of 0.01 is typical. After declaring

these variables, the algorithm enters an outer loop that implements the Monte Carlo

sampling process. In lines 8-16, samples are taken from the uncertainty distributions

for each design variable alternative in the same manner as random samples were taken

in the relaxedProblem procedure.

Starting on line 18, an inner loop is entered in which all satisfying states and

conflicts are identified for the problem with the sampled values. 𝑞 is a first-in-last-

out (FILO) queue. The queue is initialized with the input candidate solution 𝑥𝑐.

𝑣𝑖𝑠𝑖𝑡𝑒𝑑 is a list of states that have been added to the queue. It is used to avoid

revisiting the same state multiple times during the conflict extraction process. At

the beginning of the loop, the candidate solution at the head of the queue is removed

from the queue and passed to a satisfiability solver. The solver is assumed to be

able to check the satisfiability of the candidate solution as well as generate a conflict

manifested by the candidate solution if it is not satisfiable. If the candidate solution

is satisfiable, then updateDetections increments the solution’s detection counter,

or, if this is the first time that this candidate solution has been found satisfiable,

updateDetections adds it to the list of possibly satisfying states and initializes its

detection counter with a count of one. The detection counter for a conflict or satisfying

state counts the number of samples in which that conflict or satisfying state has been

identified. The updateDetections function is shown in algorithm 4. Similarly, if

the candidate solution is unsatisfiable, the conflict is updated in the same way using

updateDetections function. However, the conflict is then used to generate child

solutions from the unsatisfiable candidate solution.

The childStates algorithm shown in algorithm 5 creates child solution candidates
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that resolve the newly detected conflict by unassigning variables from the unsatisfying

candidate solution. For example, the candidate solution 𝑥0 = 𝒰(3.96, 4.04), 𝑥1 =

𝒰(0.99, 1.01), 𝑥2 = 𝒰(0.99, 1.01) contains the conflict 𝑥2 = 𝒰(0.99, 1.01). A child

state 𝑥0 = 𝒰(3.96, 4.04), 𝑥1 = 𝒰(0.99, 1.01) is created by unassigning the variable

involved in the conflict 𝑥2. If these child solution candidates are not already in the

queue, are not supersets of any satisfying states for the full problem, are not superset

of possible satisfying states, and are not in the visited list, then the child candidates

are added to the queue. Each child that is added to the queue is also added to the

visited list. This loop continues until the queue is empty and all possible conflicts

have been found.

Next, starting on line 28, the algorithm checks whether it has to continue gener-

ating Monte Carlo samples. It does this by updating the probability of each possible

candidate and possible satisfying state using the updateProbability function shown

in algorithm 6. In order to rigorously account for sampling-induced variation, a con-

fidence interval is maintained for the probability of occurrence of each conflict and

satisfying state. This function updates the confidence interval bounds using either

the "rule of three" or the Agresti-Coull interval [44] [2]. The "rule of three" is used if

the conflict or satisfying state has been detected in all samples taken so far. Other-

wise, the Agresti-Coull interval is used. Then, the change in the lower bound of the

confidence interval is checked against the convergence criteria. The lower bound of

the confidence interval is checked for stability because that number is what is used in

lines 4 and 9 of the satisfiabilityTester to check if a possible conflict or satisfying

state applies to the whole problem. If the change in any lower probability bound is

greater than the convergence criteria, the 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛 flag is set to True so that

another Monte Carlo sample is taken. At the end of the of the loop, the sample

counter is incremented. Once all probabilities have converged, the function returns

the list of possible conflicts and list of possible satisfying states.

Once the solution to the optimization problem has been found, step two is com-

plete and the framework moves onto step three. The output from step two is the

optimal solution 𝑥*, the list of satisfying states 𝑡, and the list of conflicts 𝐶. Each
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Algorithm 3 extractConflicts

1: procedure extractConflicts(𝑥𝑐, 𝑣, 𝑔, ℎ, 𝑎, 𝐶, 𝑡)
2: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛← 𝑇𝑟𝑢𝑒
3: 𝑡𝑝𝑜𝑠𝑠, 𝐶𝑝𝑜𝑠𝑠 ← ∅
4: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0
5: 𝑐𝑜𝑛𝑣_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎← 0.01
6: while 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛 do
7: 𝑢← ∅
8: for 𝑣𝑖 ∈ 𝑣 do
9: 𝑢𝑖 ← ∅

10: for 𝑣𝑖𝑗 ∈ 𝑣𝑖 do
11: 𝑢𝑖𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑣𝑖𝑗)
12: 𝑢𝑖 ∪ 𝑢𝑖𝑗

13: end for
14: 𝑢 ∪ 𝑢𝑖

15: end for
16: 𝑞 ← ∅, 𝑞 ∪ 𝑥𝑐

17: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← ∅
18: while 𝑞 ̸= ∅ do
19: 𝑥𝑞 ← 𝑝𝑜𝑝(𝑞)
20: 𝑠𝑎𝑡, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡← 𝑠𝑎𝑡𝑆𝑜𝑙𝑣𝑒𝑟(𝑥𝑞, 𝑢, 𝑎, 𝑔, ℎ, 𝐶)
21: if 𝑠𝑎𝑡 then
22: 𝑥𝑞, 𝑡𝑝𝑜𝑠𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑥𝑞, 𝑡𝑝𝑜𝑠𝑠)
23: else
24: 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝐶𝑝𝑜𝑠𝑠 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝐶𝑝𝑜𝑠𝑠)
25: 𝑞, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑← 𝑐ℎ𝑖𝑙𝑑𝑆𝑡𝑎𝑡𝑒𝑠(𝑥𝑞, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑞, 𝑡, 𝑡𝑝𝑜𝑠𝑠, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
26: end if
27: end while
28: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛← 𝐹𝑎𝑙𝑠𝑒
29: for 𝐶𝑖 ∈ 𝐶𝑝𝑜𝑠𝑠 do
30: 𝐶𝑖 ← 𝐶𝑖.𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑖, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1)
31: if 𝐶𝑖.𝑝𝑜𝑙𝑑 − 𝐶𝑖.𝑝𝑚𝑖𝑛 > 𝑐𝑜𝑛𝑣_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 then
32: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛← 𝑇𝑟𝑢𝑒
33: end if
34: end for
35: for 𝑡𝑖 ∈ 𝑡𝑝𝑜𝑠𝑠 do
36: 𝑡𝑖 ← 𝑡𝑖.𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡𝑖, 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1)
37: if 𝑡𝑖.𝑝𝑜𝑙𝑑 − 𝑡𝑖.𝑝𝑚𝑖𝑛 > 𝑐𝑜𝑛𝑣_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 then
38: 𝑠𝑎𝑚𝑝𝑙𝑒_𝑎𝑔𝑎𝑖𝑛← 𝑇𝑟𝑢𝑒
39: end if
40: end for
41: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = ++
42: end while
43: return 𝐶𝑝𝑜𝑠𝑠, 𝑡𝑝𝑜𝑠𝑠
44: end procedure
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Algorithm 4 updateDetections

1: procedure updateDetections(𝑠, 𝑙)
2: if 𝑠 ∈ 𝑙 then
3: 𝑠.𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑠.𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 1
4: else
5: 𝑠.𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 1
6: 𝑙 ∪ 𝑠
7: end if
8: return 𝑠, 𝑙
9: end procedure

Algorithm 5 childStates

1: procedure childStates(𝑥𝑞, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝑞, 𝑡, 𝑡𝑝𝑜𝑠𝑠, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)
2: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← ∅
3: for 𝑖 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛(𝑥𝑞)) do
4: if 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡[𝑖] ̸= 𝑛𝑢𝑙𝑙 then
5: 𝑐𝑛𝑒𝑤 ← 𝑥𝑞

6: 𝑐𝑛𝑒𝑤[𝑖]← 𝑛𝑢𝑙𝑙
7: if 𝑐𝑛𝑒𝑤 /∈ 𝑞 ∧ 𝑐𝑛𝑒𝑤 /∈ 𝑡 ∧ 𝑐𝑛𝑒𝑤 /∈ 𝑡𝑝𝑜𝑠𝑠 ∧ 𝑐𝑛𝑒𝑤 /∈ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
8: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ∪ 𝑐𝑛𝑒𝑤
9: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ 𝑐𝑛𝑒𝑤

10: end if
11: end if
12: end for
13: return 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
14: end procedure
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Algorithm 6 updateProbability

1: procedure updateProbability(s, runs)
2: 𝑧 ← 1.96 ◁ Standard quantile of normal distribution
3: 𝑠.𝑝𝑜𝑙𝑑 ← 𝑠.𝑝
4: if 𝑠.𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 𝑟𝑢𝑛𝑠 then ◁ Update minimum probability using "rule of

three"
5: 𝑠.𝑝← 1
6: 𝑠.𝑝𝑚𝑖𝑛 ← 1− 3/𝑟𝑢𝑛𝑠
7: 𝑠.𝑝𝑚𝑎𝑥 ← 1
8: else ◁ Update probability using Agresti-Coull interval
9: 𝑛← 𝑟𝑢𝑛𝑠 + 𝑧2/2

10: 𝑠.𝑝← (1/𝑛)(𝑠.𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑧2/2)
11: 𝑒𝑟𝑟𝑜𝑟 ← 𝑧

√︀
((𝑠.𝑝/𝑛)(1− 𝑠.𝑝)

12: 𝑠.𝑝𝑚𝑖𝑛 ← 𝑠.𝑝− 𝑒𝑟𝑟𝑜𝑟
13: 𝑠.𝑝𝑚𝑎𝑥 ← 𝑠.𝑝 + 𝑒𝑟𝑟𝑜𝑟
14: end if
15: return 𝑠
16: end procedure

conflict has an associated set of constraints that serves as the explanation for that

conflict.

Step Three: Update System Model with Optimal Design and Rationales

In step three, the system model is updated with the results of the optimization. The

optimal design is stored in the system model as well as the list of satisfying states

and conflicts. Following this update process, if system development is complete, the

framework terminates. If development is ongoing, then the framework waits until

new information is learned and then proceeds to step four.

Step Four: Update System Model with New Information

When new information that may impact the system design is learned, the system

model is updated to incorporate that new information. The new information must

fall into the categories of acceptable changes defined in Table 3.1. The system model

is kept updated as new information emerges and may be updated any number of times

before the next optimization. The more changes to the problem that occur between
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optimization, the less likely it is that a given conflict or satisfying state survives the

pruning that will occur when step two is repeated. Therefore, optimizations should

be performed on as frequent a basis as possible to maximize information reuse.

Repeat Step Two: Re-optimize design while recording rationales

In this repeat of step two, decisions are revisited in light of new information learned in

step four. Given the approach in the original step two, the decisions that need to be

revisited are the identification of conflicts and satisfying states. The types of changes

made to the model in step four to capture new information determine whether a

conflict or satisfying state continues to apply to the problem. The rules for pruning

conflict and satisfying states are shown in Table 3.2. Conflicts and satisfying states

are pruned whenever it cannot be proven, without explicitly testing the satisfiability

of the state, that the conflicts or satisfying state holds in the new problem. In many

cases, conflicts or satisfying states remain conflicts or satisfying states when changes

are made but must be checked explicitly in the new problem formulation. Satisfiability

checking of old conflicts and satisfying states is performed within the optimization

algorithm as described in step two above. A different algorithm could explicitly check

satisfiability of a conflict or satisfying state before pruning it, but this might result

in increased runtime if states that are checked outside of the problem turn out to be

suboptimal and therefore irrelevant to the new problem.

Adding a design variable to the problem has no effect on the problem because

the design variable simply replaces a parameter that was already in the problem.

Therefore, neither the conflict list nor the satisfying list need to change. Similarly,

removing a design variable from the problem doesn’t change the list of conflicts or

satisfying states because the variable is transformed into a parameter and so the

solution to the problem doesn’t change.

Adding a design variable alternative has no effect on the list of satisfying states

but may resolve some conflicts. Any constraint whose domain includes that design

variable whose domain was expanded may now be satisfied with sets of previously

unidentified variable assignments. Therefore, any conflict 𝐶𝑖 whose explanation 𝐸(𝐶𝑖)
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Table 3.2: Summary of the effects of different changes on the list of conflicts and
satisfying states.

Type of
Change

Effect on Conflict List Effect on
Satisfying List

Addition of
Design Variable

None None

Removal of
Design Variable

None None

Addition of
Design Variable
Alternative

𝑖𝑓 𝑣𝑛𝑒𝑤 ∈ 𝑐𝑖 𝑎𝑛𝑑 𝑐𝑖 ∈ 𝐸(𝐶𝑖) 𝑡ℎ𝑒𝑛
𝐶 ∖ 𝐶𝑖 𝑢𝑛𝑙𝑒𝑠𝑠 ∃𝑣𝑖𝑘 𝑠.𝑡. 𝑣𝑛𝑒𝑤 ∧ 𝑣𝑖𝑘 ∈ 𝑣𝑖

None

Removal of
Design Variable
Alternative

None ∅ 𝑢𝑛𝑙𝑒𝑠𝑠 ∃𝑣𝑖𝑘 ∈
𝑡𝑖 𝑠.𝑡.𝑣𝑟𝑒𝑚∧𝑣𝑖𝑘 ∈ 𝑣𝑖

Addition of
Constraint

None ∅

Removal of
Constraint

𝑖𝑓 𝑐𝑟𝑒𝑚 ∈ 𝐸(𝐶𝑖) 𝑡ℎ𝑒𝑛 𝐶 ∖ 𝐶𝑖 None

Tightening of
Constraint

None ∅

Relaxation of
Constraint

𝑖𝑓 𝑐𝑟𝑒𝑙 ∈ 𝐸(𝐶𝑖) 𝑡ℎ𝑒𝑛 𝐶 ∖ 𝐶𝑖 None

New Objective
Function

None None
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contains a constraint 𝑐𝑖 whose domain includes the design variable 𝑥𝑖 whose domain

was expanded with a new design variable alternative 𝑣𝑛𝑒𝑤 needs to be removed from

the list of known conflicts unless the conflict contains a different design variable

alternative 𝑣𝑖𝑘 within the domain of the design variable 𝑥𝑖. Those conflicts will remain

conflicts as they are not affected by any new variable combinations that may now

be possible. For example, take the toy problem conflict 𝑥2 = 𝒰(2.97, 3.03) whose

explanation is 𝑥1 + 𝑥2 > 8. If the design variable alternative 𝑥1 = 𝒰(5.94, 6.06) is

added to the problem, the conflict needs to be removed because 𝑥1 is used in the

constraint 𝑥1 + 𝑥2 > 8 and the new variable combination of 𝑥1 = 𝒰(5.94, 6.06), 𝑥2 =

𝒰(2.97, 3.03) meets the constraint. However, if the design variable alternative 𝑥2 =

𝒰(5.94, 6.06) is added to the problem, then the conflict remains a conflict because the

design variable whose domain was expanded is part of the conflict. The addition of this

new design variable alternative doesn’t create any new combinations of assignments

that involve the design variable alternative involved in the conflict because both are

part of the domain of the same design variable. Because a variable can only be

assigned one value, the design variable assignment in the conflict cannot take part

in any new sets of assignments, continues to violate the constraint even after the

addition of the new design variable alternative, and therefore is kept as a conflict in

the new problem.

Removing a design variable alternative has no effect on the set of conflicts but

may result in some satisfying states becoming conflicts. Because satisfying states

are modeled solely as a set of design variable alternatives, all satisfying states except

those satisfying states 𝑡𝑖 that contain the design variable 𝑥𝑖 whose domain was reduced

must be removed from the list of satisfying states. For example, the satisfying state

𝑥2 = 𝒰(3.96, 4.04) has to be removed from the list of satisfying states if the design

variable alternative 𝑥1 = 𝒰(4.96, 5.05) is removed from the problem. However, it

would not have to be removed if the design variable alternative 𝑥2 = 𝒰(0.99, 1.01) was

removed from the problem because the satisfying state relies on a different assignment

to the design variable 𝑥2.

Adding a constraint has no effect on the set of conflicts since the set of solutions
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to the problem will not expand when a constraint is added. All conflicts remain

conflicts. However, adding a constraint means that all satisfying states must be

removed. Removing a constraint has no effect on the set of satisfying states since

the set of solutions to the problem will not decrease but it does have potential effects

on the set of conflicts. A conflict 𝐶𝑖 that contains the removed constraint 𝑐𝑟𝑒𝑚 in its

explanation 𝐸(𝐶𝑖) must be removed from the list of known conflicts.

Tightening a constraint is will not increase the set of possible solutions to the

problem and so it has the same effect on the set of satisfying states and the set of

conflicts as adding a constraint to the problem. Similarly, relaxing a constraint will

not decrease the set of possible solutions to the problem so it has the same effect

on the set of satisfying states and the set of conflicts as removing a constraint from

the problem. A change in objective function only changes which satisfying states are

preferred and so therefore has no effect on the set of conflicts or the set of satisfying

states.

Once the set of conflicts and satisfying states has been appropriately pruned, the

optimization can be performed again. This time, the set of conflicts and satisfying

states that are passed to the optimization algorithm may not be empty. If some

conflicts or satisfying states are preserved from the previous problem, the optimiza-

tion algorithm can leverage this knowledge to find the new optimal solution faster

than an algorithm with an identical search strategy that doesn’t have these pieces of

information.

The principle of reusing conflicts from previous problems is an established tech-

nique for solving dynamic CSPs [6] [18] [111] [103]. In this algorithm, conflicts known

before search begins improve the output of the relaxed problem. The initial solution

generated by the relaxed problem will resolve all known conflicts and will therefore

resolve more conflicts than an optimization that has to first identify conflicts. There-

fore, fewer changes need to be made to the initial candidate solution to find the

optimal solution, resulting in lower search time.

The reuse of satisfying states to improve conflict extraction is novel. The MADU

framework uses a black box search strategy for extracting conflicts in which variables

88



are gradually unassigned from an unsatisfying candidate solution. This process can be

made more efficient by avoiding parts of the conflict extraction search space known

to not have any conflicts. All satisfying states and subsets of satisfying states are

guaranteed to not be conflicts. Therefore, satisfying states passed from the previous

problem can be used to prune the conflict extraction search space. When extracting

conflicts, child candidate solutions are only added to the queue if they aren’t already

known to be satisfying. Therefore, reused satisfying states will prevent some child

candidate solutions from being added to the queue and fewer child candidate solutions

will need to be explicitly tested before the conflict extraction process is complete.

Repeat Step Three: Update System Model with New Optimal Design and

New Rationales

This step is carried out in an identical manner to the original step three. The optimal

design, conflicts, and satisfying states are stored in the system model. The results of

the optimization are used to inform the system being designed. After completing this

step, the framework follows the same logic at the decision node to decide if it should

terminate. The loop between steps two, three, and four is continued until system

development is over.

3.1.4 Efficiency Claim

The search efficiency gains for the MADU framework arise from the reuse of informa-

tion between problems. The search strategy does not change but since the algorithm

isn’t exploring as large a search space, the optimal solution will be found faster than

an algorithm that doesn’t reuse information. If a set of changes prevents any conflicts

or satisfying states from being reused, then the search performance will be identical

to an algorithm that doesn’t reuse information. Therefore, the MADU framework

will always be at least as fast as an algorithm that doesn’t reuse information. The

case studies in chapters 4 and 5 will examine the magnitude and frequency of the

savings enabled by reuse of information.

89



3.1.5 Limitations

The problems explored in this research are focused on a subset of the set of all

possible optimization problems. The MADU framework is designed for finite domain,

single-objective fixed architecture problems. While most engineering systems are

best described with a mix of finite and continuous variable domains, the assumption

made in the MADU framework of only finite variable domains is less limiting than

it may appear. In aerospace systems, some system properties are unambiguously

finite, such as the number of reaction wheels in a spacecraft. Other properties may be

constrained to a finite set because of physical or financial limitations. A good example

of properties that fall into this set are material properties or surface coatings. While

a large, potentially continuous, space of options may exist, in reality, only a finite

set of options are considered in order to maintain heritage with previous systems or

to stay within the valid range of heritage analysis models. Finally, variables that

are truly continuous can be discretized for analysis. Handling continuous variables is

challenging because a conflict only prunes an infinitesimally small part of the domain

of a continuous variable. More advanced techniques like interval arithmetic need

to be used to make conflict-directed search efficient for continuous variables [100].

The choice to only support a single objective is made for simplicity. The MADU

framework could be extended to consider multiple objectives in the future. The

choice of a fixed architecture is also made for simplicity. While MADU can transform

model parameters into design variables and vice versa, no type of change defined in

Table 3.1 enables the addition of model parameters. Therefore, all system properties

that could eventually become design variables should be included in the initial model

formulation. Future extensions to the MADU framework may remove this limitation.

3.2 Implementation of the MADU Framework

This section presents the implementation of the MADU framework used in this thesis

to evaluate its utility in space system development. Each step is presented with details

of how the algorithm in the previous section was implemented. The main tools used
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to implement the MADU framework are Python, SysML, and IBM CP Optimizer

[62].

3.2.1 Step One: Construct SysML model

System information is captured using a SysML model. As a reminder, the SysML

model must contain the following pieces of information:

∙ A description of the design of the system

∙ Elements within the design that can be varied and a set of options for each

variable element

∙ Constraints defining the numerical relationships within the system and a desig-

nated measure of effectiveness to be optimized

The following subsections will present how these pieces of information are captured

in a SysML model.

Modeling System Form

The form of the system under design is captured in SysML using Blocks and is dis-

played on a Block Definition Diagram (BDD). Blocks are the fundamental structural

element in SysML [91]. Blocks are used to model a collection of features that describe

an element of the system. A Block can represent a physical component, a subassem-

bly, or a logical subsystem. Blocks serve as the base class for many other more specific

modeling entities. Blocks can be given properties to add detail to the Block. A Value

Property is a useful type of property that is used to capture numerical properties of a

Block. A Part Property denotes that one Block is a part of another Block. A system

hierarchy showing compositional relationships within the system can be created us-

ing Part Properties. Blocks, properties, and composition relationships are typically

shown on a BDD.

An example BDD from the SysML specification showing the structure of the power

subsystem of a hybrid sport utility vehicle (SUV) is shown in Figure 3-6 [91]. Blocks
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Figure 3-6: An example BDD from the SysML specification showing the structure of
the power subsystem of a hybrid SUV [91].

are shown as rectangles with inner text. Composition relationships are shown as lines

with an arrow on one end pointing towards the Block representing a part and a black

diamond on the other end. Therefore, the BDD shows that the power subsystem

is composed of a number of components including an Accelerator, a BatteryPack, a

PowerControlUnit etc. It also shows that the FrontWheel is a specific instantiation of

a general WheelHubAssembly with a Generalization relationship. A Generalization

relationship is shown as a line with a white arrow pointing towards the more general

element.

Modeling System Topology

The topology of the system under design is captured in SysML using Connectors and

Ports and is displayed on an Interface Block Diagram (IBD). Connectors model which

parts of the system are connected to other parts and so only represent the existence of

an interface. Detail can be added to the interface by using Ports. Ports are properties

of a Block that describe how a Block can interact with the rest of the system. Part

Properties, Connectors, and Ports are typically shown on an IBD.

An example IBD from the same hybrid SUV model from the SysML specification is

shown in Figure 3-7 [91]. This IBD shows the interfaces within the Power Subsystem

whose structure was defined in the BDD shown in Figure 3-6. The large rectangles

represent parts of the Power Subsystem and the smaller squares on the edges of the
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Figure 3-7: An example IBD from the same Hybrid SUV model [91]. This IBD shows
the interfaces within the Power Subsystem defined in Figure 3-6.

rectangles are Ports. Connectors are lines that show how Ports are connected to other

Ports. Different types of Ports are shown using different types of squares on the edge of

the larger rectangles. The squares with the lollipop-shaped extensions show required

(depicted with socket) and provided (depicted with ball) interfaces. The small arrows

within some of the small rectangles indicate that those Ports have properties that

defines what is allowed to flow over that interface. The direction of the arrows indicate

the direction in which flow is allowed and can be bidirectional (shown with two arrows

within the box). Some Connectors have black arrows on them. These symbols show

what does flow over those interfaces (as contrasted with the properties of Ports that

define what can flow over an interface). The IBD shows, among other things, that

the Transmission is connected to the Differential, the InternalCombustionEngine, the

ElectricMotorGenerator, and the PowerControlUnit. Torque is transmitted between

the Transmission and the Differential, and from the InternalCombustionEngine and

the Transmission. The Transmission provides commands to the PowerControlUnit

and receives data from the PowerControlUnit.
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Modeling Variability

SysML contains several concepts that can be used to model variability. In the MADU

framework, variability is modeled by allowing Value Properties to take different val-

ues as defined by an Enumeration. An Enumeration is a SysML modeling concept,

inherited from UML, that constrains possible values of a property to a user-defined

list [92]. Enumeration literals are defined to represent the options that the element

typed by the Enumeration can take. Typing is a mechanism within SysML/UML to

enable the modeler to constrain the range of values of a typed element. For example,

Part Properties are typed by the Blocks that they represent within a larger system

and Ports can be typed by Blocks to define the features of that Port.

To enable it to type Value Properties, the Enumeration is given a «ValueType»

Stereotype. Stereotyping is a SysML/UML mechanism used to extend metaclasses.

A metaclass is a concept within SysML/UML to describe model elements that are

used to define legal modeling techniques. Therefore, Stereotypes are useful because

they can be used to define custom modeling semantics. A common application of

this idea is the modeling of a domain-specific language that can be used to more

conveniently or precisely model a system. Each modeling element is labeled with its

Stereotype within guillemets («»). For example, a Block is nominally stereotyped

with the Stereotype «block».

The MADU framework models design variables as Value Properties with unknown

default values. The unknown properties must be identified within the model and be

given a set of possible values 𝑣𝑖. To accomplish this, an Enumeration is created for

each design variable and a set of Enumeration literals is defined for each Enumera-

tion to define the set of possible distributions for the Value Property typed by that

Enumeration. Additionally, three Value Properties are defined for each Enumeration

that specify its ID, its uncertainty, and its integer conversion factor. The ID is a

zero-based integer counter that represents the position of that design variable within

the set of design variables in the optimization problem. The current implementation

of the MADU framework assumes that uncertainty in the value of a design variable
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alternative can be expressed using a uniform random variable. Therefore, the un-

certainty property defines a multiplicative factor that represents the half width of a

uniform probability distribution centered on the value specified in each enumeration

literal. In other words, the distribution can be described as 𝒰((1 − 𝑢)𝑣, (1 + 𝑢)𝑣)

where 𝑢 the value of the uncertainty property and 𝑣 is the central value defined by

an Enumeration literal. Because each Enumeration has a single uncertainty property,

the same uncertainty is applied to each design variable alternative.

The integer conversion factor is a multiplicative factor used in forming the opti-

mization problem to ensure that all possible design variable options can be converted

to integers as the solver that is used requires integer variables. Multiplying the nomi-

nal value expressed by each Enumeration literal by the integer conversion factor must

result in an integer. Additional steps are taken within the Python code that inter-

faces with the solver to ensure that even after accounting for uncertainty, all variable

alternatives can be expressed as integers after sampling.

The ID, uncertainty, and integer conversion factor Value Properties are given de-

fault values. Each design variable is described by one Enumeration and each Enumer-

ation ID must be unique and the IDs must be consecutive. An example Enumeration

is shown in Figure 3-8. The figure shows an Enumeration with an ID of 6, three

possible values (1, 2.5, or 10), an integer conversion factor of 10, and an uncertainty

of 1%. As can be seen, the possible values can be any real number but the integer

conversion factor must chosen so that every possible value, after being multiplied by

the integer conversion factor is equal to an integer. Because the ID is 6, five other

variables must exist that have ID’s of 0 through 5.

Modeling Constraints and the Objective Function

Mathematical relationships within a system are modeled in SysML using Constraint

Blocks and Binding Connectors and are displayed on a Parametric Diagram (PAR).

A Constraint Block is a special type of Block used to capture mathematical or logical

relationships among system properties. Constraint Blocks are tied to properties or

other Constraint Blocks using Binding Connectors. Binding Connectors denote an
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Figure 3-8: An example Enumeration showing the Enumeration Literals that repre-
sent the options that a design variable may take and the three Value Properties that
specify the ID of the design variable, the uncertainty in the design variable options,
and the multiplicative factor that will ensure that all possible variable values can be
correctly converted to integers.

equality relationship. Constraint relationships are shown on a Parametric Diagram.

A Parametric Diagram from the hybrid SUV example is shown in Figure 3-9

[91]. The diagram shows the mathematical relationship between fuel demand, fuel

pressure, and fuel flow rate. The three rectangles are Value Properties while the

rounded rectangle in the center of the diagram is a constraint property that shows

how the FuelFlow Constraint Block is used in this calculation. The lines between the

rectangles are Binding Connectors that symbolize that the properties at either end

of the connector have equal values. SysML doesn’t require that any properties are

designated as an input or output. Given the value of any two Value Properties, the

value of the third Value Property can be calculated. For example, given FuelPressure

and FuelDemand, the FuelFlowRate can be calculated.

A Constraint Block is created for each constraint and a Parametric Diagram is

used to connect each constraint to Value Properties or other constraints. Equality

constraints 𝑔(𝑥, 𝑦), inequality constraints ℎ(𝑥, 𝑦), and set constraints 𝑎(𝑥) are all mod-

eled using Constraint Blocks. Equality and inequality constraints are modeled using

algebraic notation. The current implementation of the MADU framework assumes

that each constraint is written in syntax that can be directly converted to Python

code and executed within the optimization solver. Additionally, the current imple-

mentation of the MADU framework requires that the set of constraints not contain
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Figure 3-9: A Parametric Diagram from the Hybrid SUV example [91]. The diagram
shows the mathematical relationship between fuel demand, fuel pressure, and fuel
flow rate.

any simultaneous equations for compatibility with the external solver. In other words,

the constraint graph must be able to be solved in a directed fashion with no loops.

To support the required directionality, each Constraint Block must have all but one

of its variables defined by a Value Properties with a given default value or a Value

Property that is typed by an Enumeration.

Set constraints are modeled using a slightly different method. In the MADU

framework, multiple Value Properties can be used to describe a single design option.

Each Value Property is typed by an Enumeration that allows the Value Property

to take any value as defined by that Enumeration. However, an individual value

within one Enumeration may not be compatible with an individual value of a different

Enumeration. For example, in the hybrid SUV model, options for the gas engine could

be described by a set of Value Properties including horsepower, fuel consumption, and

mass. Each Value Property must be able to take the value of any of the engine options.

However, the value represented by the three Value Properties must be consistent with

a single engine option. Therefore, a set constraint is needed to specify the allowable

combinations of Value Properties. This constraint is modeled within a Constraint

Block by listing the sets of acceptable Value Property values for a set of variables.

The set of variables is defined by connecting the Value Properties that represent those

variables to the Constraint Block.

97



Figure 3-10: Flow chart showing steps two and three of the MADU framework.

One Value Property in the model is assigned the measure of effectiveness Stereo-

type («moe») to signify that the optimizer should minimize that value. The measure

of effectiveness Stereotype is a non-normative extension of SysML but it is intended

to be used to identify critical parameters within a Parametric Diagram. The con-

straint used to calculate the value of the Value Property stereotyped with the «moe»

Stereotype is the objective function.

3.2.2 Step Two: Optimize design while recording rationales

In step two, information from the system model is extracted and used to find the

optimal design. As shown in Figure 3-10, in this implementation of the MADU

framework, the information is extracted from the system model using a Jython script

and placed in a JSON file. Next, a Python script reads the JSON file, solves an fi-

nite domain, chance-constrained, stochastic optimization problem to find the optimal

design, and writes the information describing the optimal design as well as conflicts

and satisfying states found during optimization to a second JSON file. Last, as part

of step three, a second Jython script updates the system model with the information

about the optimal design and conflicts.

Setting up the Optimization Problem

The optimization problem is initialized using information extracted from the system

model. The problem formulation used in the MADU framework is shown in equation
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3.1. There are four elements that must be initialized: the set of design variables 𝑥, the

set of design variable alternatives for each design variable 𝑣𝑖, the set of constraints

𝑐, and the objective function 𝑓 . Firstly, the set of design variables 𝑥 is initialized

by checking the system model to find Value Properties that have been typed by an

Enumeration. Secondly, the set of possible alternatives for each design variable 𝑣𝑖

is constructed by iterating through all of the Enumeration Literals owned by each

Enumeration that represents a design variable. Thirdly, the set of constraints 𝑐 is

constructed by iterating through the constraints defined by Constraint Blocks in the

system model. The set of constraints is made up of three categories: inequality con-

straints 𝑔(𝑥, 𝑦), equality constraints ℎ(𝑥, 𝑦), and set constraints 𝑎(𝑥). The function

𝑔(𝑥, 𝑦) and limit 𝛼 for each inequality constraint function are defined in the equation

within the Constraint Block. Each equality constraint ℎ(𝑥, 𝑦) is read from the equa-

tion with a Constraint Block. Each set constraint is constructed by reading the set of

variable alternatives from a Constraint Block. Lastly, the objective function 𝑓(𝑥, 𝑦)

is identified through its unique measure of effectiveness stereotype.

Solving the Optimization Problem

The optimization problem is solved following the pseudocode in algorithms 1 - 6. The

algorithm is implemented in Python. The solver used to perform the optimizations in

relaxedProblem as well as the satisfiability check in extractConflicts is the IBM

ILOG CP Optimizer tool [62]. The DOcplex package is used to interface between the

Python code and CP Optimizer. Within CP Optimizer, set constraints are imposed

using the allowed_assignments constraint while conflicts are imposed using the for-

bidden_assignment constraints. In the conflict extractor, the allowed_assignments

constraint is used to fix the value of design variables when necessary. Equality and in-

equality constraints are added directly to the optimizer model from the Python code.

The refine_conflict is used on an unsatisfiable candidate solution when a conflict is

needed. The refine_conflict function only returns one conflict out of the many that

may be present in the candidate solution. Hence, algorithm 3 contains a loop starting

on line 18 in order to identify all conflicts.
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3.2.3 Step Three: Update SysML Model with Optimal Design

and Rationales

After the optimization is completed, the optimal solution as well as the conflicts

and satisfying states identified during the optimization are imported into the system

model using an intermediate JSON file as shown in Figure 3-10. The optimal solution

is straightforward to import. Each of the Value Properties that represent a design

variable are given a default value equal to the nominal value of the optimal design

variable alternative identified during the optimization. The conflicts and satisfying

states are created from scratch following the patterns described in Figures 3-11 and 3-

12. Relationships are created between satisfying states or conflicts to other modeling

elements as per the patterns. All previous conflicts and satisfying states stored in the

model are deleted as the set of conflicts and satisfying states that emerge from the

optimization will be complete with respect to the new problem definition.

Modeling Conflicts and Satisfying States

Conflicts and satisfying states are modeled in SysML with similar patterns. As shown

in Figure 3-11, a conflict is represented by a Block made up of two parts. One part rep-

resents the set of conflicting design variable assignments and is modeled with a Block.

The Variable Assignments Block is tied to all Enumeration Literals that represent a

conflicting design variable assignment using a custom relationship. The Dependency

metaclass is extended to define a new type of relationship called variableAssignments

as shown in Figure 3-12. The variableAssignments Stereotype defines a directed re-

lationship between a Block and a set of Enumeration Literals. The other part of the

conflict models the set of Constraint Blocks that make up the conflict justification

and is also represented by a Block. Each Constraint Block in the conflict justification

is tied to the Justification Block using an association relationship.

Satisfying states are modeled with a similar but simpler formalism. As shown

in Figure 3-13, a satisfying state is represented by a Block with one or more vari-

ableAssignment relationships between that block and the Enumeration literals that
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Figure 3-11: The SysML representation of a conflict within the MADU framework.

Figure 3-12: The definition of the custom SysML element «variableAssignments».
The variableAssignments Stereotype extends the Dependency Stereotype to define a
directed relationship between a Block and a set of Enumeration Literals.
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Figure 3-13: The SysML representation of a satisfying state within the MADU frame-
work.

represent the design variable alternatives that are part of that satisfying state.

3.2.4 Step Four: Update SysML Model with New Information

In step four, new information about the system is learned and the system model

is updated to reflect that new piece of information. As new information is learned

during the design process through analyses, trade studies, or other activities, the

system model should be updated so that it remains the authoritative source for system

information. Table 3.3 shows each type of change, how the problem is affected, and

how the change is made in the SysML model.

A design variable can be added to the problem by constructing a new Enumeration

and typing a previously-untyped Value Property with that Enumeration. The MADU

framework requires that the new Enumeration have only one Enumeration literal and

that the Enumeration Literal have a value equal to the value of the old parameter with

zero uncertainty. A design variable can be removed from the problem by removing an

Enumeration from typing a Value Property. The MADU framework requires that the

removed Enumeration have only one Enumeration literal and that the untyped Value

Property be given a default value equal to the value of that Enumeration literal.

Adding an alternative to the domain of a design variable is modeled by adding an

Enumeration literal to the Enumeration that types the Value Property that represents

that design variable. Removing an alternative from the domain of a design variable is
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Table 3.3: Each type of change and how it is implemented in the SysML model

Type of Change SysML Model Change
Addition of Design

Variable
Create new Enumeration and type Value Property

Removal of Design
Variable

Remove Enumeration from typing Value Property

Addition of Design
Variable Alternative

Add Enumeration Literal to Enumeration

Removal of Design
Variable Alternative

Remove Enumeration Literal from Enumeration

Addition of
Constraint

Add Constraint Block

Removal of
Constraint

Remove Constraint Block

Tightening of
Constraint

Decrease default value of Value Property defining
inequality constraint limit or increase default value of

Value Property defining minimum probability of
constraint satisfaction

Relaxation of
Constraint

Increase default value of Value Property defining
inequality constraint limit or decrease default value of

Value Property defining minimum probability of
constraint satisfaction

Change Objective
Function

Remove «moe»stereotype from Value Property and
add it to a different Value Property
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modeled by removing an Enumeration Literal from the Enumeration that types the

Value Property that represents that design variable.

Adding a constraint is modeled by adding a Constraint Block with the appropriate

equation to the system model and connecting it to existing Value Properties or other

Constraint Blocks. Removing a constraint is modeled by deleting a Constraint Block

and its connections from the system model. Tightening a constraint is modeled

by tightening the default value of a Value Property that represents an inequality

constraint limit. Relaxing a constraint is modeled by relaxing the default value of a

Value Property that represents an inequality constraint limit. Changing the objective

function is modeled by removing the measure of effectiveness Stereotype from its

current Value Property and adding it to a different Value Property.

3.2.5 Repeat Step Two: Re-optimize design while recording

rationales

Returning to step two, conflicts and satisfying states stored in the system model are

extracted into a JSON file, pruned if they don’t apply to the new problem formulation,

fed into the optimizer, and the problem is re-solved. The rules for determining if a

conflict or satisfying state applies in the new problem formulation are defined in

Table 3.2. The surviving list of conflicts and list of satisfying states are passed to the

optimizer. The problem is solved using the same algorithm as in section 3.2.2 and

new conflicts and satisfying states are identified.

3.2.6 Repeat Step Three: Update SysML Model with New

Optimal Design and New Rationales

Repeating step three, the new optimal design and new rationales found in the re-

optimization of the problem are stored in the SysML model. The methodology is

same as in section 3.2.3. All of the old conflicts and satisfying states are deleted from

the model and new representations conforming to Figures 3-11 and 3-13 are created

for each of the conflicts and satisfying states.
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3.2.7 Limitations of Implementation

The implementation of the MADU framework as described in the preceding sections

contains additional limitations over the limitations of the framework itself that are

described in section 3.1.5. The current implementation cannot handle simultaneous

equations. The CP Optimizer model is built by importing equations from the SysML

model in a sequential manner and all variables on the right hand side of each equation

must be defined when an equation is imported. Equations are imported in a specific

order to meet this constraint. However, simultaneous equations cannot be handled

because some variables on the right hand side of the equation are defined by equations

that have not yet been imported. A second limitation is that each design variable

alternative can only be modeled using a uniform random variable. Other types of

random variables could be used but would require different techniques to model those

distributions in SysML.

3.3 Summary

This chapter introduced the MADU framework and demonstrated the implementa-

tion used for this thesis. The framework solves the space system development problem

efficiently by re-using conflicts and satisfying states when the problem changes. The

framework was implemented using SysML, Python, and IBM ILOG CP Optimizer.

The following chapters will exercise the framework on realistic space system develop-

ment problems.
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Chapter 4

REXIS Detector Thermal Design

Case Study

This chapter presents an example problem in order to walk through the MADU

framework and explore its benefits. The example problem is based on the thermal

design of the REXIS X-ray spectrometer. The problem illustrates the capabilities of

the MADU framework on a simple problem that can be intuitively understood.

4.1 REXIS Overview

The REgolith X-ray Imaging Spectrometer (REXIS) is an instrument on board NASA’s

Origins Spectral Interpretation Resource Identification Security Regolith EXplorer

(OSIRIS-REx) spacecraft. The OSIRIS-REx mission will explore the near-Earth as-

teroid Bennu and return a sample of asteroid regolith to Earth [64]. The mission is

led by the University of Arizona with management by NASA through the Goddard

Space Flight Center.

REXIS contributes to the mission by observing the asteroid in the soft X-ray band

in order to measure elemental abundances and ratios. REXIS was built by students

at MIT, Harvard, and other universities. Leadership is provided by the MIT Space

Systems Laboratory within the MIT Department of Aeronautics and Astronautics

and the MIT Department of Earth, Atmospheric, and Planetary Sciences. Additional
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collaborators include MIT Lincoln Laboratory, MIT Kavli Institute for Astrophysics,

and Harvard College Observatory. NASA management was provided by the Goddard

Space Flight Center. The overall goal of the REXIS instrument is to provide students

with hands-on experience on a NASA mission working with NASA and industry

professionals. Beyond this goal, REXIS also provides valuable science to the OSIRIS-

REx mission.

REXIS measures X-ray photons fluoresced from Bennu in order to determine el-

emental abundances and ratios [69]. This information can inform the classification

of Bennu within the known meteorite groups. REXIS is a soft X-ray spectrometer

sensitive in the 0.5-7.5 keV band that can measure the global Mg/Si, Fe/Si, and S/Si

ratios and map the distribution of Fe on the surface to a spatial resolution of 50 m.

X-ray photons from the asteroid are detected by four CCID-41 detectors provided

by MIT Lincoln Laboratory [102]. In order to simultaneously measure the solar X-

ray spectrum responsible for producing fluoresced X-ray photons from the asteroid,

REXIS also contains a Sun-pointed Amptek XR-100 silicon drift detector (SDD) [53].

Figure 4-1 shows a CAD model of the REXIS instrument. REXIS is composed of

two subassemblies: the main spectrometer containing the CCDs and electronics and

the Solar X-ray Monitor (SXM). The main spectrometer is divided into three sections.

The base contains the three electronics boards that run the instrument, communicate

with the spacecraft, and regulate voltages. A thermal isolation layer separates the

warm electronics box from the colder upper section of the spectrometer. The Detector

Assembly Mount (DAM) contains the four detectors as well as several radioactive 55Fe

calibration sources. To accurately measure the energy of each incident X-ray photon,

the detector array is passively cooled below −60 ∘C. The cooling is accomplished

by isolating the detectors from the warmer electronics box through low conductivity

standoffs and connecting the detectors to a radiator using a high-conductivity thermal

strap [108]. At the top of the spectrometer is the radiation cover that protects the

detectors from excessive radiation damage during the cruise to Bennu. The cover

was closed at launch and was opened in September 2018 using a TiNi Aerospace

FD04 Frangibolt shape memory alloy actuator [10]. The SXM contains the SDD that
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Figure 4-1: CAD of the REXIS Instrument

observes the Sun and is mounted separately from the spectrometer so that it can

observe the Sun while the spectrometer observes the asteroid. It is connected to the

spectrometer through a harness.

4.2 Problem Definition

The example problem used in this chapter to illustrate the MADU framework is mo-

tivated by the thermal design necessary to cool the REXIS detectors to below −60 ∘C.

As described above, this cooling is achieved entirely passively through isolation from

the warmer parts of the instrument and connection to a large radiator through a ther-

mal strap. The radiator rejects heat from the detectors to deep space. The design

of the instrument was largely driven by this thermal design. The problem in this

chapter will select the size and material of the isolation layer and thermal strap to

meet this temperature requirement while satisfying a maximum mass constraint.

A schematic of the portion of the REXIS instrument analyzed in this problem

is shown in Figure 4-2. The detectors are housed in the Detector Assembly Mount

(DAM) which needs to be cooled to less than −60 ∘C (213 K) in order to meet noise
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Figure 4-2: Schematic showing the physical geometry of the example problem (not
to scale).

requirements. It is connected to the Detector Assembly Support Structure (DASS)

through the Thermal Isolation Layer (TIL) and to the Radiator through the Thermal

Strap.

4.2.1 Problem Structure

The topology of the thermal system used in this problem is shown in Figure 4-3.

Three nodes are present in the problem: the DASS, the DAM, and the Radiator.

The DASS is modeled with a temperature 𝑇𝐷𝐴𝑆𝑆 of −20 ∘C (253 K). The DAM is

has an unknown temperature 𝑇𝐷𝐴𝑀 but has a maximum temperature limit of −60 ∘C

(213 K). A heat load of 1.5 W is present on the DAM. This heat load 𝑞𝐷𝐴𝑀 comes from

dissipation by detectors themselves, as well as by thermal radiation from surrounding,

warmer components. Radiative heat transfer is not modeled for any components. The

Radiator is assumed to have a temperature 𝑇𝑟𝑎𝑑 of −65 ∘C (208 K). Two edges connect

the three nodes. The first edge is the TIL which connects the DASS to the DAM. The

TIL is made up of four standoffs. Each standoff has an unknown radius 𝑟𝑇𝐼𝐿. This

problem models the TIL as a single edge, lumping the four standoffs into one when

calculating the cross sectional area of the TIL 𝐴𝑇𝐼𝐿. The TIL also has an unknown

conductivity 𝑘𝑇𝐼𝐿 and an unknown length 𝐿𝑇𝐼𝐿. These unknown values represent

design variables.

Accounting for bolted joint conductivity is an important consideration for accu-

110



Figure 4-3: A simplified diagram showing the assumptions made in the example
problem.

rately predicting the temperature of the DAM [43]. The bolted joint connecting the

DASS to the TIL and the bolted joint connecting the DAM to the TIL both have a

conductivity of 3.2 W/K.

The other edge is the Thermal Strap which connects the DAM to the Radiator.

The Thermal Strap has an unknown conductivity 𝑘𝑇𝑆 and an unknown cross sec-

tional area 𝐴𝑇𝑆. These unknown values represent design variables. The length of the

Thermal Strap 𝐿𝑇𝑆 is equal to 0.1 m. The bolted joint connecting the DAM to the

Thermal Strap has a conductivity of 0.78 W/K while the bolted joint connecting the

Thermal Strap to the Radiator has a conductivity of 0.40 W/K.

The model parameters and design variables described in this section are shown in

Table 4.1 and Table 4.3 respectively. As a whole, the REXIS detector thermal design

problem has 9 design variables, 2 inequality constraints, 9 equality constraints, and 2

set constraints. Accounting for the set constraints, there are 7200 possible solutions

to the problem.

4.2.2 Design Variable Definition

The design variables for this example problem specify the material and geometric

properties of the system. The section above describes the geometric design variables.

The material alternatives are shown in Table 4.2. The materials are typical aerospace

materials that span a wide range of thermal conductivities, densities, and volumetric

costs, providing a diverse set of options for the system design. The volumetric cost

for each material is the cost of buying a volume of that material in raw form. This

cost is combined with the volume of the system to calculate the overall cost.

The full set of design variables along with their set of alternatives is shown in
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Table 4.1: The set of model parameters 𝑦 for the REXIS Detector thermal design
problem

Parameter Name Parameter Symbol Parameter Value
DASS Temperature 𝑇𝐷𝐴𝑆𝑆 −20 ∘C
DAM Heat Load 𝑞𝐷𝐴𝑀 1.5 W

Radiator Temperature 𝑇𝑟𝑎𝑑 −65 ∘C
DASS to TIL Bolted Joint

Conductivity
𝑘𝐷𝐴𝑆𝑆−𝑇𝐼𝐿 3.2 W/K

TIL to DAM Bolted Joint
Conductivity

𝑘𝑇𝐼𝐿−𝐷𝐴𝑀 3.2 W/K

Thermal Strap Length 𝐿𝑇𝑆 0.1 m
DAM to Thermal Strap
Bolted Joint Conductivity

𝑘𝐷𝐴𝑀−𝑇𝑆 0.78 W/K

Thermal Strap to Radiator
Bolted Joint Conductivity

𝑘𝑇𝑆−𝑅𝑎𝑑 0.40 W/K

Table 4.2: The set of material alternatives for the Thermal Strap and TIL.

Material Conductivity
W/(m K)

Density
kg/m3

Volumetric
Cost $/cm3

Aluminum 6061-T6 [70] [93] 167 2700 0.177
316 Stainless Steel [72] [95] 15.9 7920 0.400
OFHC Copper [71] [94] 391 8940 0.727

Titanium 6AL-4V [74] [96] 6.70 4430 1.81
Torlon 5030 [73] [23] 0.360 1610 3.66
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Table 4.3. The set of design variables includes the conductivity of the Thermal Strap

𝑘𝑇𝑆, the cross sectional area of the Thermal Strap 𝐴𝑇𝑆, the conductivity of the TIL

𝑘𝑇𝐼𝐿, the length of the TIL 𝐿𝑇𝐼𝐿, the radius of each of the four TIL standoffs 𝑟𝑇𝐼𝐿,

the density of the TIL 𝜌𝑇𝐼𝐿, the volumetric cost of the TIL 𝑠𝑇𝐼𝐿, the density of the

Thermal Strap 𝜌𝑇𝑆, and the volumetric cost of the Thermal Strap 𝑠𝑇𝑆. The set of

alternatives for the geometric properties are values close to the values for the REXIS

design while the set of alternatives for the material properties are taken from the set

of materials shown in Table 4.2. Thermal Strap cross sectional area can take any

value between 1× 10−4 m2 and 5× 10−4 m2 in steps of 5× 10−5 m2. TIL length can

take any value between 0.005 m and 0.015 m in steps of 0.001 m. TIL radius can take

any value between 0.004 m and 0.007 m in steps of 0.001 m.

Each geometric design variable alternative is modeled as a uniform random vari-

able with an uncertainty of 1% around its central value. Each material property design

variable alternative is modeled as a uniform random variable with an uncertainty of

5% around its central value. In total, the problem has nine design variables.

4.2.3 Set Constraints

Because a single material is represented using multiple design variables, set con-

straints are needed to ensure consistency. For example, the algorithm should not be

able to choose the conductivity of copper (391 W/(m K)) and the cost of aluminum

($0.177/cm3). Therefore, two set constraints, each with multiple sets of satisfying

design variable assignments, are included in the problem. The first set constraint

enforces consistency for the Thermal Strap while the second set constraint enforces

consistency for the TIL. The satisfying sets of design variable alternatives for each

set constraint correspond to the rows in Table 4.2

4.2.4 Equality Constraints

The primary consideration for designing this thermal system is the temperature of the

detectors. That temperature can be calculated using the one-dimensional conductive
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Table 4.3: The set of design variables for the REXIS thermal design problem, with
the set of alternatives for each design variable listed.

Name Symbol Units Uncertainty Alternatives
Thermal Strap
Conductivity

𝑘𝑇𝑆 W/(m K) 0.05 167, 15.9, 391, 6.70,
0.360

Thermal Strap
Cross Sectional

Area

𝐴𝑇𝑆 m2 0.01 1× 10−4, 1.5× 10−4,
2× 10−4, 2.5× 10−4,
3× 10−4, 3.5× 10−4,
4× 10−4, 4.5× 10−4,

5× 10−4

TIL
Conductivity

𝑘𝑇𝐼𝐿 W/(m K) 0.05 167, 15.9, 391, 6.70,
0.360

TIL Length 𝐿𝑇𝐼𝐿 m 0.01 0.005, 0.006, 0.007,
0.008, 0.009, 0.010,

0.011, 0.012
TIL Radius 𝑟𝑇𝐼𝐿 m 0.01 0.004, 0.005, 0.006, 0.007
TIL Density 𝜌𝑇𝐼𝐿 kg/m3 0.05 2700, 7920, 8940, 4430,

1610
TIL Volumetric

Cost
𝑠𝑇𝐼𝐿 $/cm3 0.05 0.177, 0.400, 0.727, 1.81,

3.66
Thermal Strap

Density
𝜌𝑇𝑆 kg/m3 0.05 2700, 7920, 8940, 4430,

1610
Thermal Strap
Volumetric

Cost

𝑠𝑇𝑆 $/cm3 0.05 0.177, 0.400, 0.727, 1.81,
3.66
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heat transfer equation shown in equation 4.1. Conductive heat transfer 𝑞 is deter-

mined by the temperature on the two ends of the interface 𝑇𝑎, 𝑇𝑏, the length of the

interface 𝐿, the cross-sectional area of the interface 𝐴, and the thermal conductivity

of the material across which heat is transferred 𝑘. The DAM temperature can be

calculated by applying this equation to calculate the heat transfer across the TIL and

across the Thermal Strap.

𝑞 =
𝑘𝐴

𝐿
(𝑇𝑎 − 𝑇𝑏) (4.1)

The DAM temperature can be calculated using equations 4.2, 4.3, and 4.4 by

applying the conductivity equation to calculate the heat transfer across the TIL

and across the Thermal Strap. The first equation uses the length of the Thermal

Strap 𝐿𝑇𝑆, the conductivity of the Thermal Strap 𝑘𝑇𝑆, the cross sectional area of

the Thermal Strap 𝐴𝑇𝑆, and the Thermal Strap bolted joint conductances 𝑘𝐷𝐴𝑀−𝑇𝑆

and 𝑘𝑇𝑆−𝑅𝑎𝑑 to calculate the equivalent conductivity of the Thermal Strap 𝑘𝑇𝑆. The

second equation uses the length of the TIL 𝐿𝑇𝐼𝐿, the conductivity of the TIL 𝑘𝑇𝐼𝐿,

the cross sectional area of the TIL 𝐴𝑇𝐼𝐿, and the TIL bolted joint conductances

𝑘𝐷𝐴𝑆𝑆−𝑇𝐼𝐿 and 𝑘𝑇𝐼𝐿−𝐷𝐴𝑀 to calculate the equivalent conductivity of the TIL 𝑘𝑇𝐼𝐿.

The third equation uses the equivalent conductivities of the TIL and Thermal Strap

𝑘𝑇𝐼𝐿 and 𝑘𝑇𝑆, the temperature of the DASS 𝑇𝐷𝐴𝑆𝑆, the temperature of the Radiator

𝑇𝑟𝑎𝑑, and the heat load on the DAM 𝑞𝐷𝐴𝑀 to calculate the temperature of the DAM

𝑇𝐷𝐴𝑀 .

𝑘𝑇𝑆 =
1

1/𝑘𝐷𝐴𝑀−𝑇𝑆 + 1/𝑘𝑇𝑆−𝑅𝑎𝑑 + 𝐿𝑇𝑆

𝑘𝑇𝑆𝐴𝑇𝑆

(4.2)

𝑘𝑇𝐼𝐿 =
1

1/𝑘𝐷𝐴𝑆𝑆−𝑇𝐼𝐿 + 1/𝑘𝑇𝐼𝐿−𝐷𝐴𝑀 + 𝐿𝑇𝐼𝐿

𝑘𝑇𝐼𝐿𝐴𝑇𝐼𝐿

(4.3)

𝑇𝐷𝐴𝑀 =
𝑘𝑇𝑆𝑇𝑟𝑎𝑑 + 𝑘𝑇𝐼𝐿𝑇𝐷𝐴𝑆𝑆

𝑘𝑇𝑆 + 𝑘𝑇𝐼𝐿

+ 𝑞𝐷𝐴𝑀 (4.4)

Additional equality constraints are used to calculate mass and cost of the design.
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Mass is calculated individually for the TIL and Thermal Strap as shown in equations

4.5 and 4.6 and then summed to calculate the total mass of the design as shown in

equation 4.7. Similarly, cost is calculated individually for the TIL and Thermal Strap

as shown in equations 4.8 and 4.9 and then summed to calculate the total cost of the

design as shown in equation 4.10.

𝑚𝑇𝑆 = 𝐴𝑇𝑆𝐿𝑇𝑆𝜌𝑇𝑆 (4.5)

𝑚𝑇𝐼𝐿 = 𝐴𝑇𝐼𝐿𝐿𝑇𝐼𝐿𝜌𝑇𝐼𝐿 (4.6)

𝑚𝑡𝑜𝑡 = 𝑚𝑇𝐼𝐿 + 𝑚𝑇𝑆 (4.7)

𝑆𝑇𝑆 = 𝐴𝑇𝑆𝐿𝑇𝑆𝑠𝑇𝑆 (4.8)

𝑆𝑇𝐼𝐿 = 𝐴𝑇𝐼𝐿𝐿𝑇𝐼𝐿𝑠𝑇𝐼𝐿 (4.9)

𝑆𝑡𝑜𝑡 = 𝑆𝑇𝐼𝐿 + 𝑆𝑇𝑆 (4.10)

4.2.5 Inequality Constraints

Two inequality constraints define acceptable solutions. The first inequality constraint

expresses the requirement on DAM temperature 𝑇𝐷𝐴𝑀 . That temperature must reach

a steady state value below −60 ∘C (213 K). The first inequality constraint is shown in

equation 4.11. The second inequality constraint defines a maximum mass to replicate

a mass allocation made by the design team. The total mass of the TIL and Thermal

Strap cannot exceed 0.35 kg. The second inequality constraint is shown in equation

4.12. The minimum probability of satisfying any inequality constraint 𝑝 is set at 0.95.
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𝑇𝐷𝐴𝑀 < −60 (4.11)

𝑚𝑡𝑜𝑡 < 0.35 (4.12)

4.2.6 Objective Function

The objective for this example problem is to minimize the total cost of the system.

The objective function is defined in equation 4.13.

𝑓(𝑥, 𝑦)← 𝑆𝑡𝑜𝑡 (4.13)

4.3 Example Walkthrough

This section presents a walkthrough of the how the MADU framework is used to

solve the REXIS detector thermal design problem. A SysML model is constructed,

the chance constrained optimization problem is solved, the optimization products are

returned to the system model, a change is made to the problem, and the optimization

is rerun to find the new optimal design.

4.3.1 Step One: Construct SysML model

A system model is built that contains the design variables, design variable alternatives,

constraints, and objective function defined in the previous section. Figure 4-4 is a

block definition diagram showing the Enumerations for the example problem. Each

Enumeration owns a set of literals that define the set of alternatives for that variable,

and its ID, its uncertainty, and its integer conversion factor.

Figure 4-5 is a block definition diagram that defines the structure of the system

and shows the Value Properties representing the model parameters and design vari-

ables. The top level Thermal Analysis Context block contains the Value Property

that defines the minimum acceptable probability of meeting any inequality constraint
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Figure 4-4: A block definition diagram showing the set of Enumerations that define
all design variable alternatives for the REXIS thermal design problem.

𝑝. The REXIS Block contains three value properties defining the total mass, total

cost, and maximum mass. The REXIS block is composed of five components, also

represented with Blocks. Each component contains several Value Properties defining

its attributes. The Value Properties that are typed by Enumerations represent design

variables. Note that the bolted joint conductivities are shown as thermal resistances

in this figure.

After creating all components, Constraint Blocks are added to the model to ex-

press the equality, inequality, and set constraints. These Constraint Blocks relate

Value Properties shown in Figure 4-5. Constraint Blocks are shown in parametric

diagrams. A selection of parametric diagrams are shown to show how constraints are

constructed. Figure 4-6 shows how the total mass and cost of the TIL is calculated

from its geometric and material properties using equations 4.6 and 4.9. Figure 4-7

shows how the mass and cost of the TIL and Thermal Strap are summed to calculate

the total mass and cost for the system per equations 4.7 and 4.10. Figure 4-8 shows

how the set constraint for material properties as shown in Table 4.2 is implemented.

Each row of the constraint block corresponds to an acceptable combination of design

variable alternatives. Figure 4-9 shows how the equivalent conductivity of the TIL is

calculated per equation 4.3. Figure 4-10 shows how the DAM temperature is calcu-
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Figure 4-5: A block definition diagram defining all of the components in the example
problem. The figure also shows a number of Value Properties that define model
parameters and design variables.

lated per equation 4.4. The figure also shows the inequality constraint from equation

4.11 defining the maximum allowable DAM temperature.

4.3.2 Step Two: Optimize design while recording rationales

With the system model constructed, the algorithm described in section 3.2 is run to

find the optimal design. In this example problem, the optimal solution is found after

checking 8 candidate solutions and identifying 29 conflicts. A total of 5735 calls to

CP Optimizer are required and the total run time is 278.6 s. The optimal design is

shown in Figure 4-11 and Table 4.4 and consists of a copper thermal strap with a

cross sectional area of 3× 10−4 m2 and a Torlon TIL with a radius of 0.004 m and

a length of 0.012 m. Unsurprisingly, the optimizer chose a low conductivity material

for the TIL and a high conductivity material for the Thermal Strap. Additionally,

the TIL is made as tall and thin as possible to reduce conductivity and cost, while

the Thermal Strap is made as thin as possible to reduce cost while remaining thick

enough to meet the temperature constraint.

The algorithm also records conflicts found during search. Table 4.5 shows two of

the twenty-nine conflicts that were identified. The table shows design variable alter-
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Figure 4-6: A parametric diagram defining how the total mass and cost for the TIL
are calculated.

Figure 4-7: A parametric diagram defining how the total mass and cost of the thermal
system are calculated by summing the mass and cost for the TIL and the Thermal
Strap.

Figure 4-8: A parametric diagram showing how the allowable assignment sets for the
variables related to material properties are defined.
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Figure 4-9: A parametric diagram showing how the equivalent conductivity of the
TIL is calculated by combining the conductivity of the four standoffs with the bolted
joint resistances.

Figure 4-10: A parametric diagram showing how the DAM temperature is calculated
from the temperature of the DASS and Radiator and the equivalent conductivities
of the TIL and Thermal Strap. The diagram also shows the inequality constraint
defining the maximum allowable DAM temperature.

Table 4.4: The set of optimal design variables alternatives for the REXIS thermal
design problem.

Name Symbol Units Optimal Value
Thermal Strap Conductivity 𝑘𝑇𝑆 W/(m K) 391
Thermal Strap Cross Sectional

Area
𝐴𝑇𝑆 m2 3× 10−4

TIL Conductivity 𝑘𝑇𝐼𝐿 W/(m K) 0.360
TIL Length 𝐿𝑇𝐼𝐿 m 0.012
TIL Radius 𝑟𝑇𝐼𝐿 m 0.004
TIL Density 𝜌𝑇𝐼𝐿 kg/m3 1610

TIL Volumetric Cost 𝑠𝑇𝐼𝐿 $/cm3 3.66
Thermal Strap Density 𝜌𝑇𝑆 kg/m3 8940

Thermal Strap Volumetric Cost 𝑠𝑇𝑆 $/cm3 0.727
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Figure 4-11: A radar plot showing the optimal value for five design variables after
the initial solve of the REXIS detector thermal design problem.

natives involved in the conflict and the explanation for the conflict. The first conflict

is the selection of the 391 W/(m K) design variable alternative for the TIL conduc-

tivity 𝑘𝑇𝐼𝐿. The explanation for this conflict is the maximum DAM temperature

constraint. Intuitively, if a high conductivity is selected for the TIL, the Radiator

cannot reject enough heat from the DAM to meet the maximum DAM temperature

constraint. Therefore, setting the 𝑘𝑇𝐼𝐿 to such a high conductivity makes the problem

unsatisfiable. The second conflict is the selection of the 2700 kg/m3 density for the

Thermal Strap. This selection implies that the Thermal Strap is made of aluminum.

The explanation for the conflict is both the maximum DAM temperature constraint

and the Thermal Strap set constraint. Intuitively, the conductivity of aluminum is not

high enough to reject enough heat from the DAM to meet its temperature constraint.

The conductivity of copper is sufficient to meet the DAM temperature constraint,

as shown in Table 4.4 but the optimizer can’t simultaneously select the density of

aluminum and the conductivity of copper because of the set constraint.
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Table 4.5: Two of twenty-nine conflicts identified while searching for the optimal
solution.

Conflict Explanation
𝑘𝑇𝐼𝐿 = 391 Maximum DAM Temperature Constraint
𝜌𝑇𝑆 = 2700 Maximum DAM Temperature Constraint,

Thermal Strap Material Constraint

Figure 4-12: A BDD defining the components in the sample problem. This diagram
is identical to that in Figure 4-5 except that the Value Properties representing design
variables have been given default values corresponding to the optimal design. The
added values are highlighted by the green boxes.

4.3.3 Step Three: Update SysML model with Optimal Design

and Rationales

In step three, the system model is updated to capture the optimal design, set of

conflicts, and set of satisfying states. The optimal assignments to design variables are

represented by assigning default values to each of the Value Properties that represents

a design variable as shown in Figure 4-12. Each conflict is modeled per its defined

pattern. The first conflict in Table 4.5 is shown in Figure 4-13. Each satisfying state

is modeled in its defined pattern. Figure 4-14 shows the one satisfying state that was

found during search, the optimal solution.
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Figure 4-13: A BDD showing how a conflict found during search is modeled in SysML.

Figure 4-14: A BDD showing how a satisfying state found during search is modeled
in SysML.
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Figure 4-15: A BDD showing the new set of alternatives for the TIL Length design
variable. An Enumeration Literal with a value of 0.013 m has been added as compared
with the TIL Length Enumeration in the original problem shown in Figure 4-4.

4.3.4 Step Four: Update SysML model with New Information

In step four, the system model is altered to reflect new information that has been

learned. For this walkthrough, a new design variable alternative is introduced for

TIL Length, a uniform random variable with a central value equal to 0.013 m and

an uncertainty of 1%. This new design variable alternative is larger than any other

alternative for TIL Length and so reflects a situation where the TIL can now be taller

than its previous maximum height. Perhaps another component has been removed

from the system, making more room for the TIL and DAM. To implement this change

in the SysML model, a new Enumeration Literal is added to the Enumeration that

represents the 𝐿𝑇𝐼𝐿 design variable. Figure 4-15 shows the new set of alternatives for

the Thermal Strap cross sectional area design variable.

4.3.5 Repeat Step Two: Re-optimize design while recording

rationales

Returning to step two, the information from the system model is extracted, changes

to the problem are identified through comparison of the JSON file created in this step

and the JSON file created in step two when the original optimization was performed,

the remaining conflicts and satisfying states are fed into the optimization algorithm,

and the problem is re-solved. With the addition of a design variable alternative, all
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Table 4.6: The full conflict set after accommodating the newly TIL Length design
variable alternative.

Conflict Explanation
𝐿𝑇𝐼𝐿 = 0.005 Maximum DAM Temperature Constraint
𝐿𝑇𝐼𝐿 = 0.006 Maximum DAM Temperature Constraint
𝐿𝑇𝐼𝐿 = 0.007 Maximum DAM Temperature Constraint
𝐿𝑇𝐼𝐿 = 0.008 Maximum DAM Temperature Constraint
𝐿𝑇𝐼𝐿 = 0.009 Maximum DAM Temperature Constraint
𝐿𝑇𝐼𝐿 = 0.010 Maximum DAM Temperature Constraint
𝐿𝑇𝐼𝐿 = 0.011 Maximum DAM Temperature Constraint, Thermal Strap

Material Set Constraint, Maximum Mass Constraint

previously satisfying solutions remain satisfying. A conflict is pruned if a constraint in

its explanation has the altered design variable in its domain, except in the case where

the set of design variable alternatives that comprise the conflict contains a design

variable alternative from the altered design variable. After applying these rules, the

one satisfying state and the conflicts shown in Table 4.6 remain. These conflicts

remain conflicts because they all involve assignments to the 𝐿𝑇𝐼𝐿 design variable. As

a result of these conflicts, almost all of the alternatives for TIL Length can be ruled

out before optimization begins.

A new solution is found after checking 9 candidate solutions, identifying 34 con-

flicts in addition to the 7 that were known from the previous problem, and making

5516 calls to CP Optimizer. The solution is found in 291.6 s. The same problem was

run without utilizing any conflicts or satisfying states from the previous problem and

it checked 10 solution candidates, made 6853 calls to CP Optimizer, and took 418.0 s

to find the optimal solution, demonstrating the value of information reuse. The new

optimal design is shown in Figure 4-16 and Table 4.7 and consists of an aluminum

thermal strap with a cross sectional area of 4.5× 10−4 m2 and a Torlon TIL with

a radius of 0.004 m and a length of 0.013 m. The new alternative for TIL Length is

chosen because it enabled the Thermal Strap to be changed to aluminum, saving cost.
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Figure 4-16: A radar plot showing the optimal value for five design variables in the
initial problem and the new optimal design after the introduction of a new design
variable alternative for TIL Length.

Table 4.7: The set of optimal design variable alternatives for the changed REXIS
thermal design problem, after the addition of a new design variable alternative for
TIL Length. The old optimal values are shown for comparison.

Name Symbol Units Old Optimal
Alternative

New Optimal
Alternative

Thermal Strap
Conductivity

𝑘𝑇𝑆 W/(m K) 391 167

Thermal Strap Cross
Sectional Area

𝐴𝑇𝑆 m2 3× 10−4 4.5× 10−4

TIL Conductivity 𝑘𝑇𝐼𝐿 W/(m K) 0.360 0.360
TIL Length 𝐿𝑇𝐼𝐿 m 0.012 0.013
TIL Radius 𝑟𝑇𝐼𝐿 m 0.004 0.004
TIL Density 𝜌𝑇𝐼𝐿 kg/m3 1610 1610

TIL Volumetric Cost 𝑠𝑇𝐼𝐿 $/cm3 3.66 3.66
Thermal Strap

Density
𝜌𝑇𝑆 kg/m3 8940 2700

Thermal Strap
Volumetric Cost

𝑠𝑇𝑆 $/cm3 0.727 0.177
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Figure 4-17: A BDD defining the components in the sample problem. This diagram is
identical to that in Figure 4-12 except that the Value Properties representing design
variables have been updated with the values of the new optimal design. The changed
values are highlighted by the red boxes.

4.3.6 Repeat Step Three: Update SysML Model with New

Optimal Design and New Rationales

After the optimization is completed, the SysML model is updated once again with

the optimal design, conflicts, and satisfying states. The procedure is the same as in

section 4.3.3. The default values for each Value Property are overwritten with the

new optimal values as shown in Figure 4-17. All old conflicts and satisfying states

are deleted from the model and the new ones are created per the patterns shown in

Figure 4-13 and 4-14.

4.4 Measuring the Value of Re-using Information

This section exercises the REXIS detector thermal design problem using each type of

change to examine the computational savings that can be obtained by reusing con-

flicts and satisfying states. The statistics for these examples may not be generalizable

to all problems but they illustrate that savings are possible through information reuse.

The optimization algorithm within the MADU framework will be tested against an
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identical optimization algorithm that doesn’t reuse any information from the pre-

vious problem. This "restart" algorithm identifies and uses conflicts and satisfying

states during search but doesn’t carry over any conflicts or satisfying states to the

next problem. It is very similar to the state-of-the-art conflict-directed A* algorithm

except that it incorporates an external constraint solver and uses the same sampling

technique as the MADU framework to accommodate the uncertainty in the problem

[123]. Therefore, the savings that result is solely a function of the information that

is reused between problems.

The results of the experiments for all types of change are summarized in Figure 4-

18. A set of cases was run for each type of change and the results averaged. Each case

study made only one change of the prescribed type to the problem to avoid conflating

the effects of multiple changes. To test the MADU framework, the assumed initial

condition is that the thermal design problem had already been solved and all conflicts

and satisfying states had been recorded. Then, the change is applied and the results

recorded. The next case assumes the same initial condition; that the thermal design

problem had just been solved. Therefore, the changes do not occur in sequence, but

represent parallel ways in which the base problem can be changed.

The red bar chart shows the number of candidate solutions tested while looking for

the solution. The green bar chart shows the total number of calls to the CP Optimizer

engine made in both the relaxed problem and while extracting conflicts. The blue bar

chart shows the run time in seconds until the optimal solution is found. The table

shows the same results numerically. In all three charts, the results using the MADU

framework are compared against an algorithm that restarts; that is it uses the same

search methods as the MADU optimizer but does not carry information over from

the previous search. Performance depends on the type of change but on average, for

the REXIS detector thermal design problem, the MADU framework finds the new

optimal solution 57% faster than an algorithm that doesn’t reuse information. The

subsequent sections review the data for each type of change in detail to explain the

samples used for testing and to contextualize the results.
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Type of Change
Candidates Checked CP Calls Run Time (sec)
Restart MADU Restart MADU Restart MADU

Addition of Alternative 9.0 7.8 6036.7 4859.2 317.3 256.8
Removal of Alternative 7.4 1.1 4707.6 464.5 188.1 15.6
Addition of Constraint 3.3 2.0 2247.8 1025.3 125.0 54.7
Deletion of Constraint 4.5 1.0 3029.0 479.5 252.1 20.6
Tightened Constraint 2.0 2.0 1043.5 970.5 43.1 36.4
Relaxed Constraint 6.5 3.5 4105.0 1558.5 161.1 56.3
New Objective 7.3 2.9 4783.7 1660.4 290.9 56.1

Figure 4-18: Performance of MADU framework after each type change compared to
an algorithm that doesn’t reuse information.
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4.4.1 Adding a Design Variable Alternative

The performance of the MADU framework after adding a design variable alternative

to one design variable is tested using six case studies as shown in Table 4.8. The

Thermal Strap Cross Sectional Area, TIL Length, and TIL Radius design variables

each had their domain increased in two ways. These three variables were chosen

because they don’t participate in any set constraints. Adding a variable alternative

to a variable that is involved in a set constraint does not change the problem unless

the set constraint is also changed. To avoid making multiple changes to the problem

at once, variables involved in set constraints were not tested for this type of change. In

one set of three case studies, an alternative was added that was lower than the lowest

alternative in the nominal domain of the variable. In the other set of three trials, an

alternative was added that had a higher central value than the highest alternative

in the nominal domain of the variable. Because the Thermal Strap Cross Sectional

Area, TIL Length, and TIL Radius are geometric design variables, the uncertainty

applied to each new design alternative is 1% of the central value.

The six test cases were run once with the reuse of conflicts and satisfying states per

the MADU framework and once without re-using conflicts or satisfying states. Per

row two of Figure 4-18, the MADU algorithm checks 13% fewer candidate solutions,

calls the CP Optimizer engine 20% fewer times, and finds the optimal solution in

19% less time for this type of change. These improvements are not large because

the addition of a design variable alternative may force a large number of conflicts

to be pruned from the list of known conflicts if that design variable is used in many

constraints.

4.4.2 Removing a Design Variable Alternative

The performance of the MADU framework after removing a design variable alternative

from a design variable is tested using ten case studies. A variable was selected at

random and then a random variable alternative in the domain of that variable was

removed. Table 4.9 shows each of the changes that were made.
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Table 4.8: Each test case for testing the performance of the MADU framework after
adding a design variable alternative. The added design variable alternative is bolded.

Design Variable Design Variable Domain
Thermal Strap Cross

Sectional Area
0.00005, 0.0001, 0.00015, 0.0002, 0.00025, 0.0003,

0.00035, 0.0004, 0.00045, 0.0005
Thermal Strap Cross

Sectional Area
0.0001, 0.00015, 0.0002, 0.00025, 0.0003, 0.00035, 0.0004,

0.00045, 0.0005, 0.00055
TIL Length 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.011,

0.012
TIL Length 0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.011, 0.012,

0.013
TIL Radius 0.003, 0.004, 0.005, 0.006, 0.007
TIL Radius 0.004, 0.005, 0.006, 0.007, 0.008

The ten test cases were run once with the reuse of conflicts and satisfying states

per the MADU framework and once without re-using conflicts or satisfying states. Per

row three of Figure 4-18, the MADU framework checks 85% fewer candidate solutions,

calls the CP Optimizer engine 90% fewer times, and finds the optimal solution in 92%

less time. The MADU framework performs so much better because all conflicts can

be carried forward to the new problem. If the removed design variable alternative

is not involved in the previous solution, then the solution to the problem will not

change and so the first candidate solution generated will be the solution. Even when

a design variable alternative involved in the previous solution is removed, the MADU

algorithm prunes a significant portion of the search space a priori through conflict

reuse.

4.4.3 Adding a Constraint

The performance of the MADU framework after adding a constraint is tested using

eleven test cases. Each test case added an inequality constraint to a previously

unconstrained variable to simulate a new requirement being added to the system.

For example, a requirement could be added on the volume of the Thermal Strap if

access to the screws connecting it to the DAM becomes an issue. Each test case

constrains one of the eleven unconstrained variables in the original problem. Only
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Table 4.9: Each test case for testing the performance of the MADU framework after
removing a design variable alternative. The removed alternative is crossed out.

Design Variable Design Variable Domain
TIL Conductivity 167, 15.9, 391, 6.70, 0.360

Thermal Strap Cross
Sectional Area

0.0001, 0.00015, 0.0002, 0.00025, 0.0003, 0.00035, 0.0004,
0.00045, 0.0005

TIL Density 2700, 7920, 8940, 4430, 1610
Thermal Strap Cost 0.177, 0.400, 0.727, 1.81, 3.66

Thermal Strap
Density

2700, 7920, 8940, 4430, 1610

Thermal Strap Cross
Sectional Area

0.0001, 0.00015, 0.0002, 0.00025, 0.0003, 0.00035, 0.0004,
0.00045, 0.0005

TIL Density 2700, 7920, 8940, 4430, 1610
Thermal Strap Cross

Sectional Area
0.0001, 0.00015, 0.0002, 0.00025, 0.0003, 0.00035, 0.0004,

0.00045, 0.0005
Thermal Strap
Conductivity

167, 15.9, 391, 6.70, 0.360

TIL Conductivity 167, 15.9, 391, 6.70, 0.360

inequality constraints are added. Adding new set constraints is not realistic because

no new design variable alternatives are being added and so the set of materials is

not expanding. Adding new equality constraints does not mirror the addition of

a requirement because system properties are never constrained to be exactly equal

to something. Instead, requirements are used to establish bounds on the value of a

system property. All new constraints are chosen so that the previous optimal solution

is no longer feasible. Table 4.10 shows all test cases.

The eleven test cases were run once with the reuse of conflicts and satisfying states

per the MADU framework and once without re-using conflicts or satisfying states. Per

row four of Figure 4-18, the MADU algorithm checks 39% fewer candidate solutions,

calls the CP Optimizer engine 54% fewer times, and finds the optimal solution in 56%

less time. The MADU algorithm performs so well because all conflicts can be carried

forward to the new problem. In many cases, the added constraint doesn’t change the

solution and so the first candidate solution generated will be the solution. Even when

the previous solution is no longer valid, carrying forward conflicts allows the MADU

algorithm to prune a significant portion of the search space.
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Table 4.10: The eleven test cases for testing the performance of the MADU framework
after adding a constraint.

Design Variable New Constraint
TIL Volume < 2.412× 10−6

TIL Equivalent Conductivity > 0.006009
TIL Cost < 8.8306

Thermal Strap Equivalent Conductivity < 0.2146
Thermal Strap Volume < 3× 10−5

TIL Mass < 0.00388
Thermal Strap Mass < 0.2682
Thermal Strap Cost < 21.81
DAM Temperature < 212

Total Mass < 0.272
Total Cost < 30.64

Table 4.11: The two tests cases for testing the performance of the MADU framework
after removing a constraint.

Removed Constraint Name Removed Constraint Equation
Maximum DAM Temperature Constraint 𝑇𝐷𝐴𝑀 < −60

Maximum Mass Constraint 𝑚𝑡𝑜𝑡 < 0.35

4.4.4 Removing a Constraint

The performance of the MADU framework after removing a constraint is tested using

two test cases. Only two cases are possible since the original problem only contains two

inequality constraints. Removing equality constraints would leave values undefined

while removing set constraints is not a realistic change since material properties need

to be consistent. One test case removed the DAM temperature inequality constraint

while the other removed the total mass inequality constraint. Table 4.11 shows each

of the test cases that were made.

The two test cases were run once with the reuse of conflicts and satisfying states

per the MADU framework and once without re-using conflicts or satisfying states. Per

row five of Figure 4-18, the MADU algorithm checks 78% fewer candidate solutions,

calls the CP Optimizer engine 84% fewer times, and finds the optimal solution in 92%

less time. The MADU algorithm performs well because all satisfying states from the

original problem are carried forward into the new problem.
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Table 4.12: The two test cases for testing the performance of the MADU framework
after tightening a constraint.

Constraint Name Old Constraint
Equation

New Constraint
Equation

Mass Constraint 𝑚𝑡𝑜𝑡 < 0.35 𝑚𝑡𝑜𝑡 < 0.25
DAM Temperature Constraint 𝑇𝐷𝐴𝑀 < −60 𝑇𝐷𝐴𝑀 < −60.5

4.4.5 Tightening a Constraint

The performance of the MADU framework after tightening a constraint is tested

using two test cases. Again, only two test cases are possible because the original

problem only has two inequality constraints. One test case tightens the maximum

DAM temperature constraint by 0.5 ∘C while the other tightens the maximum mass

constraint by 0.1 kg. The new values of the constraints are chosen such that the

optimal solution from the original problem is no longer satisfiable. Table 4.12 shows

the new inequality constraints.

The two test cases were run once with the reuse of conflicts and satisfying states

per the MADU framework and once without re-using conflicts or satisfying states.

Per row six of Figure 4-18, the MADU algorithm checks the same number of candi-

date solutions, calls the CP Optimizer engine 7% fewer times, and finds the optimal

solution in 16% less time. While the savings provided by MADU when tightening

a requirement should be substantial because all conflicts can be reused, the savings

shown in these test cases are slight. The savings are so slight because the change to

each constraint makes the problem unsatisfiable. The algorithm quickly determines

that the problem is unsatisfiable and terminates. Therefore, the algorithm doesn’t

run long enough to accumulate substantial savings.

4.4.6 Relaxing a Constraint

The performance of the MADU framework after relaxing a constraint is tested using

two test cases. Again, only two test cases are possible because the original problem

only has two inequality constraints. One test case relaxes the maximum DAM tem-

perature constraint by 5 ∘C while the other relaxes the maximum mass constraint by
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Table 4.13: The two test cases for testing the performance of the MADU framework
after relaxing a constraint.

Constraint Name Old Constraint
Equation

New Constraint
Equation

Mass Constraint 𝑚𝑡𝑜𝑡 < 0.35 𝑚𝑡𝑜𝑡 < 0.4375
DAM Temperature Constraint 𝑇𝐷𝐴𝑀 < −60 𝑇𝐷𝐴𝑀 < −55

25%. Table 4.13 shows the new values of the constraints.

The two test cases were run once with the reuse of conflicts and satisfying states per

the MADU framework and once starting the problem from scratch after the change.

Per row seven of Figure 4-18, the MADU algorithm checks 46% fewer candidate

solutions, calls the CP Optimizer engine 62% fewer times, and finds the optimal

solution in 65% less time. The MADU algorithm performs well because all satisfying

states from the original problem can be carried forward into the new problem.

4.4.7 Changing the Objective Function

The performance of the MADU framework after changing the objective function is

tested using ten test cases. Each test case changed the objective function to a different

variable out of the ten variables to which the objective function could be changed.

Table 4.14 shows the objective function for each of the ten test cases.

The ten test cases were run once with the reuse of conflicts and satisfying states per

the MADU framework and once starting the problem from scratch after the change.

Per row eight of Figure 4-18, the MADU algorithm checks 60% fewer candidate solu-

tions, calls the CP Optimizer engine 65% fewer times, and finds the optimal solution

in 81% less time. The MADU algorithm performs so well because all conflicts and

satisfying states can be carried forward into the new problem.

4.4.8 Adding or Removing a Design Variable

Because adding or removing a design variable is defined in such a way that the

problem doesn’t change, those changes are not included in Figure 4-18. In practice,

the addition of a design variable is followed by other types of changes whereas the
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Table 4.14: The ten test cases for testing the performance of the MADU framework
after changing the objective function to a different equation.

New Objective Function
min 𝑚𝑡𝑜𝑡

min 𝑣𝑇𝐼𝐿

min 𝑆𝑇𝐼𝐿

min 𝑘𝑇𝐼𝐿

min 𝑣𝑇𝑆

min 𝑘𝑇𝑆

min 𝑚𝑇𝑆

min 𝑚𝑇𝐼𝐿

min 𝑇𝐷𝐴𝑀

min 𝑆𝑇𝑆

removal of a design variable is preceded by other types of changes. Both types of

changes are part of a multistep process whereas this section is limited to single step

changes. The overall performance of adding or removing a design variable is not

separable from the set of changes that must be made to the problem to add or remove

a design variable.

4.5 Summary

This chapter has described the REXIS detector thermal problem, used it to walk-

through how the MADU framework functions, and used it to provide empirical evi-

dence of the efficiency of the framework. The REXIS detector thermal problem is a

simplified model of the thermal constraints on the real REXIS detector. Exercising

the MADU framework on a realistic problem demonstrates its practical value. The

empirical evidence gathered about each type of change shows that reusing conflicts

and satisfying states when the problem changes is an effective strategy. On average,

for the REXIS detector thermal design problem, the savings in the number of opti-

mizer calls and run time that is provided by the MADU framework is 57% over an

algorithm that does not reuse information.
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Chapter 5

Starshade Case Study

This chapter will examine a more complex case study centered on the Starshade

mission proposal. The goal of this problem is to evaluate the capabilities and benefits

of the MADU framework for a realistic architecture study.

5.1 Starshade Overview

The Starshade mission aims to directly image exoplanets by using a space telescope

with an external, formation flying occulter [104]. Figure 5-1 shows how the exter-

nal occulter blocks starlight while permitting imaging and spectral measurements of

planets around the star. This new technology for exoplanet science will enable dis-

covery of Earth-like planets in the habitable zone of a star and the measurement of

spectra of planets that may harbor life. Spectral information in particular has the

potential to provide strong evidence of alien life on exoplanets. No mission like Star-

shade has ever been flown before. Starshade requires precision deployment of large

structures and extremely precise formation flying over long distances. To observe a

star, the Starshade is positioned between the telescope and the star that the telescope

is observing. Subsequent stars are observed by moving the starshade and telescope

to line up with the new star. In this manner, dozens of stars can be observed over a

multi-year mission.
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Figure 5-1: A graphic of the working principle of the Starshade mission. An external,
formation flying occulter blocks light from a star, enabling imaging and spectroscopic
measurements of a planet around that star [84].

5.2 Problem Definition

This case study will perform an optimization of the spacecraft bus that supports the

starshade. The bus must be a fully capable spacecraft that can survive and operate in

deep space while positioning the starshade accurately and repositioning it to observe

different stars. This mission pushes the state of the art in a number of ways. Firstly,

the Starshade and telescope must fly in formation over a baseline of tens of thousands

of kilometers with 1 m accuracy. This challenge requires highly precise sensing and a

communications link between the telescope and Starshade. A special package consist-

ing of light emitting diodes, a laser, and an S-band communications system must be

mounted on the Starshade to accommodate these needs. Secondly, the science pro-

duced by the Starshade is strongly dependent on the ∆𝑉 capability for retargeting

maneuvers. Because only one star can be observed at a time, the Starshade must fly

between a large number of stars to have a high probability of observing an Earth-

like planet in the habitable zone or another type of exoplanet of interest. Therefore,

the design of the bus is largely driven by the propulsion subsystem. Thirdly, the

Starshade is a large structure tens of meters in diameter that must be deployed with

sub-millimeter accuracy. There are two challenges with this design: the deployment

system must be very accurate and the structure is very difficult to test in a relevant

environment. Therefore, the design of the Starshade is particularly sensitive to issues
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discovered late in the design and testing process. These challenges add additional un-

certainty over the normal issues experienced when developing a spacecraft that must

operate successfully in deep space for years. Therefore, a rigorous uncertainty man-

agement methodology will be important to ensure mission success. This case study

will explore how using the MADU framework improves upon conventional uncertainty

management processes.

5.2.1 Starshade Architecture

The baseline Starshade architecture assumed in this problem closely corresponds to

the Rendezvous design from the 2015 JPL Exo-S Final Report [84]. Figure 5-2 shows

a schematic of the bus design used for this case study. In this architecture, a 28 petal

starshade 34 m in diameter rendezvouses with the WFIRST telescope already in orbit

around the Earth-Sun L2 point. The bus structure is a square prism parameterized

by a side length and a height. The bus contains two propellant tanks, each with

a corresponding pressurant tank. The tanks feed an array of thrusters (not shown)

and the main engine. The thrusters perform attitude control and stationkeeping

while the main engine performs the retargeting maneuvers to move the starshade to

a different star. The bus is powered by a gimballed solar array. The bus contains two

communication systems, as in the JPL report. The X-band system communicates to

Earth with a medium gain antenna and three low gain antennas. The S-band system

communicates with WFIRST to perform formation flight. The bus also contains the

formation flying package. Unlike the JPL report, the bus is assumed to be three-axis

stabilized, instead of spin stabilized. This case study includes an electric propulsion

option which requires a large radiator on the anti-Sun side of the spacecraft, driving

a three axis stabilized design. Electronics for the Command and Data Handling

(C&DH) subsystem are contained within the bus. The Starshade is able to observe

targets as close to 40∘ from the Sun based on WIFRST constraints. Because the

telescope facing side of the starshade can never see the Sun because of its very dark

coating, the maximum angle between the target and the Sun is 83∘.

141



Figure 5-2: A graphic of the bus architecture used in this case study with key design
features and bus design variables labeled.

5.2.2 Problem Formulation

In order to comprehensively model the properties of the Starshade bus, the Attitude

Determination and Control Subsystem (ADCS), propulsion subsystem, Command

and Data Handling (C&DH) subsystem, structures subsystem, communications sub-

system, power subsystem, and thermal subsystem are modeled using equations drawn

from Space Mission Analysis and Design, Third Edition as well as Space Mission En-

gineering: the new SMAD [122] [121]. These models are simple, physics based equa-

tions but they capture the main dependencies and design drivers for each subsystem.

Information from the JPL Exo-S final report is used to provide inputs and design

parameters where possible. The detailed model for the Starshade bus is discussed

in Appendix A. An overview of the number of design variables and constraints per

subsystem to convey the size and complexity of the Starshade problem is shown in

Table 5.1. In total, the problem has 35 design variables, 11 inequality constraints, 25

equality constraints, and 4 set constraints.

All design variables and their set of alternatives are shown in Table A.2. The set of

alternatives for each design variable is determined using several different philosophies.

Geometric design variables are given a set of alternatives that span typical values for

that system property. For example, the bus height design variable can take any

value in the range from 1 m to 2.5 m in steps of 0.25 m. Other design variables
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represent a choice of technology. For example, the solar array efficiency design variable

can take values typical of silicon panels, single-junction gallium arsenide panels, or

multi-junction gallium arsenide panels. Finally, some design variables only have one

alternative. Design variables are used for these properties instead of model parameters

in order to model uncertainty (model parameters have no uncertainty). Taking set

constraints into account, there are 1.87× 1010 possible bus designs. The objective

function for the problem is to minimize dry mass 𝑚𝑑𝑟𝑦. Dry mass is proportional to

cost and inversely proportional with ∆𝑉 capability, a key performance parameter for

the Starshade mission.

Because of the size of the problem, algorithm parameters were adjusted to decrease

run time. In the relaxed problem, the maximum acceptable probability of a better

solution exiting 𝑝𝑐𝑢𝑡𝑜𝑓𝑓 is set to 0.1, up from its nominal value of 0.01. In the conflict

extraction algorithm, the stability criteria on the probability of detection of conflicts

and satisfying states 𝑐𝑜𝑛𝑣_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 is set to 0.05, up from its nominal value of 0.01.

These parameter changes slightly increase the chance that the solution output by

the optimizer violates constraints or is suboptimal. However, that chance remains

small and the purpose of this case study is to compare the performance of the MADU

optimizer that reuses information against an identical optimization algorithm that

doesn’t reuse information. The alternate optimizer also uses the adjusted algorithm

parameters so the comparison is not affected by the adjusted parameters.

5.3 Hypothetical Development Scenario

The first exploration of the MADU framework applied to the Starshade problem is a

simulation of information emerging during the development process and shows how

the MADU framework can support the design team in making decisions by efficiently

finding the new optimal solution. The problem consists of three subproblems as

shown in Figure 5-3. The first subproblem corresponds to the problem described in

section 5.2. The solution to this subproblem serves as the baseline design for the

Starshade bus. The subsequent subproblems are alterations of the initial subproblem
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Table 5.1: Statistics on the number of design variables and constraints per subsystem
for the Starshade problem.

Subsystem # of
Design
Variables

# of
Inequality
Constraints

# of
Equality

Constraints

# of Set
Constraints

Starshade 5 0 2 0
ADCS 0 0 2 0

Propulsion 16 4 7 1
C&DH 0 0 0 0

Structures 5 3 4 1
Communications 2 0 2 1

Power 5 2 5 1
Thermal 2 2 3 0
Total 35 11 25 4

that simulate information coming to light during the development process.

In the first scenario, a prototype of the bus has been built and the development

team realizes that the bus interior volume requirement is overly conservative. Not as

much room is needed for wiring harnesses as previously assumed. Therefore, the sec-

ond subproblem is generated from the first subproblem by reducing the conservatism

in the bus interior volume constraint. The subproblem is then solved, minimizing

the dry mass of the system 𝑚𝑑𝑟𝑦. The solution output by the optimizer reduces the

bus height and side length over the previous bus design, resulting in a reduction in

dry mass. A design team following a traditional systems engineering process would

be unlikely to make this change to the bus dimensions as the change would reduce

the margin available for future propellant tank volume increases to handle unforeseen

events. The MADU framework enables a quantification of the benefit of reducing bus

volume in terms of dry mass while considering the known uncertainty in propellant

tank volume. It also provides a defined process for addressing future unforeseen issues

that may necessitate an increase in propellant tank volume, providing confidence to

the design team that the bus dimensions can be reduced.

In the second scenario, radiation testing reveals that an electrical component needs

to be exchanged for a more radiation hardened version. However, the radiation hard-

ened version of the part has a tighter operating temperature range. Therefore, the
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Table 5.2: Design variables and design variables alternatives for the Starshade prob-
lem.

Design Variable Units Uncertainty Design Variable Alternatives
S-band Power Draw W 0.01 29.5

S-band Mass kg 0.01 5.3
Main Engine Power Draw W 0.05 7290, 41, 30

Main Engine Mass kg 0.05 120.8, 0.77, 0.72
Main Engine Isp s 0.02 4190, 310, 230
Solar Array Area m2 0.01 1, 2, 5, 10, 20, 50, 80, 100

Solar Cell Efficiency None 0.05 0.14, 0.185, 0.226
Solar Array Mass per Unit

Area
kg/m2 0.05 2.3, 2.7, 2.8

Battery Depth of Discharge None 0.01 0.6
Battery Capacity W h 0.01 10, 50, 100, 200, 500, 800, 1000,

2000, 3000
Bus Height m 0.01 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5

Bus Side Length m 0.01 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25,
2.5, 2.75, 3, 3.25, 3.5, 3.75, 4

Bus Wall Thickness meter 0.01 0.002, 0.004, 0.006, 0.008, 0.01
Bus Material Density kg/m3 0.01 2710, 4430, 8027
Bus Material Young’s

Modulus
Pa 0.01 68× 109, 110× 109, 200× 109

Absorptivity None 0.01 0.08
Radiator Fraction None 0.01 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 0.99
Propellant Tank 1 Capacity L 0.01 10, 25, 50, 75, 100, 300, 500, 750,

1000, 1500, 2000
Pressurant Tank 1

Capacity
m3 0.01 0, 0.025, 0.05, 0.075, 0.01

Propellant Tank 2 Capacity L 0.01 0, 10, 25, 50, 75, 100, 300, 500,
750, 1000, 1500, 2000

Pressurant Tank 2
Capacity

m3 0.01 0, 0.025, 0.05, 0.075, 0.01

Starshade Mass kg 0.3 570
Retargeting Delta V m/s 0.05 23

Stationkeeping Delta V m/s 0.05 1.5
Formation Flying Package

Mass
kg 0.5 10

Formation Flying Package
Power Draw

W 0.5 10

Propellant Density Tank 1 kg/m3 0.01 1004, 1433, 1709
Propellant Density Tank 2 kg/m3 0.01 1004, 1433, 1709
Thruster Tank Selector None 0 0, 1

Mixture Ratio None 0 0, 0.46, 1
Main Engine Heat

Dissipation
W 0.05 792, 41, 30

Pressurant Tank 1 None 0 0, 1
Pressurant Tank 2 None 0 0, 1

Propellant Tank 1 Fill
Percentage

None 0.01 1

Propellant Tank 2 Fill
Percentage

None 0.01 1
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Figure 5-3: A flow chart showing the form of the Starshade hypothetical development
scenario problem.

maximum bus temperature needs to be lowered. The third subproblem is generated

by tightening the maximum bus temperature inequality constraint of the first sub-

problem. The third subproblem is then solved, minimizing dry mass. The solution

generated by the optimizer increases the radiator area to reject more heat and lower

bus temperature. A design team following a traditional systems engineering process

would be likely to make the same design change. However, the MADU framework

provides confidence that this change will have the lowest impact on dry mass as com-

pared with other types of changes. Additionally, the MADU framework finds the

smallest increase in radiator size that will ensure that requirements are met in the

face of the uncertainty in the design variables.

The computational results for the hypothetical development scenario are shown

in Figure 5-4. As with the REXIS thermal design problem, the MADU framework

is compared against an identical algorithm with the exception that the "restart"

algorithm doesn’t reuse any information from the previous problem. However, it does

discover and use conflicts during search in the same manner as the conflict-directed A*

algorithm [123]. Over the entire problem, the average savings in number of optimizer

calls and run time provided by the MADU framework is 47%.

5.3.1 Baseline Problem

The solution to the baseline problem formulation given in section 5.2 is found after

checking 13 candidate solutions, calling the CP Optimizer engine 4928 times, and in

a run time of 3678.1 s. The optimal solution uses the bipropellant propulsion system,

has a solar array with GaAs multijunction cells that is 2 m2 in size, a battery capacity

of 800 W h, a height of 2 m, a side length of 1.5 m, a wall thickness of 0.0002 m with
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Type of Change
Candidates Checked Optimizer Calls Run Time (sec)
Restart MADU Restart MADU Restart MADU

Initial Problem 13 13 4928 4928 3678.1 3678.1
Relax Minimum
Bus Volume

14 14 6628 3956 6574.7 3585.2

Tighten Bus
Maximum

Temperature

16 3 5420 386 4205.8 294.3

Figure 5-4: Performance of MADU optimization algorithm after each type change
compared to an algorithm that starts from scratch after a change to the problem.
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walls made out of aluminum, and a radiator taking up 50% of the anti-Sun side of

the Bus. Propellant tank 1 holds MON and is 500 L in size with a pressurant tank

that has a volume of 0.025 m3. Propellant tank 2 holds hydrazine and has a capacity

of 1500 L with a pressurant tank that has a volume of 0.05 m3. The dry mass of the

system is about 264 kg.

The baseline solution intuitively makes sense for a minimization of dry mass. A

bipropellant propulsion has a relatively high specific impulse without the dry mass

disadvantages of an electric propulsion system which needs heavy propellant man-

agement and power conditioning equipment. The bus size, solar array area, battery

capacity, and radiator are sized to be sufficient to execute the mission while accounting

for uncertainty. The walls thickness is assigned the thinnest possible alternative and

uses the lightest material indicating that the stiffness constraints aren’t driving the

design. Propellant tank 1 is smaller than propellant tank 2 because it holds a denser

propellant. Pressurant tank 1 is smaller than pressurant tank 2 because propellant

tank 1 is smaller than propellant tank 2 and therefore pressurant tank 1 doesn’t need

to hold as much helium as pressurant tank 2. The optimal value for selected design

variables for the baseline solution are shown on a radar plot in Figure 5-5.

5.3.2 Relax Bus Interior Volume Constraint

In the first scenario, a prototype of the bus has been built and the development

team realizes that the bus interior volume requirement is overly conservative. Not

as much room is needed for wiring harnesses as previously assumed. Therefore, the

conservatism applied to the calculation of bus volume can be reduced. This change

corresponds to a relaxation of the inequality constraint given in equation A.22 in

Appendix A. Instead of requiring that the bus volume be at least twice as large as

the total volume of both propellant tanks, the bus volume only needs to be 1.75 times

as large as the total volume of both propellant tanks. The subproblem is re-solved,

minimizing dry mass.

The new solution is different in a number of ways from the previous solution. The

value of selected design variables are shown in a radar plot in Figure 5-6 alongside the
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Figure 5-5: A radar chart showing the optimal values for bus height, bus side length,
and radiator fraction for the baseline problem.

results from the baseline problem. The bus height decreased from 2 m to 1.25 m, the

bus side length increased from 1.5 m to 1.75 m, and the radiator fraction increased

from 50% to 60%. These changes result in a reduction in bus interior volume from

4.5 m3 to 3.83 m3 and a decrease in nominal dry mass from 264 kg to 260 kg. A design

team following a traditional systems engineering process would be unlikely to make

this change to the bus dimensions as the change would reduce the margin available

for future propellant tank volume increases to handle unforeseen events. The MADU

framework enables a quantification of the benefit of reducing bus volume in terms of

dry mass while considering the known uncertainty in propellant tank volume. It also

provides a defined process for addressing future unforeseen issues that may necessitate

an increase in propellant tank volume, providing confidence to the design team that

the bus dimensions can be reduced.

The new optimal solution is found after checking 14 candidate solutions, calling

the CP Optimizer engine 3956 times, and a run time of 3585.2 s. Importantly, the

conflicts and satisfying states carried over from the previous problem enabled the new

optimal design to be found faster than an approach that did not reuse conflicts or
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Figure 5-6: A radar chart showing the optimal values for bus height, bus side length,
and radiator fraction after relaxing the bus volume constraint.

satisfying states. Such an approach would find the same optimal design but evaluates

14 candidate solutions, calls the CP Optimizer engine 6628 times, and takes 6574.7 s

to run. The MADU framework evaluates the same number of candidate solutions,

calls the CP Optimizer engine 40% fewer times, and runs in 45% less time.

5.3.3 Tighten Maximum Bus Temperature Requirement

In the second scenario, radiation testing reveals that an electrical component needs

to be exchanged for a more radiation hardened version. However, the radiation hard-

ened version of the part has a tighter operating temperature range. Therefore, the

maximum bus temperature needs to be lowered. This change corresponds to a tight-

ening of the maximum bus temperature inequality constraint. The old maximum

temperature was 40 ∘C while the new maximum temperature is now 20 ∘C. Again,

the optimizer is asked to minimize dry mass.

The new solution is almost the same as the old solution but increases the fraction

of the anti-Sun side of the bus that serves as a radiator from 60% to 80%. The value of
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Figure 5-7: A radar chart showing the optimal values for bus height, bus side length,
and radiator fraction after tightening the bus maximum temperature constraint.

selected design variables are shown in a radar plot in Figure 5-7 alongside the results

from the baseline problem and the solution after relaxing the bus volume constraint.

A design team following a traditional systems engineering process would be likely to

make the same design change. However, the MADU framework provides confidence

that this change will have the lowest impact on dry mass as compared with other

types of changes. Additionally, the MADU framework finds the smallest increase in

radiator size that will ensure that requirements are met in the face of the uncertainty

in the design variables.

The new optimal solution is found after checking 3 candidate solutions, calling

the CP Optimizer engine 386 times, and a run time of 294.3 s. The solution is found

much faster than the previous problem because all conflicts can be reused. Again,

carrying over conflicts and satisfying states from the previous problem resulted in

a performance improvement over an algorithm that started from scratch. Such an

algorithm evaluates 16 candidate solutions, calls CP Optimizer 5420 times, and takes

4205.8 s to run. The MADU framework evaluated 81% fewer candidate solutions,

called CP Optimizer 93% fewer times, and runs in 93% less time.
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5.4 Sensitivity to Requirement Changes

In addition to updating the design as information is learned, the MADU framework

can be used to efficiently evaluate how the optimal design changes when requirements

change. The framework can be used to find the new optimal design after a require-

ments change or to perform a sensitivity analysis to examine how the optimal solution

depends on the value of a requirement.

This section imagines that after settling on the baseline bus design described in

section 5.3.1, a late change to the launch vehicle occurs. The problem is to identify

which new launch vehicle should be used for the mission and how that new launch

vehicle may impact the mission’s science return. A series of problems are solved in

order to understand how the ∆𝑉 capability of the bus depends on the mass capability

of the launch vehicle. A wet mass constraint is introduced and gradually tightened

in steps with the optimal design calculated at each step. Several new alternatives

for the ∆𝑉 available for each retargeting maneuver are added to the problem and

the objective function is changed to maximize the ∆𝑉 available for each retargeting

maneuver. This objective function corresponds to a maximization of the number of

stars that the Starshade system can observe.

Because the change was made late in development, some design choices have

already been made and so some design variables are frozen at their values as calculated

for the baseline bus design. The bus structure and propulsion subsystem are two of

the first pieces of a spacecraft to be built. Therefore, the propulsion system is fixed

to be bipropellant, the bus height is fixed at 2 m, and the bus side length is fixed at

1.5 m.

This sensitivity analysis gives the systems engineering team information on the

maximum wet mass at which the system will no longer be able to meet its nominal

∆𝑉 requirements, the maximum ∆𝑉 of the bus with smaller launch vehicles, and the

minimum launch vehicle size at which the system cannot retarget at all. The MADU

framework allows this problem to be solved efficiently, permitting a more thorough

exploration of the design space than would otherwise be possible.
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Table 5.3: The sequence of subproblems that are solved to understand how Starshade
bus ∆𝑉 capability depends on launch vehicle capability.

Wet Mass
Constraint

Retargeting Delta V Design
Variable Alternatives (m/s)

Objective
Function

None 23 𝑚𝑖𝑛 𝑚𝑑𝑟𝑦

𝑚𝑤𝑒𝑡 < 4000 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 3750 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 3500 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 3250 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 3000 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 2750 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 2500 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 2250 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

𝑚𝑤𝑒𝑡 < 2000 5, 10, 15, 20, 23, 25, 30, 35, 40 𝑚𝑎𝑥 ∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔

The sequence of subproblems that are solved to conduct the sensitivity analysis is

shown in Table 5.3. The sensitivity analysis is conducted after the baseline problem

described in section 5.2 has been solved. The first subproblem of the sensitivity

analysis introduces a number of retargeting ∆𝑉 alternatives, introduces a maximum

wet mass constraint with a loose limit, and changes the objective function to maximize

the retargeting ∆𝑉 . In the subsequent subproblems, the wet mass constraint is

gradually tightened in steps of 250 kg. In each subproblem, bus retargeting ∆𝑉

capability is maximized. The constraint starts at an initially loose value and then is

tightened in order to maximize the number of conflicts that are preserved after each

change, maximizing the resulting efficiency of the sensitivity analysis.

The results of this sensitivity analysis are shown in Table 5.4 and Figure 5-8. In

the figure and table, the maximum ∆𝑉 available for each retargeting maneuver is

shown as a function of launch vehicle capability. In all subproblems, the bus height

is restricted to 2.0 m, the bus side length is restricted to 1.5 m, and the bipropellant

propulsion system is used.

For high launch vehicle capabilities, the bus can accomplish the nominal mission,

which requires a ∆𝑉 of 23 m/s for each retargeting maneuver. Because no larger

value for the maximum retargeting ∆𝑉 is chosen, it can be concluded that 23 m/s is

the maximum capability of the bipropellant propulsion system with the chosen bus
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dimensions. As maximum wet mass decreases, the system can no longer deliver as

much ∆𝑉 for each retargeting maneuver. With a wet mass constraint of 3000 kg or

less, the system can no longer accomplish the nominal mission. This cutoff value

is extremely useful to know for the customer. It means that launch vehicles like

the Atlas V 501 and Atlas V 401 9 cannot support the nominal mission [86]. The

capabilities of those launch vehicles to the required orbit for the Starshade mission

are 2070 kg and 3000 kg respectively. Alternatively, rockets like the Atlas V 411 and

Falcon 9 with the Automated Spaceport Drone Ship (ASDS) recovery option for the

first stage can support the nominal mission. The capability of those rockets to the

Starshade orbit is 3895 kg and 3250 kg respectively.

As the table and figure show, the Starshade bus retains the capability to execute

15 m/s retargeting maneuvers down to a launch vehicle capability of 2500 kg and the

ability to execute 10 m/s retargeting maneuvers down to a launch vehicle capability

of 2250 kg. No satisfying solution exists with a maximum wet mass of 2000 kg.

The changes made to the bus for these less capable designs is to shrink the propel-

lant tanks. In the design that is capable of 15 m/s retargeting maneuvers, propellant

tank 1 has a volume of 300 L and propellant tanks 2 has a volume of 1000 L. In

the design that is only capable of 10 m/s retargeting maneuvers, propellant tank 1

has a volume of 300 L and propellant tank 2 has a volume of 750 L. A design team

following a traditional systems engineering approach would be resistant to switching

to a launch vehicle with reduced capability and would instead focus on ensuring that

a launch vehicle with sufficient capability to support the nominal mission is available.

The traditional process is vulnerable to circumstances in which no such launch vehicle

is available because a reduced mission has not been explored. The MADU framework

allows a quantitative understanding of how bus ∆𝑉 capability trades with launch

vehicle capability and the design changes that are necessary to fit within a smaller

launch vehicle.

Figure 5-9 shows the computational data for running the sensitivity analysis. The

MADU framework performs better than an algorithm that restarts from scratch, be-

cause such an algorithm forgets all conflicts and satisfying states when the wet mass
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Table 5.4: Maximum ∆𝑉 available for each retargeting maneuver as a function of
maximum wet mass

Maximum Wet
Mass (kg)

Maximum ∆V per Retargeting
Maneuver (m/s)

4000 kg 23
3750 kg 23
3500 kg 23
3250 kg 23
3000 kg 15
2750 kg 15
2500 kg 15
2250 kg 10
2000 kg None (infeasible)

Figure 5-8: Scatter plot showing the maximum ∆𝑉 available for each retargeting
maneuver as a function of maximum wet mass.
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Algorithm Candidates Checked Optimizer Calls Run Time (sec)
Restart 85 23116 12830.5
MADU 24 4203 2271.3

Figure 5-9: Performance of MADU framework compared against an algorithm that
starts from scratch when exploring how bus height affects the optimal solution.

constraint is tightened. Across the entire series of problems, the MADU framework

checks 72% fewer solution candidates, calls CP Optimizer 82% fewer times, and runs

in 82% less time. The savings arises because each new wet mass constraint is imple-

mented as a tightening of the previous wet mass constraint. Therefore, all conflicts

from the previous problem remain conflicts and a significant amount of search space

is pruned. With this savings, systems engineers can test more options and better

understand the design space with the MADU framework.

5.5 Scalability of MADU Framework

To evaluate the scalability of the MADU Framework, a series of hypothetical design

scenarios are run each with a different number of possible solutions. Each problem

simulates the sequence of three problems laid out in section 5.3 but the number

of alternatives for each design variable is altered. The set of constraints and the

objective function are kept constant because this study is focused on understanding

the computational properties of the MADU framework as a function of problem size.

Changes to the set of constraints or the objective function might distort the results.

The set of problems is developed by removing design variable alternatives from the full

Starshade problem. The optimal set of alternatives for each stage of the development

scenario are included in each problem so that the optimal solution is the same across
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each problem. To compose a problem, the design variable alternative with the highest

and lowest value are removed from the domain of each variable that is not involved

in a set constraint except where the alternative to be removed is part of an optimal

solution. In that case, the next highest or lowest alternative is removed instead.

For each problem size, the problem is solved with the MADU framework and with a

similar algorithm that uses conflict-directed search but doesn’t reuse information.

The computational results of the hypothetical scenarios are shown in Figure 5-10.

Four hypothetical design scenarios are solved. The scenario with the largest number

of solutions corresponds to the original development scenario described in section

5.3. The four problems span about four orders of magnitude in terms of number of

solutions. In the figures, the performance of the MADU framework is shown by the

dashed lines whereas the performance of the algorithm that doesn’t reuse information

is shown by the solid lines. As the problem sizes increase, both the MADU framework

and the "restart" algorithm take longer to find a solution. On average, the MADU

framework generated 34% fewer solution candidates, calls the optimizer 46% fewer

times, and finds the optimal solution in 47% less time. These savings are consistent

across the different problem sizes. While the statistics are limited, the data for these

problems indicate that the MADU framework should provide computational savings

for larger problems.

5.6 Summary

This chapter utilizes a case study based on the Starshade mission concept to demon-

strate how the MADU framework can incorporate information learned during devel-

opment and find an optimal design efficiently, how the MADU framework supports

efficient sensitivity analysis against requirements changes, and how the MADU frame-

work performs as problem size changes. The hypothetical design scenario problem

illustrates how the MADU framework can provide more information about how relax-

ing or tightening a requirement might impact the design than the traditional systems

engineering process. The average savings in the number of optimizer calls and run
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Number of
Solutions

Candidates Checked Optimizer Calls Run Time (sec)
Restart MADU Restart MADU Restart MADU

1.87× 106 18 12 4644 2459 1079.5 532.3
8.82× 107 26 17 10091 4988 4681.4 2171.5
2.09× 109 30 19 10588 6088 5903.9 3698.7
1.80× 1010 43 30 16976 9270 14458.6 7557.6

Figure 5-10: Performance of MADU framework for a range of problem sizes
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time over an algorithm that does not reuse information after each change to the prob-

lem is 47%. The sensitivity analysis of how retargeting ∆𝑉 capability depends on

launch vehicle capability shows that the MADU framework can provide information

about dependencies between design variables and requirements beyond what the tra-

ditional systems engineering process provides. In this problem, the average savings in

the number of optimizer calls and run time provided by the MADU framework over

an algorithm that does not reuse information is 82%. The scalability testing per-

formed using several versions of the hypothetical development scenario with different

numbers of possible solutions reveals that the MADU framework provides savings for

all tested problem sizes. On average, across all tested problem sizes, the savings in

the number of optimizer calls and run time that is provided by the MADU framework

is 47% over an algorithm that does not reuse information. This savings is consistent

across the tested problem sizes.
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Chapter 6

Conclusion

This thesis has explored the importance of considering deep uncertainty in the design

of space systems and presented a framework to handle deep uncertainty through adap-

tation when new information is learned. Current uncertainty management processes

have weaknesses related to deep uncertainty because they don’t emphasize revisiting

decisions when new information emerges. Revisiting decisions in light of new infor-

mation is a fundamental strategy for decision making under deep uncertainty. To

implement adaptation in a computational framework, incremental search algorithms

used to solve dynamic constraint satisfaction problems are adapted to solve the dy-

namic, chance-constrained, stochastic optimization problem that is the space system

development process. The Model-based Systems Engineering (MBSE) paradigm pro-

vides new capabilities related to traceability of system information to design decisions

and integration of analysis tools with the design team. The Model-based Adaptive De-

sign under Uncertainty (MADU) framework integrates adaptive strategies to handle

deep uncertainty, incremental search techniques that reuse information, and MBSE

to enable efficient space system design under deep uncertainty.

The MADU framework is tested in two case studies. The first case study is a

thermal design problem based on the design of the REXIS detectors. The case study

is used to walkthrough the MADU framework step by step and to give examples

of the potential computational savings for each type of change. The second case

study is a design problem based on the Starshade mission concept. This case study
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is used to illustrate the advantages of the framework over the traditional systems

engineering process, to demonstrate the efficiency of conducting a sensitivity analysis

against requirements changes, and to show evidence that the computational savings

provided by the framework are insensitive to problem size. In these case studies, the

MADU framework performs 58% faster on average than an algorithm that doesn’t

reuse information.

6.1 Avoiding Issues in JWST Development

Returning to the case of JWST development, there are several instances of delays

resulting from design decisions that were not revisited in light of new information.

With the MADU framework, these issues may have been avoidable.

The first example of how MADU may have helped JWST is the elevated workforce

levels described in section 1.1.2. With MADU, the higher-than-predicted personnel

issues may have been identified much earlier. After several consecutive months of

elevated workforce levels, the assumptions that went into the prediction of personnel

levels could be revisited to understand if the root causes of the elevated personnel

levels could be identified and incorporated into the predictions.

A second example of how MADU may helped JWST stems from an incident in

June 2016. During a sunshade deployment test, a cable was pinched by a pulley

[35]. The pulley walls had been thinned during a mass reduction effort but the effect

of that design change on deployment dynamics was not re-examined, leading to a

pinched cable. The pulleys had to be redesigned, consuming two weeks of schedule

reserves. If the MADU framework was used, the pulley deflection analysis would have

been flagged as an analysis that had to be redone after changing the pulley geometry.

Redoing the deflection analysis may have revealed that a cable could pinch during

deployment and may have prevented the test failure and associated rework.

A third example of how MADU may have helped JWST comes from an issue

experienced during an acoustics test of the spacecraft. Loose hardware was found in

the spacecraft because locking nuts were not torqued to the required level [55]. The
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nuts were tightened just enough to be flush with the end of the screw to minimize

the potential for the sunshade to snag. The decision to use locking nuts, instead of

other locking methods, on those screws was not re-examined after the decision to

only tighten the nuts enough to be flush with their screw. The MADU framework

would have mandated that any analyses that assumed a torque value be reconsidered

when the torque value was changed and the issue of the nuts not locking may have

been caught before the test. Catching the issue before the test would have prevented

the test failure, the associated rework to redo the test, and would have not exposed

the hardware to the risk presented by loose hardware in a mechanically energetic

environment.

6.2 Key Findings from Case Studies

Analysis of the case studies performed in this thesis reveals several key findings.

Firstly, the MADU framework revealed some possible design changes that may not

have been used by a design team following a traditional systems engineering process.

MADU not only can identify optimal designs while accounting for the uncertainty in

the problem but provides a process for changing that design if unforeseen events occur.

The existence of this adaptation process gives the design team added confidence over

the traditional systems engineering process where a design team must account for

possible future events by including extra margin in the system and only releasing

that margin when strictly necessary.

Secondly, in both case studies, the changes that tend to preserve conflicts resulted

in more significant computational savings than the changes that tend to preserve

satisfying states. This additional savings is because reused conflicts improve the

initial solution candidate generated by the relaxed problem which reduces the number

of solution candidates that need to be generated before finding the optimal solution.

Therefore, fewer relaxed problems need to be solved and fewer conflicts need to be

extracted. In contrast, reusing satisfying states only improves the conflict extraction

process and doesn’t affect the number of solution candidates that need to be generated
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before the optimal solution is found. Therefore, reuse of conflicts provides more

savings.

Thirdly, the changes that can be made to the problem can be used to incorporate

information learned during development but can also be used to explore hypothetical

changes to the system. In the hypothetical cases, carefully structuring the series

of problems in such a way that many conflicts and satisfying states are preserved

between problems can result in significant computational savings. This feature of the

MADU framework makes some types of sensitivity analyses quite computationally

cheap to perform and enables deeper exploration of the design space than traditional

methods.

Fourthly, the test of scalability showed that the percentage savings that MADU

provides are independent of the number of solutions. As problem size increases, the

pruning power of conflicts and satisfying states increases proportionally and so the

overall percentage savings stays the same. This finding provides confidence that the

MADU framework will continue to provide beneficial savings as problem size increases

beyond the largest problem size tested in this thesis.

6.3 Contributions

The primary contribution of this thesis is a model-based framework for development

of space systems under deep uncertainty. This work is the first to examine strategies

for decision making under deep uncertainty in the space system design process. An

implementation of the framework is presented and exercised on two case studies. The

results from the case studies show that the framework is able to efficiently identify

an optimal design, even when unforeseen changes are made to the problem. The

contributions with respect to the three research questions from section 1.2 are:

6.3.1 Research Question 1

How can the framework perform space system design under deep uncer-

tainty?
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A framework is developed that addresses deep uncertainty in space sys-

tem design through design adaptation. Deep uncertainty is handled through an

update process where design decisions are revisited when new information is learned.

This strategy allows the consequences of unforeseen events on the design to be quan-

tified. This information can be used by the design team to inform design decisions.

The current state of the practice of space system development doesn’t always exam-

ine the implications of new information when it is learned. Therefore, the framework

presented in this thesis is less vulnerable to unforeseen events than current practices.

6.3.2 Research Question 2

How can a system model be used to perform space system design while

considering uncertainty?

A system model is incorporated into the design framework. The system

model contains information on known system uncertainties, information about design

decisions, and integrates with optimizers used to quantify the impact of new informa-

tion. Current space system design practices rarely utilize a system model. Because

the framework presented in this thesis utilizes a system model, traceability between

design decisions and information learned about the system during development is

improved over current practices.

6.3.3 Research Question 3

Does the framework perform updates efficiently?

Constraint learning techniques are used to perform efficient design up-

dates. Conflicts and satisfying states from previous optimizations are stored in the

system model and reused in new optimizations. Reuse of these artifacts reduces the

design space searched in new optimizations. Efficiency is demonstrated using two

case studies. Current state-of-the-art algorithms for solving constraint optimization

problems don’t reuse information between optimizations. Across both case studies,

the framework presented in this thesis is able to consistently find the new optimal
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design faster than an algorithm with an identical search strategy that doesn’t reuse

information. The average savings in runtime and number of optimizer calls across

the two case studies is 58%.

6.4 Future Work

The framework developed in this thesis can be extended in a number of ways. The

recommendations for future work fall into three categories: (1) addressing limitations

with the current framework, (2) expanding the capabilities of the framework, and (3)

improving the performance of the framework.

1. Addressing the limitations of the MADU framework

∙ The framework can be extended to cover mixed finite domain and contin-

uous variables. This extension will require correct identification and appli-

cation of conflicts to continuous variables. This extension will be valuable

because it will enable more natural modeling of the space system design

problem and will prevent the chosen discretization scheme from affecting

the results of the optimization.

∙ The framework could benefit from a constraint engine that is capable of

solving simultaneous equations, as opposed to requiring the constraint sys-

tem to form a directed acyclic graph as the CP Optimizer engine does.

Several engineering domains utilize techniques like finite element analysis

that result in simultaneous equations. A constraint engine capable of han-

dling those problems will greatly increase the level of system detail that

can be modeled.

2. Expanding the capabilities of the MADU framework

∙ The framework can be extended to optimize with multiple objective func-

tions. This capability will enable better exploration of interesting design
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solutions that can balance multiple concerns. For example, in the Star-

shade problem, interesting solutions may be found that minimize dry mass

while maximizing ∆𝑉 capability.

∙ The impact of new information on the system could be minimized by im-

plementing new types of objective functions. Changes to the objective

function are efficient to explore as such a change has no impact on the set

of conflicts or satisfying states. For example, if the design team would like

to find the minimum change design after tightening a requirement, they

could implement an objective function that steered changes toward areas

of the system that have little impact on the rest of the system. Areas of a

system that when changed have little impact on the rest of the system are

called change absorbers [42]. An objective function that prioritizes mak-

ing changes to change absorbers will result in a new system design that

minimizes change from the previous design.

∙ The scope of the MADU framework implemented in this thesis could be

expanded to cover behaviors of a system. Behavioral information can be

captured in SysML using Activity diagrams, State Machine diagrams, and

other type of diagrams. The framework should be able to handle informa-

tion stored in these diagrams. The information contained in these diagrams

could be used to build a model of the decision making process used by the

operations team on the ground or the by the vehicle itself. This behavioral

information has a strong parallel to the fields of automated planning and

scheduling in which a system must determine the correct sequence of ac-

tions to execute. Existing techniques from those fields could be combined

with MADU to develop a comprehensive framework that ties together how

design and operations interact to deliver value to stakeholders. With such

a framework, the impact of a change in requirement could be quantified

in terms of how the system form may have to change or how the system

could be operated in a different way to meet the new requirement.
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∙ Proactive approaches to address deep uncertainty could be added to the

framework in order to generate optimal designs that are robust to future

events that are foreseeable. This capability may result in more robust

system designs that aren’t affected much by new information.

∙ A check of the quality and scope of the system model used in the frame-

work will make the results produced by the MADU framework more re-

liable. The quality of the output of the MADU framework is dependent

on the correctness of the system model and so some effort should be ex-

pended to ensure that the system model is correct before proceeding with

optimization.

3. Improving the performance of the MADU framework

∙ The framework could be improved by establishing a database of conflicts

and satisfying states that can be queried every time that the problem

changes. The current implementation only tries to reuse conflicts and sat-

isfying states from the previous problem instance, ignoring the full history

of problems. This improvement could result in more conflicts and satis-

fying states being reused in a given optimization, resulting in improved

performance.

∙ The sampling technique described in this thesis could be improved through

use of more advanced techniques that reduce the required number of sam-

ples. Importance sampling could be used to reduce the number of optimizer

calls necessary to find the solution to a relaxed problem or to compute the

probability of occurrence of a conflict or satisfying state in the conflict

extraction process [41]. Alternatively, information reuse from past model

evaluations can also be used to reduce the variance of a Monte Carlo esti-

mator [89].
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Appendix A

Starshade Bus Model

This appendix describes the subsystem models and starshade properties assumed for

the Starshade problem.

A.1 Starshade Mission Properties

The Starshade bus model requires a number of properties to be defined for the Star-

shade and for the mission plan. The design variables that are used to describe the

design of the Starshade are captured in Table A.2. The JPL report described the

Starshade mechanism as having a current best estimate (CBE) mass of 570 kg with

a maximum expected value (MEV)mass of 741 kg. In the model, the Starshade mass

is a design variable with one alternative. The alternative is a uniform random vari-

able centered on the CBE mass of 570 kg with a width of 30% of the central value.

The JPL report doesn’t mention many details of the formation flying package so it

is modeled using a two design variables, one for mass and one for power draw. The

mass design variable has one alternative with a central value of 10 kg and a width of

50% of the central value. The power draw design variable has one alternative with a

central value of 10 W and a width of 50% of the central value.

A crucial assumption is the ∆𝑉 allocated for the various maneuvers during cruise,

formation flying, and retargeting. The ∆𝑉 values from the JPL Starshade study

are shown in Table A.1. The spacecraft must perform three trajectory correction
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Table A.1: Reference ∆𝑉 values for the Starshade mission reproduced from Table
8.2-1 in the 2015 JPL Exo-S Final Report [84].

Occulter ∆V CBE ∆V
per (m/s)

Contingency
(%)

MEV ∆V
per (m/s)

MEV ∆V
tot (m/s)

TCM 1 20 25% 25 25
TCM 2 2 25% 3 3
TCM 3 2 25% 3 3

Rendezvous 5 43% 7 7
Retargeting 23 25% 29 2013

Stationkeeping
Maneuvers (per day)

1.5 10% 2 361

Disposal 10 43% 14 14
Total 2426

maneuvers (TCMs) on the way to Earth-Sun L2, a rendezvous maneuver to arrive

at the first star target, stationkeeping maneuvers to stay on station while observing

a target, a series of retargeting maneuvers to move between targets, and a disposal

maneuver. The ∆𝑉 values for the three TCMs, the rendezvous maneuver, and the

disposal maneuver are model parameters and are set to the MEV values given in Table

A.1. The ∆𝑉 required for each retargeting maneuver and the daily stationkeeping

maneuvers are design variables. Both design variables only have one alternative in

their domain, a uniform random variable centered on the CBE value given in Table

A.1 and with a width of 5% of the central value. The JPL report presents three design

reference missions (DRMs) for the starshade. This problem assumes that the third

DRM, that maximizes Earth twins in habitable zones, is chosen. This DRM has 55

star targets. Each star is observed for an average of 4.375 d. A contingency of 700 m/s

of ∆𝑉 for retargeting is provided, in addition to the ∆𝑉 necessary to accomplish all

55 retargeting maneuvers.

The total ∆𝑉 that must be provided by the main engines ∆𝑉𝑚𝑎𝑖𝑛 is calculated

using equation A.1 where 𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝑠 is the number of stars that the mission observes,

∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔 is the average ∆𝑉 per retargeting maneuver, and ∆𝑉𝑐𝑜𝑛𝑡 is the contin-

gency ∆𝑉 . The total ∆𝑉 that must be provided by the Starshade bus thrusters

∆𝑉𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is calculated using equation A.2 where 𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝑠 is the number of stars that

the mission observes, 𝑡𝑡𝑎𝑟𝑔𝑒𝑡 is the average number of days that the mission observes
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Design Variable Units Uncertainty Design Variable
Alternatives

Starshade Mass kg 0.3 570
Retargeting Delta V m/s 0.05 23

Stationkeeping Delta V m/s 0.05 1.5
Formation Flying Package

Mass
kg 0.5 10

Formation Flying Package
Power Draw

W 0.5 10

Table A.2: Design variables that control the design of the structures subsystem.

a star, ∆𝑉𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑒𝑝𝑖𝑛𝑔 is the ∆𝑉 per day for stationkeeping while observing a star,

∆𝑉𝑡𝑐𝑚1 is the ∆𝑉 required for TCM 1, ∆𝑉𝑡𝑐𝑚2 is the ∆𝑉 required for TCM 2, ∆𝑉𝑡𝑐𝑚3

is the ∆𝑉 required for TCM 3, ∆𝑉𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 is the ∆𝑉 required to rendezvous with

the telescope when arriving at Earth-Sun L2, and ∆𝑉𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 is the required ∆𝑉 to

dispose of the Starshade after the mission is complete.

∆𝑉𝑚𝑎𝑖𝑛 = 𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝑠∆𝑉𝑟𝑒𝑡𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔 + ∆𝑉𝑐𝑜𝑛𝑡 (A.1)

∆𝑉𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 = 𝑛𝑡𝑎𝑟𝑔𝑒𝑡𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡∆𝑉𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑘𝑒𝑒𝑝𝑖𝑛𝑔 + ∆𝑉𝑡𝑐𝑚1 + ∆𝑉𝑡𝑐𝑚2 + ∆𝑉𝑡𝑐𝑚3

+ ∆𝑉𝑟𝑒𝑛𝑑𝑒𝑧𝑣𝑜𝑢𝑠 + ∆𝑉𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 (A.2)

A.2 Bus Subsystem Models

In order to comprehensively model the properties of the Starshade bus, the Attitude

Determination and Control Subsystem (ADCS), propulsion subsystem, Command

and Data Handling (C&DH) subsystem, structures subsystem, communications sub-

system, power subsystem, and thermal subsystem are modeled using equations drawn

from Space Mission Analysis and Design, Third Edition as well as Space Mission En-

gineering: the new SMAD [122] [121]. These models are simple, physics based equa-
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tions but they capture the main dependencies and design drivers for each subsystem.

Information from the JPL Exo-S final report is used to provide inputs and design

parameters where possible.

Attitude Determination and Control Subsystem

The ADCS design specified in the JPL Exo-S final report is a simple, thruster based

design. The sunshade has relatively loose pointing requirements (< 1∘) and requires

a capable thruster system for formation flying and so no reaction wheels are needed.

Attitude control is provided entirely by thrusters. The thruster design is discussed in

the propulsion subsystem section. Therefore, the only ACS hardware that is needed

are a primary and redundant inertial measurement unit (IMU), primary and redun-

dant star trackers, and sun sensors. Four sun sensors are baselined for the Starshade

bus to provide coarse attitude control and to trigger fault responses if the Sun moves

out of its designated zone. The Honeywell MIMU is assumed for the two IMUs [51].

Each MIMU has a mass of 4.44 kg and draws 22 W of power on average. The Ball

CT-2020 is baselined for the two star trackers [4]. Each CT-2020 has a mass of 3 kg

and draws 8 W of power. The Adcole Digital Sun Sensor is baselined as the sun

sensor [1]. The Digital Sun Sensor comes as an electronics package with a number

of sensor heads. The total mass of one electronics unit with four heads is 2.2 kg and

the unit draws about 1 W of power. The total mass of the baseline ADCS subsystem

is 17.1 kg and the average power draw, assuming that only one IMU and one star

tracker operate at any one time, is 31 W. The design of the ADCS subsystem is not

affected by any design variables and the only constraints within the ADCS subsystem

are the mass and power summations described above.

Propulsion Subsystem

The design of the propulsion subsystem has a large impact on overall mission capa-

bilities and is dependent on a number of design variables. Fundamentally, the design

can take one of three options: a monopropellant design, a bipropellant design, or an

electric propulsion design. The design variables and constraints are chosen to enable
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encoding of these three very different designs.

The three different propulsion system choices reflect different main engine types.

The main engine is responsible for providing the retargeting ∆𝑉 , the largest fraction

of the overall required ∆𝑉 for the mission and the main driver of the number of

targets that the Starshade can observe. The monopropellant design baselines a Moog

MONARC-22-6 engine [79]. This engine uses hydrazine propellant, has a thrust of

22 N, a specific impulse of 230 s, a mass of 0.72 kg, and a power draw of 30 W. The

∆𝑉 that has to be provided by this engine is well beyond the total impulse that the

engine is currently qualified to provide. This analysis will make the assumption that

the engine can be qualified for the required total impulse. If not, multiple engines

can be used with a small penalty to dry mass.

The bipropellant design baselines a Moog DST-11H engine [78]. This engine

uses Hydrazine and Mixed Oxides of Nitrogen (MON) propellant, has a thrust of

22 N, a specific impulse of 310 s, a mass of 0.77 kg, and draws 41 W of power. The

total impulse required to be produced by this engine will also challenge its current

qualified propellant throughput. Again, this analysis will assume that the engine can

be qualified for the required total impulse.

The electric propulsion design baselines the NEXT-C thruster [52]. This engine

uses xenon propellant, has a thrust of 236 mN and a specific impulse of 4190 s. This

thruster requires substantial supporting electronics to supply the high voltages, feed

the propellant, and gimbal the thruster. Each thruster head has a mass of 13.5 kg

including the thruster harness. Two thrusters are assumed to be mounted on the

Starshade bus to provide redundancy. The propellant management system, not in-

cluding the xenon tank, has a mass of 5 kg and draws 20.3 W of power on average.

There are two propellant management systems, one primary and one redundant. The

power processing unit (PPU) has a mass of 34.5 kg and draws up to 7220 W of power

when a thruster is firing. Most of this power is used to accelerate the propellant

and so the PPU only dissipates 10% or 722 W of heat. Two PPUs are assumed, one

primary and one redundant. The digital interface control unit for the engine, which

can be incorporated into the PPU has a mass of 2.8 kg including a redundant string
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and draws 30 W of power on average. Each engine has a gimbal to provide control

authority and to align the thrust vector in the appropriate direction. Each gimbal

has a mass of 6 kg and draws 19.5 W when all three motors are actuating. In total,

the electric propulsion alternative has a mass of 120.8 kg and draws 7290 W assuming

that one thruster is firing. The thermal load on the bus is 792 W while one thruster

is firing.

The thruster design is the same across all three propulsion types. The bus has

twelve thrusters for attitude control and stationkeeping. The number of thrusters

is based on the Juno spacecraft [80]. The baseline thruster is the Moog MONARC-

5 thruster [79]. This thruster uses hydrazine propellant, has 4.5 N of thrust, has a

specific impulse of 226 s, has a mass of 0.5 kg, and draws 18 W of power. The mono-

propellant and bipropellant propulsion alternatives both utilize hydrazine propellant

and so a dual-mode approach is used where one tank holds the hydrazine for the main

engine and the thrusters. The electric propulsion alternative requires a separate tank

for the hydrazine for the thrusters. The thrusters are assumed to provide the ∆𝑉 for

the TCM 1, 2, and 3, rendezvous, stationkeeping, and disposal maneuvers.

Propellant tank mass is calculated using equation A.3 taken from SME SMAD

where 𝑉 is the volume of the tank in L and 𝑚𝑡𝑎𝑛𝑘 is the mass of the tank in kg [121].

This equation is a best fit polynomial to tanks that have propellant management

devices.

𝑚𝑡𝑎𝑛𝑘 = 2.7086× 10−8 V3
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 − 6.1703× 10−5 V2

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡

+ 6.629× 10−2 V𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 + 1.3192 (A.3)

If a tank holds any propellant except xenon, pressurant gas is needed to feed

the propellant to the thrusters. The pressurant gas is assumed to be helium stored

in composite-overwrapped pressure vessels (COPVs) in the bus. The mass of these

tanks is calculated according to equation A.4 where 𝑚𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 is the mass of the

pressurant tank in kg, 𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 is the pressure of the tank in Pa, and 𝑉𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 is
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the volume of the tank in m3 [121]. Each tank requiring pressurization is assumed to

have its own pressurant tank. The mass of gas held by a pressurant tank is calculated

using equation A.5 where 𝑉𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 is the volume of the pressurant tank in m3 and

𝜌𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 is the density of the pressurant gas [121]. This problem assumes that the

helium pressurant gas is held at 27.6× 106 Pa and at 323 K based on recommendations

from SME SMAD.

𝑚𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 = 0.7266(𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡𝑉𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡)
2

+ 2.5119𝑃𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡𝑉𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 + 2.9826 (A.4)

𝑚𝑔𝑎𝑠 = 𝑉𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡𝜌𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑎𝑛𝑡 (A.5)

The overall dry mass of the propulsion subsystem is calculated according to equa-

tion A.6 where𝑚𝑡𝑎𝑛𝑘1 is the mass of propulsion tank 1,𝑚𝑡𝑎𝑛𝑘2 is the mass of propulsion

tank 2, 𝑚𝑝𝑟𝑒𝑠1 is the mass of pressurant tank 1, 𝑚𝑝𝑟𝑒𝑠2 is the mass of pressurant tank

2, 𝑚𝑔𝑎𝑠1 is the mass of the pressurant gas in pressurant tank 1, 𝑚𝑔𝑎𝑠2 is the mass of

the pressurant gas in pressurant tank 2, 𝑚𝑚𝑎𝑖𝑛 is the mass of the main engine includ-

ing supporting equipment, 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the number of thrusters, which is assumed to

be twelve, and 𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the mass of one thruster. The wet mass of the propulsion

system is calculated according to equation A.7 where 𝑚𝑑𝑟𝑦 is the dry mass of the

propulsion system calculated using equation A.6, 𝑉𝑡𝑎𝑛𝑘1 is the volume of propulsion

tank 1, 𝜌𝑝𝑟𝑜𝑝1 is the density of the propellant in propulsion tank 1, 𝑓𝑡𝑎𝑛𝑘1 is the fill

level of propulsion tank 1, 𝑉𝑡𝑎𝑛𝑘2 is the volume of propulsion tank 2, 𝜌𝑝𝑟𝑜𝑝2, is the

density of the propellant in propulsion tank 2, and 𝑓𝑡𝑎𝑛𝑘2 is the fill level of propellant

tank 2.
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𝑚𝑃𝑟𝑜𝑝 = 𝑚𝑡𝑎𝑛𝑘1 + 𝑚𝑡𝑎𝑛𝑘2 + 𝑚𝑝𝑟𝑒𝑠1 + 𝑚𝑝𝑟𝑒𝑠2

+ 𝑚𝑔𝑎𝑠1 + 𝑚𝑔𝑎𝑠2 + 𝑚𝑚𝑎𝑖𝑛 + 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 *𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 (A.6)

𝑚𝑃𝑟𝑜𝑝,𝑤𝑒𝑡 = 𝑚𝑑𝑟𝑦 + 𝑉𝑡𝑎𝑛𝑘1𝜌𝑝𝑟𝑜𝑝1𝑓𝑡𝑎𝑛𝑘1 + 𝑉𝑡𝑎𝑛𝑘2𝜌𝑝𝑟𝑜𝑝2𝑓𝑡𝑎𝑛𝑘2 (A.7)

A number of properties of the propulsion subsystem are encoded as design vari-

ables to enable exploration of how the choice of each variable affects the optimal

solution. Additionally, some parameters from the JPL report are encoded as design

variables in order to capture their uncertainty and to explore changes to those val-

ues. The propulsion design variables along with a set of alternatives for each design

variable are shown in Table A.3. Main engine power draw reflects the power required

by the main engine and supporting equipment as described above. Main engine mass

encodes the mass of the main engine as well as supporting equipment if necessary.

Main engine specific impulse encodes the specific impulse of the main engine. Pro-

pellant tank 1 capacity specifies the size of the first propellant tank. Pressurant tank

1 capacity specifies the size of the pressurant tank for the first propellant tank. Be-

cause pressurant may not be needed, the pressurant tank can have a capacity of zero.

Propellant tank 2 capacity specifies the size of the second propellant tank. Because

the monopropellant design alternative only has one tank, the second propellant tank

can have a size of zero. Pressurant tank 2 specifies the size of the pressurant tank

for the second propellant tank that again, can have a size of zero if a second propel-

lant tank isn’t needed. Because each propulsion subsystem alternative uses different

propellants, the choice of propellant that goes in each of the two tanks will change

depending on the chosen alternative. Propellant density tank 1 specifies the density

of the propellant loaded into Tank 1 and propellant density tank 2 specifies the den-

sity of the propellant loaded into Tank 2. The density of hydrazine is assumed to

be 1004 kg/m3 [8]. The density of MON is assumed to be 1433 kg/m3 [124]. Xenon
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is assumed to be stored at 18.6 MPa [52]. At this pressure, the density of xenon is

1709 kg/m3. For some propulsion system designs, thruster fuel is drawn from Tank

1 whereas in others, it is drawn from Tank 2. The thruster fuel tank selector indi-

cates the tank that the thruster fuel is drawn from with 0 representing Tank 1 and

1 representing Tank 2. The main engine in each propulsion system alternative has a

different mixture ratio. The mixture ratio indicates the mass fraction of fuel that is

drawn from Tank 1, with the balance being drawn from Tank 2. The main engine

heat dissipation design variable indicates how much heat the main engine or its sup-

porting equipment generates that must be handled by the thermal subsystem. The

pressurant tank 1 and pressurant tank 2 design variables indicate whether tank 1 or

tank 2 respectively needs a pressurization tank. A 0 indicates that the propellant

tank does not need a pressurization tank whereas a 1 indicates that the propellant

tank does need a pressurization tank.

Because each propulsion subsystem alternative is encoded using a number of de-

sign variables, several set constraints are created to encode the allowable sets of

assignments between design variables. Table A.4 shows the set constraints for the

propulsion subsystem. The electric propulsion alternative has a main engine power

draw of 7290 W, a main engine mass of 120.8 kg, a main engine specific impulse of

4190 s, a propellant density in Tank 1 of 1709 kg/m3 representing xenon, a propellant

density in Tank 2 of 1004 kg/m3 representing hydrazine, a thruster tank selector value

of 1 for Tank 2, a mixture ratio of 1 meaning that all main engine propellant is drawn

from tank 1, a main engine heat dissipation of 792 W, a pressurant tank 1 value of

0 since no pressurant is needed for xenon, and a pressurant tank 2 value of 1 since

pressurant is needed for the hydrazine tank. The bipropellant alternative has a main

engine power draw of 41 W, a main engine mass of 0.77 kg, a main engine specific

impulse of 310 s, a propellant density in tank 1 of 1433 kg/m3 representing MON, a

propellant density in Tank 2 of 1004 kg/m3 representing hydrazine, a thruster tank

selector value of 1 for Tank 2, a mixture ratio of 0.46 meaning that 46% of fuel by

mass is drawn from tank 1, a main engine heat dissipation of 41 W, a pressurant tank

1 value of 1 since pressurant is needed for MON, and a pressurant tank 2 value of 1
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Table A.3: Design variables that control the design of the propulsion subsystem.

Design Variable Units Uncertainty Design Variable
Alternatives

Main Engine Power Draw W 0.05 7290, 41, 30
Main Engine Mass kg 0.05 120.8, 0.77, 0.72
Main Engine Isp s 0.02 4190, 310, 230
Propellant Tank 1

Capacity
L 0.01 10, 25, 50, 75, 100, 300,

500, 750, 1000, 1500, 2000
Pressurant Tank 1

Capacity
m3 0.01 0, 0.025, 0.05, 0.075, 0.01

Propellant Tank 2
Capacity

L 0.01 0, 10, 25, 50, 75, 100, 300,
500, 750, 1000, 1500, 2000

Pressurant Tank 2
Capacity

m3 0.01 0, 0.025, 0.05, 0.075, 0.01

Propellant Density Tank 1 kg/m3 0.01 1004, 1433, 1709
Propellant Density Tank 2 kg/m3 0.01 1004, 1433, 1709
Thruster Tank Selector None 0 0, 1

Mixture Ratio None 0 0, 0.46, 1
Main Engine Heat

Dissipation
W 0.05 792, 41, 30

Pressurant Tank 1 None 0 0, 1
Pressurant Tank 2 None 0 0, 1

Propellant Tank 1 Fill
Percentage

None 0.01 1

Propellant Tank 2 Fill
Percentage

None 0.01 1
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Design
Variable

Units Electric
Alternative

Bipropellant
Alternative

Monopropellant
Alternative

Main Engine
Power Draw

W 7290 41 30

Main Engine
Mass

kg 120.8 0.77 0.72

Main Engine Isp s 4190 310 230
Propellant

Density Tank 1
kg/m3 1709 1433 1004

Propellant
Density Tank 2

kg/m3 1004 1004 1004

Thruster Tank
Selector

- 1 1 0

Mixture Ratio - 1 0.46 1
Main Engine

Heat Dissipation
W 792 41 30

Pressurant Tank
1 Selector

- 0 1 1

Pressurant Tank
1 Selector

- 1 1 0

Table A.4: Set constraints among the propulsion subsystem design variables.

since pressurant is needed for hydrazine. The monopropellant alternative has a main

engine power draw of 30 W, a main engine mass of 0.72 kg, a main engine specific

impulse of 230 s, a propellant density in tank 1 of 1004 kg/m3 representing hydrazine,

a propellant density in Tank 2 of 1004 kg/m3 representing hydrazine although tank

2 is not used by any thruster and can therefore have a volume of zero meaning that

propellant density doesn’t matter, a thruster tank selector value of 0 for Tank 1, a

mixture ratio of 1 meaning that all fuel is drawn from tank 1, a main engine heat

dissipation of 30 W, a pressurant tank 1 value of 1 since pressurant is needed for

hydrazine, and a pressurant tank 2 value of 0 since no pressurant is needed for tank

2.

The propulsion subsystem design is subject to four inequality constraints, two

that ensure that the propellant tanks are big enough to meet the ∆𝑉 requirements

for the mission and another two that ensures that the pressurant tanks are big enough

to properly pressurize the propellant tanks. In equations A.8 and A.9, the propellant
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mass for the main engine and thrusters respectively is calculated using the rocket

equation. In these equations, 𝑚𝑤𝑒𝑡 is the wet mass of bus, assuming that the tanks

are full, ∆𝑉𝑚𝑎𝑖𝑛 is the ∆𝑉 required to be provided by the main engine, ∆𝑉𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is

the ∆𝑉 required to be provided by the thrusters, 𝑔 is the acceleration due to gravity,

𝐼𝑠𝑝𝑚𝑎𝑖𝑛 is the specific impulse of the main engine, and 𝐼𝑠𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the specific impulse

of the thrusters. Once the fuel mass for both the thrusters and main engine has been

calculated, the fuel must be divided into the first and second propellant tank using

the thruster tank selector and mixture ratio. Equations A.10 and A.11, show the

inequality constraint that ensures the volume of each tank is big enough to hold the

volume of propellant in that tank. In these equations,𝑚𝑚𝑎𝑖𝑛 is the required propellant

mass for the main engine, 𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the required propellant mass for the thrusters,

𝑀𝑚𝑎𝑖𝑛 is the mixture ratio of the main engine, 𝑡𝑠 is the thruster tank selector, 𝜌𝑝𝑟𝑜𝑝1

is the density of propellant in tank 1, and 𝜌𝑝𝑟𝑜𝑝2 is the density of propellant in tank

2.

𝑚𝑚𝑎𝑖𝑛 =
𝑚𝑤𝑒𝑡

𝑒
Δ𝑉𝑚𝑎𝑖𝑛
𝑔𝐼𝑠𝑝𝑚𝑎𝑖𝑛

(A.8)

𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 =
𝑚𝑤𝑒𝑡

𝑒
Δ𝑉𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟
𝑔𝐼𝑠𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

(A.9)

𝑉𝑡𝑎𝑛𝑘1 >
𝑚𝑚𝑎𝑖𝑛𝑀𝑚𝑎𝑖𝑛 + 𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟(1− 𝑡𝑠)

𝜌𝑝𝑟𝑜𝑝1𝑓𝑝𝑟𝑜𝑝1
(A.10)

𝑉𝑡𝑎𝑛𝑘2 >
𝑚𝑚𝑎𝑖𝑛(1−𝑀𝑚𝑎𝑖𝑛) + 𝑡𝑠𝑚𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟

𝜌𝑝𝑟𝑜𝑝2𝑓𝑝𝑟𝑜𝑝2
(A.11)

The required pressurant tank volume is calculated using the procedure laid out in

SME SMAD and shown in equations A.12 and A.13 [121]. The method uses the ideal

gas law to ensure that the volume of gas at the end of life of the tank can fill both the

pressurant and propellant tank to the required pressure. In these equations, 𝑉𝑝𝑟𝑒𝑠1

is the volume of pressurant tank 1, 𝑉𝑝𝑟𝑒𝑠2 is the volume of pressurant tank 2, 𝜌𝐻𝑒

is the density of helium at the assumed beginning-of-life temperature and pressure,

𝑃𝐸𝑂𝐿 is the required end-of-life pressure, 𝑉𝑡𝑎𝑛𝑘1 is the volume of propellant tank 1,

𝑉𝑡𝑎𝑛𝑘2 is the volume of propellant tank 2, 𝑝𝑠 is the pressurant tank selector, 𝑅𝐻𝑒 is
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the specific gas constant for helium, and 𝑇𝐸𝑂𝐿 is the assumed temperature at end

of life. Following guidelines from SME SMAD, 𝜌𝐻𝑒 is assumed to be 36.78 kg/m3,

𝑃𝐸𝑂𝐿 is assumed to be 5.5× 105 Pa, and 𝑇𝐸𝑂𝐿 is assumed to be 293 K [121]. 𝑅𝐻𝑒 is

2077.1 J/(kg K) [25].

𝑉𝑝𝑟𝑒𝑠1𝜌𝐻𝑒 >
𝑃𝐸𝑂𝐿𝑉𝑡𝑎𝑛𝑘1𝑝𝑠

𝑅𝐻𝑒𝑇𝐸𝑂𝐿 − 𝑃𝐸𝑂𝐿

𝜌𝐻𝑒

(A.12)

𝑉𝑝𝑟𝑒𝑠2𝜌𝐻𝑒 >
𝑃𝐸𝑂𝐿𝑉𝑡𝑎𝑛𝑘2𝑝𝑠

𝑅𝐻𝑒𝑇𝐸𝑂𝐿 − 𝑃𝐸𝑂𝐿

𝜌𝐻𝑒

(A.13)

Command and Data Handling Subsystem

The command and data handling (C&DH) requirements for the Starshade bus are

not significant. The bus doesn’t have any instruments and so generates a small

amount of data. Some processing capability will be needed for formation flying and

retargeting burns. The mass and power draw of the C&DH subsystem are assumed

to fall within the "Typical" category given in section 11.3 of SMAD. The mass is

assumed to be 5.5 kg and the power draw is assumed to be 15.5 W. The design of the

C&DH subsystem is not affected by any design variables and there are no constraints

within the C&DH subsystem.

Structures Subsystem

The structure of the Starshade bus is modeled as a hollow square prism. To model

its structural properties, the bus is modeled as a beam with uniformly distributed

mass. The lateral and axial natural frequencies of such a structure can be calculated

according to equations A.14 and A.16 respectively [122]. In equation A.14, the natural

frequency depends on the Young’s modulus of the structure’s material 𝐸, the area

moment of inertia of the structure 𝐼, the mass of the beam 𝑚𝐵, and the length of the

beam 𝐿𝐵. As the structure is modeled as a hollow square prism, the area moment

of inertia is calculated according to equation A.15 where 𝑙 is the bus side length and

𝑤 is the bus wall thickness. In equation A.16, the natural frequency depends on the

cross sectional area of the beam 𝐴𝐵, the Young’s modulus of the structure’s material
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𝐸, the mass of the beam 𝑚𝐵, and the length of the beam 𝐿𝐵.

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 0.56

√︃
𝐸𝐼

𝑚𝐵𝐿3
𝐵

(A.14)

𝐼 =
𝑙4

12
− (𝑙 − 2𝑤)4

12
(A.15)

𝑓𝑎𝑥𝑖𝑎𝑙 = 0.25

√︂
𝐴𝐵𝐸

𝑚𝐵𝐿𝐵

(A.16)

Another design property of interest is the volume inside the structure in which

the propellant tanks and other equipment are mounted. That volume is calculated

according to equation A.17 which depends on the bus height ℎ, bus side length 𝑙, and

bus wall thickness 𝑡.

𝑉𝑖𝑛𝑡 = (ℎ− 2𝑡) * (𝑙 − 2𝑡)2 (A.17)

The total dry mass and total wet mass of the bus are calculated using the equation

A.18 and A.19 respectively.

𝑚𝑑𝑟𝑦 = 𝑚𝑠𝑡𝑎𝑟𝑠ℎ𝑎𝑑𝑒 + 𝑚𝐴𝐷𝐶𝑆 + 𝑚𝑃𝑟𝑜𝑝 + 𝑚𝐶&𝐷𝐻 + 𝑚𝑠𝑡𝑟𝑢𝑐𝑡 + 𝑚𝑐𝑜𝑚𝑚 + 𝑚𝑝𝑜𝑤𝑒𝑟 + 𝑚𝑡ℎ𝑒𝑟𝑚𝑎𝑙

(A.18)

𝑚𝑤𝑒𝑡 = 𝑚𝑠𝑡𝑎𝑟𝑠ℎ𝑎𝑑𝑒 +𝑚𝐴𝐷𝐶𝑆 +𝑚𝑃𝑟𝑜𝑝,𝑤𝑒𝑡 +𝑚𝐶&𝐷𝐻 +𝑚𝑠𝑡𝑟𝑢𝑐𝑡 +𝑚𝑐𝑜𝑚𝑚 +𝑚𝑝𝑜𝑤𝑒𝑟 +𝑚𝑡ℎ𝑒𝑟𝑚𝑎𝑙

(A.19)

The design of the structures subsystem is controlled by a number of design vari-

ables as shown in Table A.5. The structure of the Starshade bus is parameterized

by its height, its side length, and its wall thickness. The bus can be made of three

different materials: aluminum, titanium, or stainless steel. The material density and

Young’s modulus design variables specify the properties of the bus material.
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Design Variable Units Uncertainty Design Variable
Alternatives

Bus Height m 0.01 1, 1.25, 1.5, 1.75, 2, 2.25,
2.5

Bus Side Length m 0.01 0.75, 1, 1.25, 1.5, 1.75, 2,
2.25, 2.5, 2.75, 3, 3.25, 3.5,

3.75, 4
Bus Wall Thickness meter 0.01 0.002, 0.004, 0.006, 0.008,

0.01
Bus Material Density kg/m3 0.01 2710, 4430, 8027
Bus Material Young’s

Modulus
Pa 0.01 68× 109, 110× 109,

200× 109

Table A.5: Design variables that control the design of the structures subsystem.

Set Constraint Name Density Young’s Modulus
Aluminum 6061-T6 2700 68× 109

316 Stainless Steel 7920 200× 109

Titanium 6AL-4V 4430 110× 109

Table A.6: Set constraints among the structures subsystem design variables that
specify material properties.

Because bus material properties are encoded with multiple design variables, set

constraints are needed to ensure consistency between the density of the material

and the Young’s Modulus. Table A.6 shows the set constraints for the structures

subsystem.

Three requirements are levied on the structures subsystem as inequality con-

straints. Equation A.20 and A.21 constrain the minimum lateral and axial natural

frequencies respectively while equation A.22 one ensures that the volume of the bus

is sufficient for all required equipment. The minimum axial and lateral natural fre-

quencies come from launch vehicle requirements and apply to the bus in its stowed

configuration. From SMAD, the minimum axial natural frequency is 20 Hz while the

minimum lateral frequency is 13 Hz. The biggest items inside the bus are the two

propellant tanks. To account for other equipment and packing inefficiencies, the vol-

ume of the tanks is constrained to take up no more than half of the interior volume
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of the bus. The volume constraint is shown in equation A.22. In this equation, 𝑉𝑖𝑛𝑡

is the interior volume of the bus, 𝑉𝑡𝑎𝑛𝑘1 is the volume of propellant tank 1, and 𝑉𝑡𝑎𝑛𝑘2

is the volume of propellant tank 2.

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 > 13 (A.20)

𝑓𝑎𝑥𝑖𝑎𝑙 > 20 (A.21)

𝑉𝑖𝑛𝑡 > 2(𝑉𝑡𝑎𝑛𝑘1 + 𝑉𝑡𝑎𝑛𝑘2) (A.22)

Communications Subsystem

The communications subsystem handles communications to and from ground sta-

tions on Earth as well as to and from WFIRST. Because only engineering data is

transmitted to the ground, the data rate doesn’t need to be high and the link can

be closed using an X-band medium gain horn antenna. The link equation shown in

equation A.23 is used to ensure that the uplink and downlink links close with at least

3 dB margin. The margin of the link is a function of 𝑃𝑡, the transmit power, 𝐺𝑡, the

transmit antenna gain, 𝐿𝑙, the line loss, 𝐿𝑠, the space loss, 𝐿𝑝, the path loss, 𝐺𝑟, the

receive antenna gain, 𝑇𝑠, the system noise temperature, 𝑅𝑑, the data rate, and
𝐸𝑏

𝑁0 𝑟𝑒𝑞

the required signal to noise ratio for the chosen coding scheme. The transmit power

on the Starshade bus is set to 20 W. The bus antenna is a horn antenna 0.2 m in

diameter. The transmit frequency for downlink is X-band at 8 GHz. Therefore, the

spacecraft bus antenna has a gain of 21.7 dB calculated using equations from SMAD

[122]. Line losses are assumed to be −1 dB. The transmit distance is from Earth-

Sun L2 which is approximately 1.5× 109 m from Earth. Therefore, the space loss is

−254 dB. The path loss in the atmosphere is low for X-band, −0.5 dB is assumed

based on Figure 13-10 in SMAD [122]. The receive antenna is assumed to be a 34 m

NASA DSN Beam Waveguide (BWG) antenna with a uplink and downlink gain of

67 dB [85]. Uplink transmit power is assumed to be 1000 W. The downlink system
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noise temperature is assumed to be 135 K and the uplink system noise temperature

is assumed to be 614 K based on Table 13-10 from SMAD [122]. The data rates are

taken from SMAD and are assumed to be 2 kbps uplink and 8 kbps downlink. BPSK

encoding is assumed which requires a 𝐸𝑏

𝑁0
of at least 9.6 to achieve a bit error rate

of at least 1× 10−5 [122]. With these assumptions, the downlink margin is 4.57 dB

and the uplink margin is 21.0 dB. Therefore, the assumed properties of the ground

communications system are reasonable.

𝑀𝑎𝑟𝑔𝑖𝑛 = 10𝑙𝑜𝑔(𝑃𝑡) + 𝐺𝑡 + 𝐿𝑙 + 𝐿𝑠 + 𝐿𝑝 + 𝐺𝑟

+ 228.6− 10𝑙𝑜𝑔(𝑇𝑠)− 10𝑙𝑜𝑔(𝑅𝑑)−
𝐸𝑏

𝑁0 𝑟𝑒𝑞

(A.23)

The 0.2 m diameter horn antenna is assumed to have a mass of 2 kg [121]. A

further three omnidirectional antennas are mounted on the bus to provide complete

communications coverage. Each of these antenna is assumed to have a mass of 0.25 kg.

The remainder of the ground communications system consists of two traveling wave

tube amplifiers (TWTAs), two Small Deep Space Transponders (SDST), and a variety

of filters and switches. The two transmitters and amplifiers are for redundancy. Each

TWTA has a mass of 4 kg [122] and has an efficiency of 50% so 40 W of input power

is needed to produce the required 20 W of transmit power. The SDST has a mass of

3.2 kg and draws 15.8 W of power with an X-band receiver and X-band exciter [40].

The filters and switches are assumed to have a total mass of 1.5 kg [122]. Therefore,

the ground communications system has a total mass of 18.65 kg.

The link to the telescope for formation control has a very low data rate of 100

bps. The JPL report examines two solutions for the inter-satellite link: a GRACE-

based S-band transmitter and an S-band variant of the Electra transmitter [84]. The

GRACE transmitter is described as having a mass of 5.3 kg and drawing 29.5 W of

power and is assumed for this problem.

The design of the communications subsystem is controlled by two design variables

that determine the S-band inter-satellite link mass and power. These design variables
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Design Variable Units Uncertainty Design Variable
Alternatives

S-band Power Draw W 0.01 29.5
S-band Mass kg 0.01 5.3

Table A.7: Design variables that control the design of the communications subsystem.

Set Constraint Name Power Draw Mass
GRACE S-band transmitter 29.5 40

Table A.8: Set constraints among the communications subsystem design variables.

are shown in Table A.7.

Because the inter-satellite link alternatives are encoded with two design variables,

set constraints are needed to ensure consistency between the selected mass and power

of the inter-satellite link. The set constraints are shown in Table A.8.

Power Subsystem

The power subsystem is responsible for generating sufficient power to operate the bus

and for storing power in the event that the bus’s solar arrays lose exposure to the

Sun. The design of the solar array is defined by its size, cell type, and mass per unit

area. The power generated by a solar array is calculated by equation A.24 where

𝐶𝑠𝑢𝑛 is the solar constant, 𝐴𝑎𝑟𝑟𝑎𝑦 is the area of the solar array, 𝑒𝑎𝑟𝑟𝑎𝑦 is the efficiency

of the solar cell, 𝐷𝑎𝑟𝑟𝑎𝑦 is the degradation factor that applies when cells are built

into an array, 𝜃𝑤𝑜𝑟𝑠𝑡 is the worst case angle of light on the array, 𝑑𝑦𝑒𝑎𝑟𝑙𝑦 is the yearly

degradation of the performance of the array, and 𝐿𝑠𝑐 is the lifetime of the spacecraft.

The solar constant is assumed to be of 1367 W/m2, 𝐷𝑎𝑟𝑟𝑎𝑦 is assumed to be 0.72,

𝜃𝑤𝑜𝑟𝑠𝑡 is assumed to be 0 as the array is articulated and can ensure that it always gets

full illumination, and 𝑑𝑦𝑒𝑎𝑟𝑙𝑦 is assumed to be 3.25% per year [122]. 𝐿𝑠𝑐 is assumed

to be three years based on the JPL report [84].

𝑃𝑎𝑟𝑟𝑎𝑦 = 𝐶𝑠𝑢𝑛𝐴𝑎𝑟𝑟𝑎𝑦𝑒𝑎𝑟𝑟𝑎𝑦𝐷𝑎𝑟𝑟𝑎𝑦𝑐𝑜𝑠(𝜃𝑤𝑜𝑟𝑠𝑡)(1− 𝑑𝑦𝑒𝑎𝑟𝑙𝑦)
𝐿
𝑠𝑐 (A.24)
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Design Variable Units Uncertainty Design Variable
Alternatives

Solar Array Area m2 0.01 1, 2, 5, 10, 20, 50, 80, 100
Solar Cell Efficiency None 0.05 0.14, 0.185, 0.226
Solar Array Mass per

Unit Area
kg/m2 0.05 2.3, 2.7, 2.8

Battery Depth of
Discharge

None 0.01 0.6

Battery Capacity W h 0.01 10, 50, 100, 200, 500, 800,
1000, 2000, 3000

Table A.9: Design variables that control the design of the power subsystem.

The spacecraft bus also contains a battery to support operations when the array is

not providing power. The capacity of the battery is calculated by multiplying the size

of the battery by the maximum depth of discharge permitted. Because the Starshade

spacecraft will be illuminated for the vast majority of its lifetime, the battery size is

assumed to be driven by a contingency case which permits a deeper depth of discharge

because it is not expected to occur often. A depth of discharge of 80% is assumed.

The mass of the power subsystem is calculated using equation A.25 where 𝐴𝑎𝑟𝑟𝑎𝑦

is the area of the solar array, 𝑚𝑎 is the mass per unit area of the array, 𝑐𝑏𝑎𝑡𝑡 is the

capacity of the battery, and 𝑑𝑏𝑎𝑡𝑡 is energy density of the battery. Assuming a Li-ion

battery, 𝑑𝑏𝑎𝑡𝑡 is assumed to be 150 W h/kg [122].

𝑚𝑝𝑜𝑤𝑒𝑟 = 𝐴𝑎𝑟𝑟𝑎𝑦𝑚𝑎 +
𝑐𝑏𝑎𝑡𝑡
𝑑𝑏𝑎𝑡𝑡

(A.25)

The design of the power subsystem is controlled by four design variables that

determine the size of the solar array, the efficiency of the cells used in the solar array,

the mass per unit area of the solar array, and the size of the battery. These design

variables are shown in Table A.9. The solar cell efficiencies are based on silicon,

GaAs single junction, and GaAs multijunction respectively [121]. These cell types

also dictate the array mass per unit area alternatives.

Because the solar cell efficiency and solar array mass per unit area are both de-

pendent on the type of solar cell, set constraints are needed to ensure consistency
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Set Constraint
Name

Solar Cell Efficiency Solar Array Mass
per Unit Area

Silicon 0.14 2.3
GaAs SJ 0.185 2.7
GaAs MJ 0.226 2.8

Table A.10: Set constraints among the power subsystem design variables.

between these design variables. The set constraints are shown in Table A.10.

Two requirements are levied on the power subsystem as inequality constraints.

One constraint dictates that the solar arrays be large enough to provide more power

than the peak power state of the bus. The other constraint dictates that the battery be

big enough to support the spacecraft in a safing condition. The peak power required

by the bus is calculated by summing the peak power needs of each subsystem. This

approach is overly conservative but provides some room for growth in subsystem

power requirements without impact on the power subsystem. The peak power of

the bus is calculated according to equation A.26. In this equation, 𝑝𝐴𝐷𝐶𝑆 is the

power consumption of the ADCS subsystem, 𝑝𝐶&𝐷𝐻 is the power consumption of

the C&DH subsystem, 𝑝𝑎𝑚𝑝 is the input power to the X-band TWTA, 𝑒𝑎𝑚𝑝 is the

efficiency of the TWTA, 𝑝𝑡𝑟𝑎𝑛𝑠 is the power consumption of the SDST, 𝑝𝑆−𝑏𝑎𝑛𝑑 is

the power consumption of the S-band communications system, 𝑝𝑚𝑎𝑖𝑛 is the power

consumed by the main engine, 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the number of thrusters, 𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the

power used by each thruster, and 𝑝𝑓𝑓 is the power consumed by the formation flying

system. The actual inequality constraint on power generation is shown in equation

A.27.

𝑝𝑝𝑒𝑎𝑘 = 𝑝𝐴𝐷𝐶𝑆 + 𝑝𝐶&𝐷𝐻 + 𝑝𝑎𝑚𝑝𝑒𝑎𝑚𝑝 + 𝑝𝑡𝑟𝑎𝑛𝑠 + 𝑝𝑆−𝑏𝑎𝑛𝑑

+ 𝑝𝑚𝑎𝑖𝑛 + 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 * 𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 + 𝑝𝑓𝑓 (A.26)

𝑃𝑎𝑟𝑟𝑎𝑦 > 𝑝𝑝𝑒𝑎𝑘 (A.27)
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Safe mode is imagined as a scenario where the bus loses track of the Sun and

must rely on its battery to sustain on-board systems until the Sun can be reacquired

by the arrays. The power draw in safe mode is much less than regular operations

because no main engine burns or formation flying will be occurring. The ADCS

subsystem will be operating trying to determine the attitude of the spacecraft, the

C&DH subsystem will be controlling the bus, the communications subsystem will be

attempting to transmit to the ground, but not to the telescope, and the propulsion

subsystem will be using thrusters to regain attitude control or to slew to find the Sun.

Therefore, the safe mode power draw is calculated according to equation A.28. In

this equation, 𝑝𝐴𝐷𝐶𝑆 is the power consumption of the ADCS subsystem, 𝑝𝐶&𝐷𝐻 is the

power consumption of the C&DH subsystem, 𝑝𝑎𝑚𝑝 is the input power to the X-band

TWTA, 𝑒𝑎𝑚𝑝 is the efficiency of the TWTA, 𝑝𝑡𝑟𝑎𝑛𝑠 is the power consumption of the

SDST, 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 is the number of thrusters, and 𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the power used by each

thruster. The total safe mode duration is assumed to be one hour. Therefore, the

required battery is calculated according to equation A.29. In this equation, 𝑝𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒

is the power draw in safe mode, 𝑑𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒 is the duration of the safe mode condition

before the Sun is reacquired, and 𝐷𝑂𝐷 is the maximum depth of discharge of the

battery.

𝑝𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒 = 𝑝𝐴𝐷𝐶𝑆 + 𝑝𝐶&𝐷𝐻 + 𝑝𝑎𝑚𝑝𝑒𝑎𝑚𝑝 + 𝑝𝑡𝑟𝑎𝑛𝑠 + 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 * 𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 (A.28)

𝐶𝑏𝑎𝑡𝑡 >
𝑝𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒𝑑𝑠𝑎𝑓𝑒𝑚𝑜𝑑𝑒

𝐷𝑂𝐷
(A.29)

Thermal Subsystem

The thermal subsystem is responsible for maintaining components within the bus at

a reasonable temperature. The bus is assumed to be covered in multi-layer insulation

(MLI) on all sides except the anti-Sun side which contains the main radiator. The

Sun side is assumed to have a low absorptivity outer coating on the MLI. The bus is

modeled as a single node and the steady state temperature of the bus is solved for
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by balancing the incident heat, heat generated by the bus, and radiated heat using

equation A.30. In this equation, ℎ𝑏 is the bus height, 𝑙𝑏 is the bus side length, 𝛼𝑏

is the absorptivity of the bus on its illuminated side. 𝐶𝑠𝑢𝑛 is the solar constant, 𝜃

is the angle at which the Sun shines on the bus, 𝑞𝑏 is the heat dissipated inside the

bus, 𝜎 is the Stefan-Boltzmann constant, 𝜖𝑏 is the emissivity of the bus radiator, 𝑓𝑟𝑎𝑑

is the fraction of a bus face taken up by the radiator, and 𝑇𝑠𝑝𝑎𝑐𝑒 is the temperature

of deep space. 𝛼𝑏 is assumed to be a low absorptivity material like vapor-deposited

aluminum on the surface of an MLI blanket and is assumed to be equal to 0.08 [43].

𝐶𝑠𝑢𝑛 is assumed to be 1367 W/m2 [122]. 𝜃 is assumed to be 7∘ based on the maximum

solar avoidance angle. 𝜎 is equal to 5.67× 10−8 W/(m2 K4). 𝑇𝑠𝑝𝑎𝑐𝑒 is assumed to be

3 K. 𝑞𝑏 is calculated by summing the maximum heat dissipation modes of all of the

subsystems as shown in equation A.31. This approach is quite conservative, but

is a simple way of sizing the bus radiator that allows for future increases in power

dissipation.

In equation A.31, 𝑝𝐴𝐷𝐶𝑆 is the power dissipation of the ADCS subsystem, 𝑝𝐶&𝐷𝐻

is the power dissipation of the C&DH subsystem, 𝑝𝑎𝑚𝑝 is the input power to the

X-band TWTA, 𝑒𝑎𝑚𝑝 is the efficiency of the TWTA, 𝑝𝑡𝑟𝑎𝑛𝑠 is the power dissipation

of the SDST, 𝑝𝑆−𝑏𝑎𝑛𝑑 is the power dissipation of the S-band communications system,

𝑑𝑒𝑛𝑔𝑖𝑛𝑒 is the heat dissipation by the main engine, 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the number of thrusters,

𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 is the power used by each thruster, and 𝑝𝑓𝑓 is the power dissipated by the

formation flying system.

𝑇𝑏𝑢𝑠 = (
ℎ𝑏𝑙𝑏𝛼𝐶𝑠𝑢𝑛𝑐𝑜𝑠(𝜃) + 𝑞𝑏

𝜎𝜖ℎ𝑏𝑙𝑏𝑓𝑟𝑎𝑑
+ 𝑇𝑠𝑝𝑎𝑐𝑒

4)
1
4 (A.30)

𝑞𝑏 = 𝑝𝐴𝐷𝐶𝑆 + 𝑝𝐶&𝐷𝐻 + 𝑝𝑎𝑚𝑝𝑒𝑎𝑚𝑝 + 𝑝𝑡𝑟𝑎𝑛𝑠 + 𝑝𝑆−𝑏𝑎𝑛𝑑

+ 𝑑𝑒𝑛𝑔𝑖𝑛𝑒 + 𝑛𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 * 𝑝𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 + 𝑝𝑓𝑓 (A.31)

The mass of the thermal subsystem is calculated by summing the mass of the MLI

and radiator using equation A.32 where 𝑚𝑚𝑙𝑖 is the mass per unit area of MLI, 𝑙𝑏 is
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Design Variable Units Uncertainty Design Variable
Alternatives

Absorptivity - 0.01 0.08
Radiator Fraction - 0.01 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 0.99

Table A.11: Design variable that controls the design of the thermal subsystem.

the bus side length, ℎ𝑏 is the bus height, 𝑓𝑟𝑎𝑑 is the fraction of the anti-Sun side of

the bus taken up by the radiator, and 𝑚𝑟𝑎𝑑 is the mass per unit area of the radiator.

𝑚𝑚𝑙𝑖 is assumed to be 0.73 kg/m2 and 𝑚𝑟𝑎𝑑 is assumed to be 3.3 kg/m2 [122].

𝑚𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑚𝑚𝑙𝑖(3𝑙𝑏ℎ𝑏 + 𝑙𝑏
2 + (1− 𝑓𝑟𝑎𝑑) * 𝑙𝑏ℎ𝑏) + 𝑚𝑟𝑎𝑑𝑓𝑟𝑎𝑑𝑙𝑏ℎ𝑏 (A.32)

The design of the thermal subsystem is controlled by two design variables, the

absorptivity of the bus and the fraction of a bus side panel that is taken up by the

radiator. These design variables are shown in Table A.11.

Two requirements are levied on the thermal subsystem to define the minimum and

maximum bus temperatures. The allowable temperature range is taken from SMAD

and is typical for spacecraft electronics. The minimum bus temperature is −10 ∘C

while the maximum bus temperature is 40 ∘C. The two temperature limits are shown

in equation A.33 and A.34.

𝑇𝑏𝑢𝑠 > 263 (A.33)

𝑇𝑏𝑢𝑠 < 313 (A.34)
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