
Multi-Agent Coordination under Limited
Communication

by

Nikhil Bhargava

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 30, 2020

Certified by. .
Brian C. Williams

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Multi-Agent Coordination under Limited Communication

by

Nikhil Bhargava

Submitted to the Department of Electrical Engineering and Computer Science
on January 30, 2020, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis, we present a theory for constructing real-time executives that can rea-
son about communication between agents. In multi-agent coordination problems,
different agents have different beliefs about the state of the world that can eventually
be reconciled if the agents are able to share sufficient information with one another.
When communication is limited, this task becomes more difficult. To achieve robust-
ness, coordination decisions need to be made, executed, and adapted in real-time by
a real-time executive.

Most existing real-time executives rely on perfect knowledge of the state of the
world, making it difficult to use them in scenarios where agents either cannot or prefer
not to communicate and share information. This thesis offers three contributions that
together provide the basis for constructing a real-time executive capable of handling
multi-agent coordination under limited communication.

First, we introduce delay controllability as a way to augment the input plan rep-
resentation to including a communication model. Delay controllability lets us reason
about multi-agent activities under limited communication in the form of communica-
tion delays and provides a guarantee that problem evaluation is tractable.

Second, we provide a way to indicate by when each agent must communicate
the results of their actions. Many agents have flexibility in choosing exactly when
to communicate. We provide an algorithm for choosing a low-cost set of moments
to communicate and present a strategy for adjusting those strategies when commu-
nication networks are unreliable causing disruptions in the original communication
plan.

Third, we offer a way to model noisy communication. Noisy communication offers
approximate temporal information that is useful during execution but is generally
difficult to incorporate. We introduce variable-delay controllability as a way to model
this kind of communication and provide the first sound and complete algorithm for
incorporating noisy information that runs in polynomial time.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

Nobody does a Ph.D. alone, and I’ve been extremely lucky to have such an incredible

group of people who have supported me, given me advice, and helped me along the

way.

First, I want to thank my advisor, Professor Brian C. Williams. Prof. Williams

took a gamble on a young student without a real academic track record or a strong

idea of where to go. In my first year here, Prof. Williams was instrumental in shaping

my thesis direction and helping me discover the area I wanted to work in. Since then,

Prof. Williams has been an amazing research partner, helping me focus my efforts

on the right problems and magnifying my impact. I would also like to thank my

committee members, Professor Randall Davis and Professor Tomás Lozano-Pérez.

Their inputs and guidance throughout the thesis process were critical in helping me

develop my work to where it is today.

I would also like to thank all the members of the MERS group, both past and

present. MERS has been my home at MIT since I arrived, and I have been blessed to

have such an amazing group of peers. The members of MERS are smart, kind, and

thoughtful people; such a combination in such a large group is rare to find. It was

an honor to be part of such an amazing team. Thank you Allen, Andrew, Ashkan,

Ben, Charles, Christian, Cyrus, Dan, Enrique, Eric, Jacob, Jingkai, Matt, Matthew,

Meng, Nick, Peng, Sang, Sylvia, Simon, Steve, Sungkweon, Tiago, Yang, Yuening,

Yui, and Zach for being an important part of my MIT experience.

I also want to thank my friends and family for being a constant source of support

for me, and for undertaking the difficult job of helping me stay sane. In particular,

a special thanks goes to Ben, Oana, Michael, Sophie, Arjun, Irene, Matt, Amanda,

Ellora, Yoseph, and all of the other folks in Boston for their willingness to indulge me

in the many, many moments where I grew tired of working. In particular, I want to

thank my girlfriend Dana for being an amazing partner and helping me handle some

of my proudest and most frustrating moments in grad school. I’m excited for what

the future has in store.

5

It also goes without saying that I owe so much to my parents, Gautam and Reena,

and my sister, Zoe. They have supported and loved me unconditionally, and I would

not be here today if not for them. They pushed me to chart out my own course and

to seek happiness, and to this day, I continue to turn to them for advice and wisdom.

Thank you for everything.

Finally, this work was partially supported by the Toyota Research Institute (TRI).

However, this thesis solely reflects the opinions and conclusions of its author and not

TRI or any other Toyota entity.

6

Contents

1 Introduction 21

1.1 Motivating Examples . 21

1.2 Approach . 25

1.3 Contributions . 28

1.4 Organization of Thesis . 29

2 Background 31

2.1 Simple Temporal Networks . 31

2.2 Simple Temporal Networks with Uncertainty 33

2.2.1 Strong Controllability . 35

2.2.2 Weak Controllability . 35

2.2.3 Dynamic Controllability . 36

2.3 Differentiating Types of Controllability 36

3 A Framework for Temporal Coordination with Communication De-

lay 41

3.1 Formalizing the Requirements . 41

3.2 Introducing Delay Controllability . 43

3.2.1 Delay Controllability . 43

3.2.2 Managing Communication Costs 49

3.2.3 Variable-Delay Communication 53

3.3 Related Work . 58

3.3.1 𝜖-dynamic controllability . 58

7

3.3.2 POSTNUs . 59

3.3.3 MaSTNUs . 62

3.4 Additional Examples . 62

3.4.1 Coordinating Autonomous Underwater Vehicles 63

3.4.2 Robotics . 64

4 Delay Controllability 67

4.1 Approach . 69

4.2 Constraint Propagation . 69

4.2.1 Edge Generation Rules . 76

4.3 Verifying Delay Controllability . 80

4.4 Finding Semi-Reducible Negative Cycles 82

4.4.1 Algorithm . 82

4.4.2 Correctness . 91

4.5 Semi-Reducible Negative Cycles and Controllability 97

4.5.1 Semi-Reducible Negative Cycles Imply Uncontrollability . . . 98

4.5.2 Finding an Execution Strategy 99

4.6 Experimental Results . 109

4.6.1 Setup . 110

4.6.2 Results . 111

4.6.3 Discussion . 115

4.7 Conclusion . 115

5 Determining Communication Strategies during Plan Execution 117

5.1 Approach . 119

5.2 Conflict Extraction . 121

5.2.1 Resolving Conflicts . 124

5.3 Minimum-Cost Communication . 126

5.3.1 Conflict-Directed Search . 126

5.3.2 Conflict-Directed Best-First Search 129

5.4 Handling Communication Outages . 132

8

5.4.1 Execution Model . 132

5.4.2 Monitoring Execution . 133

5.5 Experimental Results . 137

5.5.1 Experiment Setup . 138

5.5.2 Results . 139

5.6 Conclusion . 141

6 Chance-Constrained Variable Delays 143

6.1 Determining Controllability . 144

6.2 Variable-Delay Execution . 152

6.3 Checking Chance-Constrained Controllability 154

6.3.1 Approach . 155

6.3.2 Finding and Resolving Conflicts 160

6.3.3 Finding Chance-Constrained Solutions 164

6.4 Empirical Evaluation . 168

6.4.1 Controllability Experiments 168

6.4.2 Chance-Constrained Experiments 170

6.5 Discussion . 172

7 Concluding Remarks 175

7.1 Contributions . 175

7.2 Future Work . 176

A Controllability Complexity for Different Temporal Networks 179

A.1 Conditional & Disjunctive Networks 181

A.1.1 Base Temporal Networks . 182

A.1.2 Compositional Temporal Networks 185

A.1.3 Polynomial Time Hierarchy 189

A.1.4 Evaluating Complexity . 189

A.2 Multi-Agent Disjunctive Temporal Networks 210

A.2.1 Motivation for Multi-Agent Extensions 211

9

A.2.2 Multi-agent Disjunctive Definitions 213

A.2.3 PODTNU Controllability . 215

A.2.4 MaDTNU Controllability . 219

A.3 Discussion . 230

B LP Duality and STNs 233

C Label Reduction Rules 235

10

List of Figures

1-1 a) An example multi-agent plan execution run that failed due to under-

communication. b) Over-communication in the context of multi-agent

plan execution. 24

1-2 a) A typical architecture diagram for a temporal-based executive. b)

An architecture for a temporal executive enabled by my research which

incorporates asynchronous and uncertain communication. 26

2-1 (a) An STN as specified by its set of constraints. (b) The same STN

represented graphically. (c) The same STN represented using its dis-

tance graph formulation. 32

2-2 Sam goes to the Museum of Bad Art and the movies. Figure for Ex-

ample 2.1. 37

2-3 Sam goes to the Museum of Fine Art and the movies. Figure for

Example 2.2. 38

3-1 Sam and Alex go to the movies. Sam’s phone needs to recharge for 5

minutes to let her call Alex. Figure for Example 3.1. 44

3-2 Sam and Alex go to the movies, but Sam’s phone needs to recharge for

40 minutes to let her call Alex. Figure for Example 3.2. 46

3-3 Sam and Alex plan to meet for coffee. Figure for Example 3.3. 50

3-4 Sam brews coffee, and Alex wants to have some after it has cooled

down. Figure for Example 3.4. 54

11

3-5 (a) An STNU with a contingent constraint that has a certain delay. (b)

One possible way of rewriting the STNU as an equivalent POSTNU.

This particular POSTNU exhibits a chained contingency, as 𝐵 is a

contingent event that starts a contingent constraint and is connected

to 𝐵′ via a contingent constraint. 60

4-1 (a) A graphically represented STNU. (b) The same STNU represented

using its labeled distance graph formulation. 70

4-2 A recreation of Example 3.2 in labeled distance graph form. 71

4-3 A recreation of Example 3.2 in labeled distance graph form after adding

one new derived constraint. 73

4-4 A recreation of Example 3.2 in labeled distance graph form after adding

two new derived constraints. 74

4-5 A recreation of Example 3.2 in labeled distance graph form after adding

three new derived constraints. 74

4-6 Example demonstrating the no-case rule. 77

4-7 Example demonstrating the upper-case rule. 78

4-8 Example demonstrating the lower-case rule. 78

4-9 Example demonstrating the label removal rule. In part (a), we have

the first new constraint we can add via a straightforward application of

the upper-case rule. In part (b), given the assumption that 𝑦 − 𝑣 < 𝑥,

we can remove the condition on the constraint as a result of the label

removal rule. 80

4-10 Example demonstrating the incorrect belief that the presence of a nega-

tive cycle implies that the network is uncontrollable. The STNU on the

left is delay controllable, but the edges in blue in the labeled distance

graph on the right form a negative cycle. 81

4-11 (a) Example of an STNU that is uncontrollable when 𝛾(𝐵) = 40. (b)

The same STNU represented as a labeled distance graph. 84

4-12 Step 1 of the walkthrough. SRNCFree? called with node 𝐴. 85

12

4-13 Step 2 of the walkthrough. We recurse and call SRNCFree? with

node 𝐵. 86

4-14 Step 3 of the walkthrough. We dequeue 𝐶 −30−−→ 𝐵 and enqueue 𝐷 15−→ 𝐶. 87

4-15 Step 4 of the walkthrough. We recurse and call SRNCFree? with

node 𝐷. 88

4-16 Step 5 of the walkthrough. We dequeue 𝐶 −15−−→ 𝐷 and enqueue 𝐶 45−→ 𝐵. 89

4-17 Step 6 of the walkthrough. Edge 𝐵 30−→ 𝐷 (in blue) is added to the

labeled distance graph. 90

4-18 Step 7 of the walkthrough. We return to the previous recursive call

that was invoked with node 𝐵. 91

4-19 Step 8 of the walkthrough. New edge 𝐴 50−→ 𝐷 (in green) is derived by

performing a lower-case reduction combining 𝐴 𝑏:20−−→ 𝐵 and 𝐵
30−→ 𝐷.

The new edge is only used implicitly in this stack frame and is not

added to the labeled distance graph. 92

4-20 Step 9 of the walkthrough. Edge 𝐴 35−→ 𝐵 (in blue) is added to the

labeled distance graph. 93

4-21 Step 10 of the walkthrough. We return to the previous recursive call

that was invoked with node 𝐴. 94

4-22 Step 11 of the walkthrough. We invoke SRNCFree? again with node

𝐴, which implies the STNU is not delay controllable with respect to 𝛾.

The edges in red represent the semi-reducible negative cycle that can

be extracted. 95

4-23 (a) Diagram indicating that the observation of 𝐶 occurring at time 𝑡

creates no semi-reducible negative cycles that use 𝐶 −𝑡−→ 𝑍. The path

𝑋 𝐶 starts with a lower-case edge if it is non-empty. (b) Another

diagram indicating the same thing for the other added edge, 𝑍 𝑡−→ 𝐶. 105

4-24 Runtime of delay controllability checkers on STNUs of different sizes.

Shown are the 25th, 50th, 75th percentile, and maximum runtimes for

STNUs of each size. 112

13

4-25 Runtimes of dynamic, delay, and strong controllability checkers on

large STNUs. The runtimes are split based on the controllability of

the network. DelC stands for delay controllability, DC stands for dy-

namic controllability, and SC stands for strong controllability. 113

5-1 (a) Our initial input STNU. The initial delay controllability check is

performed assuming that the two contingent events, 𝐵 and 𝐷 are com-

pletely unobserved. (b) The STNU is not delay controllable with re-

spect to the given 𝛾 and the delay controllability conflict is shown in

red. 128

5-2 (a) After one iteration, 𝛾 is updated to rectify the original conflict and

we set 𝛾(𝐷) = 1. (b) We generate the same set of edges (in red) for

the conflict, but the choices we have to resolve it are slightly different

because of the input 𝛾. 129

5-3 This 𝑘-adversarial STNU is dynamically controllable but is not delay

controllable if 𝛾 = ∞. Requiring that 𝛾(𝐵) = 0 is necessary and

sufficient to make the STNU delay controllable. 130

5-4 The runtimes of the solutions outputted by the search algorithms when

run on 𝑘-adversarial STNUs. 139

5-5 The runtimes of the solutions outputted by the search algorithms when

run on random graphs. 140

5-6 The quality of the solutions outputted by the search algorithms when

run on random graphs. Quality is given by the optimal cost divided by

the cost of the returned solution with a score of 1.0 representing the

optimal solution. 140

14

6-1 (a) A contingent constraint followed by a requirement constraint in

our original STNU. (b) An equivalent (improper) STNU, which has a

fixed-delay function instead of a variable-delay one. 𝐸 becomes unob-

servable, and instead we immediately observe an explicit event 𝑌 after

some uncertain delay. (c) An STNU that encodes a sufficient set of

semantics to guarantee successful execution at runtime. 𝑋𝑌 refers to

the true observed duration of the contingent constraint from 𝑋 to 𝑌 .

(d) A valid equivalent STNU, which has a fixed-delay function instead

of a variable-delay one. The range of the contingent constraint shrinks,

but the range of all attached requirement constraints must also shrink

by a corresponding amount. 146

6-2 Here we consider a hypothetical execution of an STNU where contin-

gent event 𝐵 has 𝛾(𝐵) ∈ [15, 30], whereas the contingent constraint

ending at 𝐵 takes time in the range [5, 15]. There are some particu-

lar observations for which there is too much ambiguity to glean any

information about the value of 𝐵. 147

6-3 Simplified version of Example 3.4. The time it takes Sam to send an

email is unspecified. 157

6-4 The first step of the walkthrough. The algorithm checks to see if the

problem is solvable with no communication. A conflict is found in red

and the resolutions are noted. 157

6-5 The second step of the walkthrough. The algorithm checks to see if

the problem is solvable if communication is guaranteed to happen in

the range [85, 100]. The conflict that is found involves an annotation,

and its resolution is noted. 158

6-6 The third step of the walkthrough. The algorithm checks to see if the

problem is solvable if communication is guaranteed to happen in the

range [90, 100]. The conflict stems from the fact that 𝛾+(𝐵) = 100,

and its resolution, that 𝛾+(𝐵) ≤ 30 is noted. 159

15

6-7 The final step of the walkthrough. The conflict resolutions require

that 𝛾+(𝐵) ≤ 30 and 𝛿𝛾(𝐵) ≤ 10. Our probability function assigns

no probability mass to communication happening in the range [15,

25], so the algorithm checks whether the STNU is controllable when

communication happens in the range [5, 15]. The STNU is controllable

under these communication bounds, and the algorithm returns that as

the solution. 159

6-8 (a) A contingent constraint followed by a requirement constraint in

our original STNU. (b) A valid equivalent STNU, which has a fixed-

delay function instead of a variable-delay one. The range of the con-

tingent constraint shrinks, but the range of all attached requirement

constraints must also shrink by a corresponding amount. (c) Another

equivalent fixed-delay STNU with its constraints instead parameterized

in terms of 𝛾+ and 𝛿𝛾. 161

6-9 Empirical comparison of the risk of failure versus the number of trips

considered in a single plan. 172

6-10 Empirical considerations of the runtime required to find a minimum-

risk plan versus the number of trips included in a single plan. 173

A-1 A taxonomic organization of temporal networks considered in the first

section of this appendix, how they relate to one another, and the com-

plexity classes to which their decision problems belong. SC, DC, and

WC represent strong controllability, dynamic controllability, and weak

controllability, respectively. Results in bold represent novel results pro-

vided in this thesis. 181

A-2 A gadget used in the proof that WC-TCSPU is Π𝑃
2 -hard. The 𝐴𝑘 events

can each take on any value from {0, 1, 2}. The value 𝐴𝑘,6 represents

the disjunction of 𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 and is constrained to equal one. . . 191

16

A-3 A description of the disjunctive goal constraints found in each gadget

used in the proof that SC-DTNU is Σ𝑃
2 -hard. The 𝐴𝑘 event can each

take on any value from {0, 1, 2}. The value 𝐴𝑘,6 will only be precluded

from taking on a value of 0 when all of 𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 are 1. The

disjunctive constraints of this gadget are all individual parts of the

larger collective disjunctive goal constraint. 195

A-4 A description of the contingent constraints found in each gadget used in

the proof that SC-DTNU is Σ𝑃
2 -hard. The constraints between 𝑍 and

each 𝐺𝑘,𝑙 are contingent constraints but are constrained to be equal in

length to the original 𝑥𝑖, 𝑦𝑗 they relate to using the shared disjunctive

goal constraint. 196

A-5 A taxonomic organization of temporal networks considered in the sec-

ond section of this appendix, how they relate to one another, and the

complexity classes to which their decision problems belong. Results in

bold represent novel results provided in this thesis. 211

A-6 Example TILING problem with accompanying solution. 220

A-7 The two-agent MaDTNU produced by a reduction from an input TILING

problem. There are 𝑂(log 𝑛) events in total and 𝑂(|𝐻| + |𝑉 | + log 𝑛)

constraints in total, each of which are 𝑂(|𝐻|+ |𝑉 |) in size. 222

17

18

List of Tables

4.1 Edge generation rules for a labeled distance graph 76

4.2 Delay vs. strong controllability results. 112

4.3 Delay vs. dynamic controllability results. 112

6.1 Variable-delay vs. minimum, mean, and maximum fixed-delay con-

trollability and results when using an exponential delay function with

𝜆 = 0.5. 168

6.2 Variable-delay controllability vs. the controllability of a network that

elongates its contingent constraints to account for observational uncer-

tainty when using an exponential delay function with 𝜆 = 0.5. 170

C.1 Edge generation rules for a labeled distance graph 235

19

20

Chapter 1

Introduction

Understanding multi-agent systems and how they operate is at the heart of many

problems in artificial intelligence. These problems at their core involve an automated

system reasoning and making decisions in a way that deeply affects the actions and

goals of other agents, be they human or robotic. This thesis aims to examine multi-

agent planning and execution in the temporal domain and to provide a robust theory

that enables improved plan execution when communication between agents is limited.

This chapter provides a high-level overview of the contributions that this thesis

will provide. It starts by presenting a series of motivating examples, illustrating both

the ubiquity of and the challenges present in multi-agent coordination problems. This

chapter then describes the overall approach taken to augmenting a system capable of

reasoning about and providing plans for multi-agent coordination problems. The rest

of this thesis provides a desiderata, describing a set of requirements for an effective

multi-agent coordination executive, a model that satisfies those requirements, and a

series of algorithms which allow that model to be used efficiently in practice.

1.1 Motivating Examples

We take as an initial motivating example, the problem of autonomous vehicle dis-

patch. As autonomous vehicles become more advances, car companies are beginning

to envision a future where they move from being manufacturing companies to mobil-

21

ity and transportation companies. In a future where autonomous cars are ubiquitous,

companies will survive and excel based on the quality of their service.

When transitioning to transportation companies, car companies have to efficiently

and effectively solve a particular type of multi-agent scheduling problem, where a

single central agent, the autonomous car company, is responsible for dispatching cars

to serve the needs of all of its customers. Each customer has an internal set of

deadlines and goals that is only made available to the dispatcher in limited quantities

(e.g. a customer may request a car to 42 Vassar St. at 3:45pm, but the dispatcher

does not know if its purpose is a business meeting or coffee with a friend). Despite

the fact that communication between customers and the autonomous dispatcher is

limited, these companies must still construct policies and schedules that guarantee

high-quality service.

The problem that these car companies face is the focus of this thesis. In order

to develop a high quality system, they must be able to reason about the temporal

goals and requirements of their customers under limited overall communication. This

example also hints at another important requirement of algorithms that reason over

multi-agent coordination problems. In order for them to be used in situations like

autonomous car dispatch, it is of critical importance that these algorithms operate

efficiently. It is plausible, and at times likely, that such a system would be responsible

for accommodating tens of thousands of requests in a single interval. When discussing

this thesis’s contributions, we will make sure to speak to the efficiency of the presented

algorithms in practice.

While the autonomous car scenario represents one future problem that this thesis

may help address, there are similar analogs in the here and now for which multi-agent

coordination under limited communication is well-suited.

Consider the following example about the deployment of autonomous underwater

vehicles (AUVs).

Example 1.1. Autonomous Underwater Vehicle Operation

The Woods Hole Oceanographic Institution (WHOI) is interested in using

22

a heterogeneous set of three autonomous underwater gliders to explore ar-

eas of the seabed. The gliders are designed to be incredibly energy-efficient

in their traversal, meaning they can operate autonomously for days and

even weeks without human intervention. Some degree of coordination is

necessary across the vehicles. Each of the vehicles has different sensors

on-board, so each may need to independently traverse the same region.

However, to avoid collision, the vehicles need to coordinate to ensure they

are not operating in the same regions simultaneously.

Unfortunately, direct communication between gliders is impossible, and

communication between a glider and shore operations only happens when

that glider has surfaced. While it might seem reasonable to surface the

glider before and after every action, there is a direct trade-off between time

spent surfaced and amount of time spent conducting scientific operations.

Beyond the operational difficulties in choosing high-value sites and dealing with

temporal uncertainty in the form of uncertain currents, what this example illustrates

is that considerable thought needs to go into selecting times to communicate and to

verify that those choices lead to a safe and efficient plan.

This example is not meant to be purely theoretical. Prior collaborations between

WHOI and the Model-based and Embedded Robotics System (MERS) group at MIT

focused on deploying vehicles to solve these kinds of problems [1, 53], and in November

2019, MERS and WHOI collaborated again to demonstrate exactly this capability

using the concepts outlined in this thesis.

Even in simpler instances, such as those involving human agents planning an

outing, we see the need for a theory that characterizes how to act under limited

communication. Consider the following simple example.

Example 1.2. Alex and Sam get dinner.

Two agents, Alex and Sam, want to meet at a restaurant and eat dinner

together.

23

b)a)

Figure 1-1: a) An example multi-agent plan execution run that failed due to under-
communication. b) Over-communication in the context of multi-agent plan execution.

It is immediately clear to the observer that constructing a plan for this problem

is straightforward. The domain has a highly constrained action space, the degree of

interactions between agents is low, and all agents are working collaboratively towards

the same shared goal. Applying planning algorithms to this scenario feels like overkill

because as humans, solving these kinds of problems is routine.

Nonetheless, it is possible for multi-agent coordination to fail in execution. Many

of us have been in exactly this scenario where plans fail to materialize due to a

breakdown in communication (see for example Figure 1-1a). It is clear that for

many types of multi-agent plans to be successful, there has to be a baseline level of

coordination and communication during plan execution for a plan to be successful.

Of course, a simple solution is to over-communicate and to share all possible

pieces of information that may be relevant to the joint plan (see for example Figure

1-1b). While this approach provides a theoretical guarantee of success, the dispatch of

information itself can come at a cost or be highly distracting for the message recipient.

An appropriate multi-agent plan execution system, therefore, must be capable of being

judicious in its communication to strike a balance between not providing enough

information and overwhelming the end-user.

24

As human agents, we intuitively recognize when communication strategies are

suboptimal but sometimes struggle to find good ones. Managing communication is a

critical part of ensuring the success of multi-agent plans, and this thesis will provide

a set of tools to describe how to do so efficiently and effectively.

1.2 Approach

This thesis will address the multi-agent plan execution problem by providing the

theory and corresponding algorithms for a multi-agent real-time executive.

At its core, a real-time executive operates in three stages (see Figure 1-2a for

details). As its initial input, a real-time executive is provided with an ungrounded

temporal plan and action model where the timings of specific actions are yet to be

made. The job of the executive is to ground that schedule and dispatch those actions

to agents in the world who are capable of carrying them out. In a world where all

agents behave deterministically and there is no uncertainty, these capabilities alone

are sufficient. However, in practice, agents do not always execute tasks exactly when

specified, and some events are outside the purview of the executive. In those situ-

ations, the executive needs to receive updates from the agents about the effects of

the dispatched actions and the updated state of the world. The executive then incor-

porates that information into its internal representation and amends its subsequent

dispatches.

While many executives have been developed in the past [20, 34, 35], they do not

tend to be well-suited to multi-agent plan execution when communication between

agents is limited. In this thesis, we will improve the presented real-time executive

architecture by showing how to modify each component of the real-time executive

architecture to better handle the nuances of multi-agent plan execution (see Figure

1-2b).

First is augmenting the input. In this thesis, we will primarily concern ourselves

with ungrounded temporal plans, meaning the responsibility of a real-time executive

is to schedule the dispatch of and subsequent communication about the results of a

25

(a)

(b)

Figure 1-2: a) A typical architecture diagram for a temporal-based executive. b)
An architecture for a temporal executive enabled by my research which incorporates
asynchronous and uncertain communication.

set of pre-determined actions.

In order to arrive at our executive’s input representation, we can start from any of

a large number of domain independent languages that are used for planning. In partic-

ular, the Reactive Model-Based Programming Language (RMPL) [34], Planning Do-

main Definition Language (PDDL) [26], and Temporal Concurrent Automata (TCA)

[31] specifications all provide higher-order semantics for defining actions broadly in

terms of their preconditions and effects. When time is involved, the resulting rep-

resentations can often be reduced down to Simple Temporal Networks (STNs) [22],

Simple Temporal Networks with Uncertainty (STNUs) [58], or some related exten-

sion; we will primarily consider STNUs in the context of this thesis and provide a

rigorous discussion of the possible alternatives in Appendix A.

Our interest is in constructing an executive that reasons over and is able to execute

a plan efficiently while addressing the difficulties of multi-agent communication. To

adequately handle this, we introduce a new formalism, delay controllability, which

26

models delays in communication as layered on top of an STNU and show that we can

reason about and execute a plan subject to delays in communication in polynomial

time. Delay controllability forms the backbone of the rest of the work in this thesis.

Second, we update the executive to include communication windows for actions

alongside action dispatches. Delay controllability algorithms evaluate whether it is

possible to execute a given temporal plan subject to communication delays associ-

ated with a given communication strategy. However, many agents have flexibility in

deciding when to communicate and have soft preferences about when communication

happens based on cost and convenience. The goal of including communication win-

dows is to establish what information must be shared for plan success while giving

agents flexibility as to exactly when they report on their progress. We call the prob-

lem of determining the best possible communication windows the Communication

Cost Minimization Problem (CCMP).

What makes solving CCMPs difficult is that the space of communication strategies

is continuous and unbounded. To address this problem we borrow ideas from conflict-

directed search [60] and understand that if we know why a particular communication

strategy is infeasible, we can adjust future strategies accordingly. As with most search

based algorithms, there is a trade-off between empirical performance and optimality

guarantees. We show that Least Cost Resolution Search in practice is significantly

faster than an optimal search algorithm and provides near optimal results, even if it is

possible to construct adversarial examples for which the algorithm gives polynomially

bad approximations.

Our work in this area also considers how to adjust communication windows when

information comes in earlier or later than expected. When dispatching across real

agents, there is always some risk of action failure. Understanding how to adjust plans

in those instances is critical to improving the chance of plan success.

Third and finally, we focus on making the executive tolerant to noisy and imprecise

updates from agents. When dealing with agents in the real world, their communi-

cation and utterances may not always be entirely accurate. For example, when a

human agent says “I finished lunch at 1pm,” they likely mean they finished at 1pm ±

27

10 minutes. Even in scenarios exclusively filled with robotic agents, having tolerance

for noise in communication is important to ensure overall robustness.

Here we introduce variable-delay controllability as an extension of delay control-

lability to account for noisy delays. In this model, agents may know that an event

happened over some time period in the past, but they are not guaranteed to know

exactly when it happened. This communication now acts as a mechanism to partially

resolve temporal uncertainty, and the question is how to use that information for

improved execution. We show how to reduce variable-delay controllability to gen-

eral delay controllability in the case where observational uncertainty is set-bounded.

When we have a large probabilistic distribution over possible observations and we

tolerate some small risk of failure, we introduce the notion of chance-constrained

variable-delay controllability. In such situations, we show how to interleave the use of

a non-linear program solver with delay controllability conflict extraction techniques

to determine whether a temporal plan can still be executed.

1.3 Contributions

This thesis provides a framework for reasoning about and evaluating multi-agent

coordination under limited communication. The contributions can be subdivided

into three parts.

1. A formalism for reasoning about multi-agent execution. Different types

of temporal formalisms can encode multi-agent planning and execution problems

with varying levels of fidelity. In Appendix A, we examine many of these for-

malisms in detail, providing novel hardness and completeness results for many

types of these bounds.1 In Chapter 3, we introduce delay controllability as a

means of reasoning about multi-agent scenarios efficiently through the lens of

communication delay and in Chapter 4 show how to check delay controllability

in polynomial time.2

1Much of this work was originally presented in AIJ [8] and AAMAS [7].
2This work was originally presented as a technical report in DSpace@MIT [3].

28

2. An algorithm to derive required communication windows. Delay con-

trollability as presented only answers the binary decision problem of whether

it is possible to reactively construct a schedule given a communication strat-

egy. Agents, however, often have flexibility in choosing when to communicate,

with the understanding that some times may be more inconvenient or costly

for communication than others. We encode this problem as a Communication

Cost Minimization Problem (CCMP). In Chapter 5, we present a series of algo-

rithms for constructing low-cost communication window solutions to CCMPs as

well as a description for how to adapt those strategies online during execution.

We show that while certain sub-optimal algorithms may yield polynomially bad

approximations in adversarial settings, in practice they are significantly faster

and provide results that are near optimal.3

3. A procedure for handling noisy communication. The assumptions made

to this point rely on the belief that while communication may be delayed, it is

always accurate. In Chapter 6, we introduce variable-delay controllability as a

means of handling temporal noise in communication events. We show how to

reduce a variable-delay controllability problem to that of ordinary delay control-

lability in linear time and introduce a procedure for reasoning over probabilistic

noise through chance-constrained variable-delay controllability, providing ex-

perimental results demonstrating that these approaches can be used efficiently

in practice.4

1.4 Organization of Thesis

The rest of the thesis is organized as follows. In Chapter 2, we provide some pre-

liminary background and notation that we will use across the rest of the thesis. In

Chapter 3, we provide a desiderata, which describes the ideal contributions of a tem-

poral modeling framework for multi-agent coordination, and a set of definitions which

3The first part of this work was originally published in IJCAI [4].
4The first part of this work was also originally published in IJCAI [5].

29

satisfy its corresponding requirements and form the cornerstone of this thesis’s con-

tributions. Chapter 4 provides an efficient algorithm for modeling communication

delays for multi-agent plan execution through the lens of delay controllability. Chap-

ter 5 builds on the work of the previous chapter, extending core delay controllability

algorithms to make them suitable for enumerating solutions to CCMPs. In Chapter

6, we consider how to reason about uncertain and imprecise communication dur-

ing execution with variable-delay controllability and provide a procedure for doing

so efficiently when given both set-bounded and probabilistic distributions over the

uncertainty in communication. Finally, in Chapter 7, we provide some concluding

remarks and elaborate on promising directions for future research endeavors.

30

Chapter 2

Background

In this chapter, we provide the required preliminary background material that will

be used across the rest of the thesis. Some discussion and exposition in this chapter

has been included from previous writings from the thesis author [3].

2.1 Simple Temporal Networks

Simple Temporal Networks (STNs) are the most basic temporal network on which

other temporal network formalisms are built [22]. STNs are composed of a set of vari-

ables and a set of binary constraints limiting the difference between any two variables

(e.g. 𝐵 − 𝐴 ∈ [10, 20]). These variables denote individual points in time (henceforth

events) and the constraints between them are binary temporal constraints, limiting

their temporal difference (e.g. event 𝐴 must happen between 10 and 20 minutes

before event 𝐵).

Definition 2.1. STN [22]

An STN is a pair ⟨𝑋,𝑅⟩ where:

∙ 𝑋 is a set of event variables, whose domains are the reals

∙ 𝑅 is a set of constraints. Each constraint has scope 𝑥𝑟, 𝑦𝑟 ∈ 𝑋 and relation of

the form 𝑥𝑟 − 𝑦𝑟 ∈ [𝑙𝑟, 𝑢𝑟]

31

A A

B B

C C

D D

[10, 20]

[10, 25]

10 ≤ xB - xA ≤ 20

20 ≤ xD - xB ≤ 20

10 ≤ xD - xC ≤ 25

 5 ≤ xC - xA ≤ 15

 0 ≤ xC - xB

[20, 20]

[5, 15]

[0, ∞) 0

-5 15

-10

-10

20

20

25

-20

a) b) c)

Figure 2-1: (a) An STN as specified by its set of constraints. (b) The same STN
represented graphically. (c) The same STN represented using its distance graph
formulation.

An STN denotes a set of linear inequalities (Figure 2-1a) that are visualized as a

graph, where each event is represented as a node and edges between nodes represent

constraints (see Figure 2-1b).

In the context of this thesis, the STN represents the base model that we use to

construct a theory of multi-agent coordination under limited communication. Because

our focus is on the execution of tasks subject to temporal deadlines, STNs are used

to indicate the possible durations and dependencies between actions in our desired

contexts.

When we consider the feasibility of an STN, we are generally concerned with

whether it is possible to construct a schedule, that is an assignment of values from R

to each event 𝑥 ∈ 𝑋, such that all constraints are satisfied. An STN is consistent if

there exists a schedule for all events such that all constraints are respected.

To evaluate consistency, we often reason over an STN’s distance graph (see Figure

2-1c). A distance graph is like an STN, in that each event becomes a node, while each

constraint, 𝑢𝑖 ≤ 𝑥𝑗 − 𝑥 −𝐾 ≤ 𝑣𝑖, becomes two edges – one in the original direction

with weight 𝑣𝑖 and one in the reverse direction with weight −𝑢𝑖 (see Figure 2-1c).

32

From previous work, we know that an STN is consistent if and only if there is

no negative cycle in its equivalent distance graph [22]. In general, we take 𝑛 to be

the number of events in a temporal network and 𝑚 to be the number of constraints.

Checking the consistency of an STN is doable in 𝑂(𝑚𝑛) time, using Bellman-Ford to

check for negative cycles. In Appendix B, we provide an alternative explanation for

why finding negative cycles is sufficient to prove STN inconsistency.

2.2 Simple Temporal Networks with Uncertainty

While the STN formalism is quite powerful, it has one major shortcoming; it assumes

that the scheduler has absolute control over each and every event. However, there are

many scenarios where the scheduler does not have this kind of absolute control and

where this uncertainty needs to be addressed. For example, individuals are unable

to control how much traffic will affect their morning commute or when it might start

to rain. Moreover, they are quite unlikely to have precise control of other agents in

a multi-agent environment. By convention, we say that those events and actions not

explicitly chosen by the scheduler are chosen by nature.

To account for this, we need a way to augment temporal networks to describe

the uncertainty often found in temporal processes. Simple Temporal Networks with

Uncertainty (STNUs) extend STNs, allowing us to model events whose timings are

outside the control of the scheduler [58].

Definition 2.2. STNU [58]

An STNU is a 4-tuple ⟨𝑋𝑒, 𝑋𝑐, 𝑅𝑟, 𝑅𝑐⟩ where:

∙ 𝑋𝑒 is the set of executable events

∙ 𝑋𝑐 is the set of contingent events

∙ 𝑅𝑟 is the set of requirement constraints of the form 𝑙𝑟 ≤ 𝑥𝑟 − 𝑦𝑟 ≤ 𝑢𝑟, where

𝑥𝑟, 𝑦𝑟 ∈ 𝑋𝑐 ∪𝑋𝑒 and 𝑙𝑟, 𝑢𝑟 ∈ R

∙ 𝑅𝑐 is the set of contingent constraints of the form 0 ≤ 𝑙𝑟 ≤ 𝑐𝑟 − 𝑒𝑟 ≤ 𝑢𝑟, where

𝑐𝑟 ∈ 𝑋𝑐, 𝑒𝑟 ∈ 𝑋𝑒 and 𝑙𝑟, 𝑢𝑟 ∈ R

33

In STNUs, events are subdivided into executable and contingent events and con-

straints are subdivided into requirement and contingent constraints. Executable

events are the events that the scheduler is responsible for (and are equivalent to

events in STNs), whereas contingent events are scheduled by nature. Requirement

constraints are equivalent to ordinary STN constraints and are free to constrain any

pair of events. Contingent constraints, in contrast, represent relations between a

starting executable event and an ending contingent event that nature is guaranteed

to enforce.

By convention, the lower-bound of a contingent constraint is required to be non-

negative to enforce that the ending event of the constraint follows the starting event.

It is worth noting that we require that all contingent constraints begin from an ex-

ecutable event. This requirement does not have an impact on the expressiveness of

our networks but will simplify further discussions in this thesis. It is simple to take

a pair of chained contingent constraints and splice in a new executable event that

starts the second contingent constraint and is required to occur at the same time as

the first contingent constraint’s end event.

To expand on this, in order to simplify our reasoning around STNUs, we will

make the assumption that all STNUs are in normal form. To transform an STNU

into normal form, we replace all contingent constraints 𝐴
[𝑥,𝑦]
==⇒ 𝐶 by introducing a new

event 𝐴′ with two constraints, 𝐴
[𝑥,𝑥]−−→ 𝐴′ and 𝐴′ [0,𝑦−𝑥]

====⇒ 𝐶. From an expressiveness

perspective, the two STNUs are equally expressive, meaning the transformation does

not affect delay controllability.

For a contingent constraint 𝑟, represented as 𝑙𝑟 ≤ 𝑐𝑟 − 𝑒𝑟 ≤ 𝑢𝑟, we say that the

duration of 𝑟 is the value specified by the difference 𝑐𝑟 − 𝑒𝑟 at execution time. When

considering the interplay between the scheduler and nature, we are free to describe

nature’s role as either picking the durations of contingent constraints or as picking the

times of each contingent event. The set of contingent constraint durations together

with the set of executable events uniquely determines a set of contingent events,

indicating that the two are equivalent.

Since contingent events have unknown assignments in an STNU, it is difficult to

34

reason directly about the consistency of an STNU, as we need some way to quantify

over or otherwise characterize the uncertainty of contingent events. For STNUs, we

care about evaluating their controllability, or whether it is possible to provide an

assignment to all executable events in response to some observation of contingent

events. Historically, STNU controllability has come in three forms: strong, weak, and

dynamic [58].

2.2.1 Strong Controllability

We say that an STNU is strongly controllable if there exists some schedule for all

executable events 𝑋𝑒, such that for every possible assignment of values to contin-

gent events in 𝑋𝑐 that satisfy the contingent constraints 𝑅𝑐, all of the requirement

constraints 𝑅𝑟 are satisfied. STNU strong controllability checking, much like STN

consistency checking, reduces to detecting the presence of a negative cycle and can

be computed in 𝑂(𝑚𝑛) time [58].

While strong controllability provides extremely strong guarantees with its fixed

schedule, requiring strong controllability tends to be quite conservative in practice,

as it precludes the ability of the scheduler to react to any observations of contingent

events.

2.2.2 Weak Controllability

Weak controllability asks whether it is possible to reactively construct a schedule

if the durations of the uncertain events are revealed before scheduling begins. In

other words, for every fully specified set of contingent action durations that guarantee

satisfaction of contingent constraints 𝑅𝑐, weak controllability asks whether it is always

possible to pick a set of values for the executable events 𝑋𝑒 such that all requirement

constraints 𝑅𝑟 are satisfied. While checking whether a schedule exists for any one

particular realization of the uncertain events reduces to checking STN consistency,

checking STNU weak controllability in general is coNP-complete [39].

Weak controllability is a highly reactive mode of constructing a schedule. It as-

35

sumes that all information is made available to the scheduler before execution and

considers the ability of the scheduler to react appropriately in all particular situa-

tions. In this way, weak controllability can be seen as the natural dual of strong

controllability. Together these two modes map out the two extremes of constructing

valid STNU schedules.

2.2.3 Dynamic Controllability

Informally, we say that an STNU is dynamically controllable if it is possible to assign

values to executable events given knowledge about assignments to only those events

that happened in the past, including past contingent events. While strong controlla-

bility constructs a schedule before the fact, dynamic controllability affords additional

flexibility by incorporating information as it arrives to construct a valid schedule.

In some way, dynamic controllability can be seen as the intuitive composition

of strong and weak controllability. Weak controllability assumes perfect foresight

for future uncertain events, whereas strong controllability assumes that no events can

ever be observed. Dynamic controllability blends the two by assuming full observation

of events in the past while still holding unobserved events that come in the future.

This combination makes it desirable for use in scheduling and execution, as it does

not require the levels of foresight that weak controllability may, but at the same time

it is able to take advantage of information at a greater rate than strong controllability

checks may. In the next section, we provide a deeper look at dynamic controllability

and how to evaluate dynamic controllability in STNUs.

2.3 Differentiating Types of Controllability

The three presented types of controllability each provide different ways of evaluat-

ing completeness. While weak controllability tends not to be used in practice (as it

involves some level of clairvoyance from the scheduler), strong and dynamic control-

lability are used quite commonly to schedule agents in temporal problems.

36

[20, 40]

[60, 75]

[30, 45]
A B C

A: Leave home (7:00pm)
B: Arrive at Museum of Bad Art
C: Arrive at Movie Theater Requirement Link

Contingent Link

Figure 2-2: Sam goes to the Museum of Bad Art and the movies. Figure for Example
2.1.

Here, we will present a series of examples to more intuitively illustrate the differ-

ences between strong and dynamic controllability.

Example 2.1. Sam goes to the Museum of Bad Art followed by the movies. See

Figure 2-2.

Sam wants to spend 30 to 45 minutes at the Museum of Bad Art and then

attend a movie at the Somerville Theater right upstairs at 8:15pm. It is

now 7:00pm, and it will take her between 20 and 40 minutes to drive to

the museum depending on traffic. She does not want to be more than 15

minutes early to the movie, and she definitely does not want to be late.

In this example, there are three events in total which compose the temporal net-

work. We let event 𝐴 denote when Sam leaves home, event 𝐵 denote when she arrives

at the Museum of Bad Art, and event 𝐶 denote when she heads upstairs to the movie

theater. For convenience, we assume that event 𝐴 is fixed and always occurs at 7pm.

Example 2.1 is not strongly controllable in that there is no way to commit to a

schedule for the three events ahead of time. If Sam decides to head upstairs from

the museum at any time before 8:10pm and it takes a full 40 minutes to drive to the

museum, then she will not spend enough time at the museum. In contrast, if she

decides to head upstairs after 8:10pm and arrives at the museum in just 20 minutes,

she will spend too much time at the Museum of Bad Art.

37

[20, 40]

[60, 75]

[30, 45]
A B C

A: Go to Musuem of Fine Art (7:00pm)
B: Leave Museum of Fine Art
C: Arrive at Movie Theater Requirement Link

Contingent Link

Figure 2-3: Sam goes to the Museum of Fine Art and the movies. Figure for Example
2.2.

However, it is possible to construct a feasible schedule for this problem on the fly,

meaning the scenario is dynamically controllable. When Sam arrives at the museum,

she can decide on times that respect all the constraints. If she gets there in under 30

minutes, she can head up to the theater at 8:00pm, but if it takes her longer, she can

head upstairs at 8:10pm.

With a slight modification to the problem’s constraints, we can generate an ex-

ample that is neither strongly nor dynamically controllable.

Example 2.2. Sam goes to the Museum of Fine Art and the movies. See Figure 2-3.

Sam lives next door to the Museum of Fine Art and wants to spend

between 30 and 45 minutes at the museum before going to see a movie

at the Somerville Theater at 8:15pm. It is now 7:00pm, and it will take

between 20 and 40 minutes to drive from the museum to the theater.

She does not want to be more than 15 minutes early to the movie and

definitely does not want to be late.

In contrast to the previous example, Example 2.2 is not dynamically controllable.

At the start, Sam does not know how long her commute will be, so if she spends more

than 35 minutes at the museum, she may miss the movie if her commute takes 40

minutes. In contrast, if she spends less than 35 minutes there, she may be too early

if her commute takes just 20 minutes.

38

Instead of performing an ad hoc analysis on our examples to determine their

controllability, we want to take a more principled approach to constructing a schedule

for our temporal problems.

39

40

Chapter 3

A Framework for Temporal

Coordination with Communication

Delay

In this thesis, we focus on the roles that communication and delay play in the execu-

tion of a multi-agent plan. We use this lens as a way to better model the multi-agent

scheduling problem and to construct efficient algorithms for doing so. One of the

major goals of this thesis is to provide a framework for modelers that allows them to

describe multi-agent scenarios where communication is restricted or limited in some

way. Our focus in this chapter is to lay out the set of requirements and desiderata

for our framework and to introduce the specific definitions that satisfy those require-

ments. In Chapters 4, 5, and 6, we provide a series of algorithms for evaluating and

constructing schedules for these models.

3.1 Formalizing the Requirements

Our goal in establishing desiderata is to come up with a set of features that are

needed in order to augment a real-time executive to allow it to adequately handle

multi-agent scenarios (see Figure 1-2). We derive an effective set of requirements by

examining the component inputs and outputs of a standard executive and reasoning

41

about what is needed to ensure that it is capable of operating correctly in the presence

of communication that is delayed or absent.

First, we need to augment the input temporal and action model with a communi-

cation model to provide a way to describe delays and interruptions to communication

in a more structured way. While we can choose from many possible models of commu-

nication, it is important to choose one that can distinguish between when an action

occurs and when each agent learns about it. It is important that the model allows

for different agents to experience different delays in their observations of actions and

for delays to have some amount of variability in when they happen (we clarify later

exactly how we accommodate this).

Second, our framework should be aware that certain communication is expensive

and should be capable of deciding when the results of certain events should be commu-

nicated, if at all. Agents often have control over when they communicate the results

of an action or even whether they communicate those results at all. In the interest

of minimizing the cost of communication, whether that is in the form of preserving

bandwidth, minimizing distractions, or maintaining privacy, it is important to be able

to describe the cost associated with communication and formulate a problem whose

aim is to minimize that cost while still guaranteeing the satisfaction of all temporal

constraints. Adding this formalization allows us to determine specific communication

windows that agents must adhere to.

Third, our framework must establish a way to model noise in the communication

itself. Imprecise communication is a hallmark of the way that humans coordinate with

one another (for example saying “I left 15 minutes ago” really means “I left somewhere

between 5 and 20 minutes ago”). Humans are adept at reasoning in the face of this

kind of uncertainty, and as a result, we expect our frameworks for execution to be

capable of representing and evaluating this as well.

The final requirement is that the models and corresponding algorithms must be

tractable. Extensions to STNUs involving disjunctive constraints [55, 57], conditional

constraints [30], and even those with generalized multi-agent observation [36, 15]

have been proposed as more expressive theories capable of handling richer and richer

42

situations. Unfortunately deriving solutions for most of these models is NP-hard,

and for those that are not proven NP-hard, we do not yet know whether evaluating

the models is guaranteed to be tractable (see Appendix A). Ultimately, these results

yield bounds that are infeasible for use in problems at scale, prompting us to search

for a new alternative that satisfies the desiderata.

3.2 Introducing Delay Controllability

In this section, we describe how we build our base model, how we use it to satisfy

the requirements set forth in the previous subsection, and ultimately what kinds of

problems we can newly solve with these tools.

3.2.1 Delay Controllability

The cornerstone of our contributions is a generalized model of controllability, called

delay controllability. Delay controllability concerns policies for constructing schedules

that are robust to the type of uncertainty faced in situations where communication

is not always reliable. Consider, for example, scheduling the activities of a pair of

human agents. Each agent prefers that all scheduling constraints are satisfied and

accordingly may be proactive in their communication. However, due to preoccupation,

forgetfulness, or a need for privacy, we may not always have perfect knowledge of

when agents executed their actions. Delay controllability aims to provide a way to

incorporate information as it arrives in order to guarantee successful coordination

across agents, even when that information is delayed or occasionally absent.

In reviewing other temporal network frameworks for modeling multi-agent coor-

dination, we see that two of the main types of controllability, dynamic and strong,

can be insufficient when attempting to model and ultimately schedule multi-agent

communication that involve delayed communication. Strong controllability requires

pre-computing a schedule, which guarantees success in the face of any delay in com-

munication but is in practice too conservative. Dynamic controllability, in contrast,

assumes that all information is freely available during execution, which is often an

43

incorrect assumption when dealing with multiple agents.

Instead, we need a solution that lies somewhere in the middle. Understanding de-

lays in communication is at the heart of this problem; dynamic controllability assumes

that there are no delays in communication, while strong controllability assumes that

delays are so overwhelming that it is not worth relying on the arrival of any informa-

tion to compute a schedule. Delay controllability addresses this divide by generalizing

the two forms of controllability and exposing a class of controllability problems that

lie in between, by explicitly modeling what events can be observed and the delays

associated with event observation.

Examples

To motivate the value of delay controllability, we introduce two new examples that

differ only with respect to when information is relayed.

[20, 40]

[60, 75]

[30, 45]

[15, 15]

A B

D

C

A: Sam leaves home (7:00pm)
B: Sam arrives at Museum of Bad Art
C: Sam & Alex arrive at Movie Theater
D: Alex leaves her apartment Requirement Link

Contingent Link

𝝲(B) = 5

Figure 3-1: Sam and Alex go to the movies. Sam’s phone needs to recharge for 5
minutes to let her call Alex. Figure for Example 3.1.

Example 3.1. Sam and Alex go to the movies. To coordinate, first Sam’s phone

needs to be recharged. See Figure 3-1.

Sam wants to spend between 30 and 45 minutes at the Museum of Bad Art

and then attend a movie with her friend Alex at the Somerville Theater,

44

right upstairs. After looking at the movie times, she decides to attend the

movie showing at 8:15pm. It is now 7:00pm, and it will take her between

20 and 40 minutes to drive to the museum. She does not want to meet

Alex more than 15 minutes before the movie starts, and she definitely

does not want to be late.

Alex’s apartment is a 15-minute walk from the Somerville Theater, so she

has asked Sam to give her a call when she should leave for the movies.

They need to enter the theater at the same time because the movie is

sold out, and they want to get seats together. Sam’s phone needs to be

recharged before calling Alex. When Sam arrives at the museum, she will

leave her phone to charge at the museum front desk for 5 minutes, before

calling Alex.

Example 3.1 is controllable. As was the case in Example 2.1, Sam can make

decisions on the fly to ensure that she spends an appropriate amount of time at the

Museum of Bad Art while guaranteeing that both she and Alex reach the theater at

the same time. For example, if Sam calls Alex within 5 minutes of arriving, there will

still be at least 30 minutes left before the movie starts. As a result, Alex has plenty

of time to make it to the movie theater in time.

In contrast, consider Example 3.2, which only differs in that it takes 40 minutes,

instead of 5 minutes, to recharge Sam’s phone:

Example 3.2. Sam and Alex go to the movies, but Sam’s phone has been deeply

discharged. See Figure 3-2.

Sam wants to spend between 30 and 45 minutes at the Museum of Bad Art

and then attend a movie with her friend Alex at the Somerville Theater,

right upstairs. After looking at the movie times, she decides to attend the

movie showing at 8:15pm. It is now 7:00pm, and it will take her between

20 and 40 minutes to drive to the museum. She does not want to meet

Alex more than 15 minutes before the movie starts, and she definitely

does not want to be late.

45

[20, 40]

[60, 75]

[30, 45]

[15, 15]

A B

D

C

A: Sam leaves home (7:00pm)
B: Sam arrives at Museum of Bad Art
C: Sam & Alex arrive at Movie Theater
D: Alex leaves her apartment Requirement Link

Contingent Link

𝝲(B) = 40

Figure 3-2: Sam and Alex go to the movies, but Sam’s phone needs to recharge for
40 minutes to let her call Alex. Figure for Example 3.2.

Alex’s apartment is a 15-minute walk from the Somerville Theater, so she

has asked Sam to give her a call when she should leave for the movies.

They need to enter the theater at the same time because the movie is

sold out, and they want to get seats together. Sam’s phone is deeply

discharged and needs to be recharged before calling Alex. When Sam

arrives at the museum, she will leave her phone to charge at the museum

front desk for 40 minutes, before calling Alex.

Example 3.2 is not controllable. Unlike the preceding example, if it takes Sam 40

minutes to drive to the museum, she will only be able to call Alex at 8:20pm, which is

five minutes after the movie starts. To account for this possible lack of information,

Alex could reason that she must leave the house by 8pm if she has not yet received a

call in order to guarantee that she arrives to the movie on time. At the other extreme,

if Sam arrives at the movie theater as early as 7:21pm, she will be finished with the

Museum of Bad Art by 8:06pm. Since it takes 40 minutes to charge her phone, she

will not be able to call Alex before 8pm, which does not leave Alex enough lead time

to get to the theater at the same time. In this situation, in order for the two to arrive

at the movie theater at the same time, Sam must spend 54 minutes at the Museum

46

of Bad Art, violating her preexisting constraint.

The only difference between the two examples is the amount of time it takes for

Sam’s phone to recharge, or to put it differently, the amount of time that elapses

before Alex can find out when Sam arrived. Even though the set of actions taken

by all agents is the same, communication has an impact on the feasibility of the

scheduling problem.

Existing controllability models do not appropriately model the difference between

these two examples. Neither problem instance can be pre-scheduled using strong

controllability, as no single schedule will work for Sam across all scenarios. But as

we showed, it is possible to construct a valid schedule for Example 3.1 on the fly.

In contrast, when we use dynamic controllability, we discard all the difficulties of

dealing with limited communication and communication delay, and our model tells

us that both problem instances are controllable, when in fact Example 3.2 is not.

It is true that if Alex immediately learns when Sam arrives at the museum, then

she can always make it to the movie. However, this approach fails to model the

communication delays that make coordination difficult in Example 3.2. Being able

to model delay in communication motivates our decision to introduce a new form of

controllability.

Definitions

To introduce delay controllability more rigorously, we first introduce the concept of a

delay function, which is used to characterize exactly when an agent can observe the

outcome of an uncontrollable action.

We want our delay function to be highly expressive. For example, it is important

that we allow agents to have different delays in their communications and to give

agents the option of choosing the delay for each of their actions. We should also allow

for certain events to be marked unobservable, precluding anyone from acting on that

information. Finally, our model should be sufficient to support the reasoning used

in evaluating Examples 3.1 and 3.2, to explain why the first is controllable and the

other is not.

47

Definition 3.1. Delay Function

A delay function, 𝛾 : 𝑋𝑐 → R+ ∪{∞}, takes a contingent event as input and outputs

the amount of time that will pass between when it occurs and when its value is

observed.

This model of delay is powerful. For example, it allows us to model communication

outages as they pertain to specific events; for example, in an STNU with contingent

events 𝑥1 through 𝑥6, we can capture the idea that we receive communication about

all events except 𝑥1, 𝑥2, and 𝑥3 by constructing a delay function with 𝛾(𝑥1) = 𝛾(𝑥2) =

𝛾(𝑥3) =∞ and for all other 𝑥, 𝛾(𝑥) = 0. Similarly, different events can have different

delay patterns. We can easily let 𝛾(𝑥4) = 12, 𝛾(𝑥5) = 0.01, and 𝛾(𝑥6) = 0 in the

same model, to represent the variability in communication across different events and

agents.

This model of delay, however, cannot express delay based on the moment in time

in which the event happens; for example, that communication is more delayed out-

side of normal working hours. In other words, we say that our delay function 𝛾 is

stationary. Modeling this type of variability has the potential to introduce non-linear

and conditional constraints that would significantly affect our ability to solve the

scheduling problem quickly. Our model does not allows us to approximate schedules

that involve non-stationary delays, and exploring this in detail is outside the scope

of this thesis.

This definition of a delay function also allows us to add detail to STNUs. In

particular, they allow us to describe the specific situations highlighted in Examples

2.1, 3.1, and 3.2, and their differences. The STNUs for the two examples with a

drained cell phone are nearly equivalent. They only differ in the amount of time that

passes before Alex learns the specific timing of Sam’s commute. In both examples,

there is only one contingent event, 𝑋𝑒 = {𝐵}; in Example 3.1, we use 𝛾(𝐵) = 5

to represent that Alex learns of Sam’s arrival at the movie theater 5 minutes after

it happens, and in Example 3.2, we use 𝛾(𝐵) = 40 to represent that Alex learns of

Sam’s arrival after 40 minutes.

Given a delay function that characterizes communication of events in an STNU,

48

we want to be able to answer the question of whether it is possible to construct a

feasible schedule given these communication constraints. In particular, we want to

be able to construct a schedule on the fly that is flexible enough to adapt to new

observations, but does not require all information eventually made available. Delay

controllability answers these questions. Specifically, we say that an STNU is delay

controllable with respect to some delay function 𝛾 if it is always possible to construct a

satisfying schedule to future events given the events that have already been observed.

Definition 3.2. Delay Controllability

An STNU 𝑆 is delay controllable with respect to some delay function 𝛾 if and only if

for any set of contingent link durations that respect 𝑆’s contingent constraints, it is

possible to construct a satisfying schedule on the fly, assuming that each contingent

event 𝑥𝑐 is observed after an additional 𝛾(𝑥𝑐) units of time have passed.

Under the model of delay controllability, we can easily model strong and dynamic

controllability. An STNU 𝑆 is strongly controllable if and only if it is delay control-

lable with respect to delay function 𝛾(𝑥𝑐) = ∞, for all 𝑥𝑐. We also know that an

STNU 𝑆 is dynamically controllable if and only if it is delay controllable with respect

to delay function 𝛾(𝑥𝑐) = 0, for all 𝑥𝑐. Beyond strong and dynamic controllability,

delay controllability provides us the ability to reason about scenarios like the ones we

highlighted in Examples 3.1 and 3.2. In the rest of this thesis, we build on this simple

abstraction to check delay controllability and to efficiently schedule systems that are

delay controllable.

3.2.2 Managing Communication Costs

Next, we frame the problem of deciding when to communicate. Delay controllability

as presented goes a long way towards satisfying our ideal set of requirements, but

it assumes that there are predetermined moments in time when communication will

happen (i.e. Sam will call Alex exactly 5 minutes after she arrives at the museum).

In reality, agents often have flexibility in choosing when to communicate the results

of their actions (i.e. Sam can choose to wait until she has done a lap of the museum

49

[15, 45] [20, 30]

[5, 10]

A B E

A: 8am
B: Sam starts driving to the coffee shop
C: Alex starts walking to the coffee shop
D: Alex arrives at the coffee shop
E: Sam arrives at the coffee shop

[-10, 10]

DC

Figure 3-3: Sam and Alex plan to meet for coffee. Figure for Example 3.3.

before calling Alex). Further, communicating more actively or more frequently can

come at an increased cost, whether in terms of bandwidth, attention, or something

else entirely. Agents then may choose to schedule their communication in a way that

minimizes this cost while guaranteeing controllability.

Delay controllability can only answer the yes-or-no question of whether a system is

controllable, but often we want to understand how long we can delay communication

and still guarantee the overall success of the schedule. When there are costs associated

with communicating, we then want to know what the optimal (or at least some

good) set of delays is that still guarantees success. We provide algorithms for solving

this problem in Chapter 5; here, we start by introducing the Communication Cost

Minimization Problem (CCMP) and showing the types of scenarios we aim to model

with it.

Examples

Consider the following example of a situation where it is important to decide when

to communicate, in order to guarantee plan feasibility:

Example 3.3. Sam and Alex plan to meet for coffee. See Figure 3-3.

50

Sam and Alex have decided to meet for coffee. Alex lives a short 5-10

minute walk from the coffee shop and leaves it up to Sam to decide exactly

when they will meet. Sam wants to leave home some time between 8:15am

and 8:45am, and it takes 20-30 minutes to drive to the coffee shop. Neither

wants to spend more than 10 minutes waiting for the other to arrive.

Example 3.3 is not strongly controllable. Without any communication, Sam could

show up anywhere between 8:35am and 9:15am, and there is no way to guarantee that

neither will be waiting more than ten minutes for the other to arrive. It is, however,

dynamically controllable; when Alex observes Sam’s activities, Alex can always be

guaranteed to arrive at the coffee shop within ten minutes of Sam’s arrival. We thus

know that some form of communication between the agents is necessary to guarantee

that all temporal constraints will be satisfied. The act of picking a communication

policy that guarantees success is equivalent to picking a delay function 𝛾 such that

the original STNU is delay controllable with respect to 𝛾.

Because the scenario is dynamically controllable, we know there is at least some

choice of delay function 𝛾 that guarantees successful execution of the schedule (triv-

ially 𝛾(𝑥𝑐) = 0 for all 𝑥𝑐), and depending on the semantics of the problem, we may

preferentially choose one over others. In this specific example, we may argue that driv-

ing is a mentally demanding activity and that, all else equal, it would be preferable

for Sam not to communicate from the car. Given this preference, we can construct

a feasible plan whose communication policy (or delay function) respects the stated

preference. As long as Sam communicates with Alex the instant she arrives, Alex can

leave her apartment and ensure that Sam spends no more than ten minutes waiting

and can avoid calling while driving.

Below we introduce the problem of finding such an optimal delay function. It is

important to realize that communication during plan execution may deviate from the

predetermined optimum due to errors in execution or uncertainty in the underlying

model. Another problem we introduce, and in Chapter 5 provide algorithms for, is

the problem of re-planning under communication changes.

To illustrate the effects of uncertainty during execution, consider Example 3.3

51

once again. While we determined that the optimum strategy was for Sam to com-

municate with Alex immediately after arriving, during execution Sam may deviate

from the optimal communication strategy, calling Alex from the car to tell her when

she originally left. Given this communication, it is now superfluous for Sam to call

Alex again after she arrives. In this case, given that Alex knows when Sam left home,

she can plan to leave her own home 15 minutes later. This guarantees that Alex will

arrive between 20 and 25 minutes after Sam leaves home and that Sam will now spend

no more than 5 minutes waiting for Alex. Had we maintained our original commu-

nication strategy, Sam would have had to make two calls; instead, we can minimize

the amount of communication that happens by adjusting our strategy in response to

deviations during execution.

Definitions

A few important definitions will assist with more rigorous definitions of the problems

identified in this subsection.

Definition 3.3. Delay-Cost Function

A delay-cost function 𝐶 takes in a delay function 𝛾 and outputs a real-valued cost.

Intuitively the purpose of a delay-cost function is to quantify the burden of com-

munication in a multi-agent scenario. If communicating is easy and free, then the

delay-cost function is 𝐶(𝛾) = 0, for all delay functions 𝛾. More natural delay-cost

functions might include, for example, bandwidth (perhaps approximated by counting

the number of times that any communication happens).

With this notion of what constitutes a delay-cost function, we can introduce the

Communication Cost Minimization Problem (CCMP).

Definition 3.4. Communication Cost Minimization Problem (CCMP)

The Communication Cost Minimization Problem (CCMP) takes in a tuple ⟨𝑆,𝐶⟩,

where 𝑆 is an STNU and 𝐶 is a delay-cost function, and outputs the minimum cost

delay function 𝛾 that guarantees that 𝑆 is delay controllable.

52

In constructing algorithms to solve CCMPs, we often consider only admissible

delay-cost functions. We say that a delay-cost function is admissible if it enforces

that a delay function with monotonically larger delays is no more costly than one

with smaller delays. Our decision to restrict the input of CCMPs to admissible

delay-cost functions is not restrictive in practice, as most models of communication

operate under the assumption that it is more difficult or costly to be proactive about

communication than to delay communication.

Definition 3.5. An admissible delay-cost function is a delay-cost function 𝐶 that is

component-wise monotonically decreasing. That is, given two delay functions 𝛾1 and

𝛾2, such that for all contingent events 𝑥𝑐, 𝛾1(𝑥𝑐) ≤ 𝛾2(𝑥𝑐), we have that 𝐶(𝛾1) ≥ 𝐶(𝛾2).

For temporal scheduling, we know that we can improve robustness through a

scheduling policy that dynamically adapts and schedules events on the fly. We can

achieve similar improvements by adapting communication delays on the fly to account

for uncertainty during execution. We present an approach for this in Chapter 5.

3.2.3 Variable-Delay Communication

Our final modeling contribution introduces uncertainty in communication. The model

of delay controllability presented to this point assumes that when communication

happens, the exact timing of past events are learned. In other words, this model as-

sumes that communication around events, though delayed, always comes with perfect

precision and complete accuracy. However, this delay may not be precisely known

due to approximations by the model or to physical uncertainty in communication

channels. Variable-delay controllability and variable-delay functions provide a way to

model that ambiguity and noise in communication events, so that they eventually get

evaluated in an algorithmic context.

Examples

To illustrate the impact of communication uncertainty on delay controllability, con-

sider the following example:

53

[15, 30] [20, 30]A B C

A: Sam starts making coffee
B: Coffee finishes brewing
C: Alex gets coffee
D: Alex gets to her meeting

𝝲(B) ∊ [5, 15]

[5, 5]
[0, 60]

D

Figure 3-4: Sam brews coffee, and Alex wants to have some after it has cooled down.
Figure for Example 3.4.

Example 3.4. Alex wants some coffee that Sam brewed. See Figure 3-4.

At 8am every morning, Sam brews a large pot of coffee for the office. The

machine Sam uses is quite old and temperamental, so it can take anywhere

from 15 to 30 minutes to get the coffee ready. The coffee machine is several

rooms over, but Sam sends an email to the group that the coffee is ready

after he finishes his cup; drinking a cup of coffee takes Sam somewhere

between 5 and 15 minutes. Alex wants to get the coffee after it has cooled

a bit and finds the temperature to be optimal between 20 and 30 minutes

after the coffee is ready. It takes Alex 5 minutes to finish her coffee, and

once she is done, she will go to a client meeting that starts at 9am.

Unlike the previous examples we presented, communication in this scenario does

not offer absolute certainty about when to act. The only communication that Alex

receives from Sam is in the form of an email that comes at some indeterminate amount

of time after when the coffee is brewed.

Whenever Alex receives the email before 8:40am, it is simple for her to come

up with an execution policy. Because she knows the email arrives between 5 and

15 minutes after the coffee is brewed, if she waits 15 minutes from when the email

arrives, she has a guarantee that she can get her coffee between 20 and 30 minutes

54

after it is brewed. The challenge is to address the situation where the email arrives

after 8:40am. In that instance, Alex cannot wait 15 minutes to get her coffee, as that

will make her late for her meeting.

To address the situation, we reason about the underlying distribution associated

with the time it takes to brew the coffee directly and for the email to be sent. Specifi-

cally, Alex knows that it takes at most 15 minutes for the email to arrive. If an email

has not arrived by 8:40am, the coffee must have taken at least 25 minutes to brew.

As a result, if Alex gets coffee at 8:55am, she still has a guarantee that the coffee

has been sitting out for somewhere between 25 and 30 minutes. This allows her to

get coffee that is optimally fresh and still attend her meeting on time. Variable-delay

controllability formalizes this reasoning process.

Our ability to reason about this example relies on the fact that there are strict

bounds on the window of communication associated with an event; for example, that

we know with certainty that Sam’s email cannot come after 25 minutes.

In reality, there are many reasons why this model might be inaccurate and that

Sam’s email could arrive after 25 minutes. Sam might get caught up in conversation

with someone else causing an unexpected delay. Or, the department’s email infras-

tructure might be under tremendous load causing the email to arrive in Alex’s inbox

well after Sam sent it. Or, most simply of all, Sam might forget to send the email.

Sam’s communication tendencies are better represented by a probability distribution

than a simple set interval.

Given the true nature of this uncertainty, we may also determine that we cannot

put an upper-bound on the delay in communication, and unfortunately, this would

make our previous approach impossible. But the reality of this situation is that these

events are highly unlikely. Given the distribution of all possible times that Alex could

read Sam’s email, it is impossible to guarantee 100% success, but in very few cases is

100% guaranteed success necessary. An important feature of our formalism should be

that it is able to identify temporal plans that have extremely high chances of success

or, to put it differently, that it is able to guarantee that the probability of failure

stays below a certain predefined threshold.

55

Definitions

To appropriately model the examples we introduce above, we must augment our

models of delay controllability to include communication that is itself uncertain. To

represent uncertainty in our models, we introduce the concepts of variable-delay func-

tion and variable-delay controllability.

Definition 3.6. Variable-Delay Function

A variable-delay function, 𝛾 : 𝑋𝑐 → (R+ ∪ {∞}) × (R+ ∪ {∞}), takes as input a

contingent event and outputs an interval [𝑎, 𝑏]. The range bounds the time that may

pass after the assignment of a value to the contingent event, before that value is

known to be assigned.

Importantly, this model does not assume that the event’s assigned value is known,

but instead just that the event is known to have happened. By convention, we use

𝛾−(𝑥𝑐) and 𝛾+(𝑥𝑐) to represent the lower-bound and upper-bound in observation of

contingent event 𝑥𝑐, respectively.

Like the delay function for fixed-delay controllability, the variable-delay function

independently describes the delays in observation for each contingent event. We

apply a similar approach in extending the delay function to a variable-delay function

to introduce the definition of variable-delay controllability from delay controllability.

Definition 3.7. Variable-Delay Controllability

An STNU 𝑆 is variable-delay controllable with respect to a variable-delay function

𝛾 if and only if for any set of contingent link durations that respect 𝑆’s contingent

constraints, it is possible to construct a satisfying schedule on the fly, assuming that

each contingent event 𝑥𝑐 is observed at some interval [𝛾−(𝑥𝑐), 𝛾
+(𝑥𝑐)] after 𝑥𝑐 actually

occurs.

Variable-delay controllability is a generalization of fixed-delay controllability. For

any fixed-delay function 𝛾, we can produce a corresponding variable-delay function 𝛾

where 𝛾+(𝑥𝑐) = 𝛾−(𝑥𝑐) = 𝛾(𝑥𝑐).

When our models of uncertainty in communication are better represented by distri-

butions and in particular when those distributions are unbounded, we often know that

56

there cannot be a complete guarantee of success. Instead, we use chance-constrained

variable-delay controllability to determine whether an STNU is controllable assuming

we admit a small risk of failure.

To define chance-constrained variable-delay controllability, we first have to update

our definition of what constitutes a delay function.

Definition 3.8. Chance-Constrained Variable-Delay Function

A chance-constrained variable-delay function, 𝛾 : 𝑋𝑐 → P+, takes in a contingent

event and outputs a probability distribution function that is defined over the range

R ∪ {∞}, representing the likelihood that communication about event 𝑥𝑐 happens

after some amount of time has passed.

We say that a particular grounding of a variable-delay function is a fixed delay

function 𝛾 with all 𝛾(𝑥𝑐) ∈ 𝛾(𝑥𝑐).

We now use our chance-constrained variable-delay function to define chance-

constrained variable-delay controllability.

Definition 3.9. Chance-Constrained Variable-Delay Controllability

For execution strategy 𝑠, we define an indicator function 𝑐𝑠 such that 𝑐𝑠(𝛾) = 0

if strategy 𝑠 satisfies all constraints of a given STNU during execution for some

𝛾 ∈ 𝛾 and 1 otherwise. We say that STNU is chance-constrained variable-delay

controllable with respect to delay function 𝛾 and tolerated risk ∆ ∈ [0, 1] if there

exists an execution strategy 𝑠 such that:

∫︁
𝛾∈𝛾

𝑝(𝛾)𝑐𝑠(𝛾) ≤ ∆

The modeling problem of specifying an optimal risk-bound for the chance-constrained

variant of the problem is in general difficult, but in Chapter 6 we establish a series

of results for the set-bounded version of the problem and show how to use ideas from

the set-bounded variants to verify the chance-constrained controllability of analogous

problems.

57

3.3 Related Work

The areas of focus suggested by this chapter’s desiderata have been tackled in certain

ways by many others over the years. In particular, there are three strong candidate

frameworks for temporal reasoning in a multi-agent context that are worth highlight-

ing to illustrate how this work builds upon the strengths of work that has come before.

The first, 𝜖-dynamic controllability, operates on many temporal networks, including

the STNU, and introduces delay in the form of a reaction time that is persistent

and uniform across all contingent events. The second involves Partially Observable

STNUs (POSTNUs), which augment the STNU model by individually marking con-

tingent events as observable or unobservable. The third, Multi-agent Simple Temporal

Networks with Uncertainty (MaSTNUs), goes even further and models observability

of events distinctly for each individual agent.

3.3.1 𝜖-dynamic controllability

The first framework, 𝜖-dynamic controllability, puts forth a new type of controllabil-

ity for evaluating temporal networks with uncertainty. Most dynamic controllability

models assume that the scheduling agent has an instantaneous reaction time; in other

words, they can schedule executable events to immediately co-occur with other con-

tingent events. In practice, this co-occurrence is infeasible. Even the most high

precision robotic systems have a sense-react loop where some computation occurs in

between when an event happens and when the system acknowledges that event and

issues a response.

𝜖-dynamic consistency is a way of validating whether an execution strategy ex-

ists for a network when agents have non-instantaneous reaction times in Conditional

Simple Temporal Networks with Uncertainty (CSTNUs) [19, 29]. In this model, the

reaction time for the scheduler to observe and react to contingent events is parameter-

ized by the value 𝜖. Though this concept was defined over CSTNUs, it is quite natural

to extend the same reasoning to STNUs and to discuss 𝜖-dynamic controllability.

𝜖-dynamic controllability, as we have described it, provides a generalization for

58

strong and dynamic controllability through a variation of the constant 𝜖. However,

𝜖-dynamic controllability is not able to deal with varying delays, due to either delayed

communication of observations or variability in processing time; at its core, 𝜖-dynamic

controllability is equivalent to delay controllability with respect to 𝛾(𝑥𝑐) = 𝜖, meaning

that it cannot deal with the fact that an agent might be able to react to some events

instantaneously (e.g. Sam knows immediately when she arrives at the museum but

Alex only finds out 5 minutes later, as in Example 3.1).

3.3.2 POSTNUs

One of the strengths of the delay controllability model is its ability to blend notions

of strong and dynamic controllability. This technique was first seen in greater depth

in the context of POSTNUs [36]. In an STNU, all contingent events are either instan-

taneously observable under a dynamic controllability model or entirely unobservable

under a strong controllability one. In POSTNUs, contingent events can be marked

observable and unobservable. To say that a POSTNU is dynamically controllable is

the same as saying that it is possible to construct a schedule on the fly that respects

all constraints if the scheduler only receives information about observable contingent

events. While POSTNUs are more expressive than STNUs with delay, it is not clear

that they are more useful in practice; the sub-class of POSTNUs that can be checked

efficiently and accurately can all be expressed directly as STNUs with delay. The

advantage of using STNUs with delay directly is that we have a guarantee that the

outputted model can be checked efficiently.

In Figure 3-5, we provide an example to illustrate how one might model delay

controllability using POSTNUs. However, unlike with delay controllability checking,

we do not have a guarantee that POSTNU dynamic controllability can be evaluated

in polynomial time. Currently, the best known POSTNU checker is only sound and

complete for networks that lack chained contingencies [10], where chained contingen-

cies are defined as series of two or more successive contingent constraints 𝐴 =⇒ 𝐵 =⇒ 𝐶

where each middle node 𝐵 is also involved in another contingent or requirement con-

straint (see Figure 3-5b).

59

B B

D D

B'
[20, 20] [20, 20]

A A

[0, 30] [0, 30]

[20, 20]

(a) (b)

Requirement Link
Contingent Link

𝝲(B) = 20

observable

unobservable

Figure 3-5: (a) An STNU with a contingent constraint that has a certain delay. (b)
One possible way of rewriting the STNU as an equivalent POSTNU. This particular
POSTNU exhibits a chained contingency, as 𝐵 is a contingent event that starts a
contingent constraint and is connected to 𝐵′ via a contingent constraint.

However, all POSTNUs that can be checked efficiently (i.e. those that are free

of chained contingencies) can be modeled directly into STNUs with delay. To trans-

form a POSTNU 𝑃 into STNU 𝑆 with delay function 𝛾, we only need to focus on

transforming the contingent constraints.

We start by dividing our POSTNU contingent constraints based on whether they

are observable or not and then further subdivide them based on whether their terminal

contingent events are immediately followed by other contingent constraints. For the

unobservable contingent constraints that have no successor contingent constraints,

we keep the original contingent constraint and ensure that its terminal contingent

event, 𝑥𝑐, respects 𝛾(𝑥𝑐) = 0. For an unobservable contingent constraint 𝐴
[𝑢,𝑣]
==⇒ 𝐶

that is followed by a successor contingent constraint 𝐶
[𝑤,𝑧]
==⇒ 𝐷, we replace the two

constraints in our POSTNU with a new 𝐴
[𝑢+𝑤,𝑣+𝑧]
======⇒ 𝐷 whose observability is the same

as the second constraint. From an operational perspective, this does not change the

controllability of the POSTNU; because we assume our POSTNU is free of chained

contingencies, 𝐶 is not involved in any other temporal constraints, and because 𝐶

60

is unobservable, folding it into the succeeding contingent constraint does not affect

the semantics of the network. All that remains to complete the transformation is to

handle observable contingent constraints. For every observable contingent constraint

𝐴
[𝑢,𝑣]
==⇒ 𝐶 in the original POSTNU, we replace it with a contingent constraint 𝐴

[𝑢,𝑣]
==⇒

𝐶 ′ and a requirement constraint 𝐶 ′ [0,0]−−→ 𝐶 in our STNU, where 𝛾(𝐶 ′) = 0. Since 𝐶

was observable in the POSTNU, we can simulate executing an event immediately as it

is observed, meaning that any contingent constraints that follow 𝐴
[𝑢,𝑣]
==⇒ 𝐶 would now

start at an executable event. Thus, our delay controllability framework is sufficiently

capable of expressing all POSTNUs that can be efficiently checked for controllability

using today’s tractable POSTNU algorithms.

While it is likely that advances can be made to expand the set of POSTNUs that

can be checked efficiently, the problem remains that the way that a set of temporal

constraints is encoded can affect whether controllability can be checked efficiently. In

contrast, all STNUs with delay are guaranteed to be evaluated efficiently, and to the

extent that scenarios can be modeled directly as STNUs with delay, this provides an

advantage to our model.

Consider the transformation in Figure 3-5. The transformation converts an STNU

with delay function into a POSTNU that has a chained contingency. However, it is

possible to construct an equivalent POSTNU without any such chained contingencies.

From a theoretical perspective, this makes the delay controllability framework a much

more satisfying one to use since when we use POSTNUs, an errant choice when mod-

eling can make evaluation intractable. This distinction makes delay controllability an

important concept to use and build upon at least until more complete algorithms are

discovered for POSTNUs.

In fact, it is worth noting that the work presented in this thesis for variable-delay

controllability can be leveraged to construct an improved algorithm for POSTNUs.

The model proposed by variable-delay controllability looks exactly like the chained

contingency shown in Figure 3-5b; the main difference is that we represent the contin-

gent link between 𝐵 and 𝐵′ with our variable-delay function 𝛾. Hence, the algorithm

we eventually present in Chapter 6 for variable-delay controllability can be used to

61

both solve POSTNUs without chained contingencies, as well as those with chained

contingencies that can be expressed as variable-delay functions. It is for this rea-

son that we believe that delay controllability is a useful framework for modelers and

represents a solid grounding for future work.

3.3.3 MaSTNUs

Third, we consider the MaSTNU [15]. The MaSTNU behaves exactly as an STNU

does but assigns each event to a set of agents to determine who can observe that event.

We say that an MaSTNU is dynamically controllable if each agent can plan across

the events that they themselves can observe, such that all constraints are satisfied.

MaSTNUs offer a significant degree of expressiveness above and beyond what

the STNU or POSTNU can offer. However, this expressiveness comes at a cost.

While efficient algorithms exist for solving some subset of MaSTNUs [15], no efficient

algorithms are known to exist that correctly determine the controllability of arbitrary

MaSTNUs. While work in Appendix A provides an upper-bound (NEXP) on the

runtime through a disjunctive variant of MaSTNUs, it remains an open question

whether MaSTNUs themselves are similarly intractable.

One of our goals in providing a set of modeling tools is to ensure that there exist

efficient algorithms that can be used across those models. While it is possible that,

in the future, efficient algorithms are found for MaSTNUs, the modeling framework

we put forth based on delay controllability comes with a set of algorithms that are

efficient enough to use in practice.

3.4 Additional Examples

To conclude this chapter, we provide two grounded examples of multi-agent coor-

dination tasks and demonstrate how to model these problems given our framework.

The work presented in this thesis provides a series of algorithms for evaluating the

controllability and execution of temporal networks under limited communication, but

the true impact of this work is felt by those interested in modeling temporal problems.

62

We believe that the work presented here can be used to build larger, more capable

systems that have to deal with multiple agents, and believe that our work can be

used flexibly across many situations that deal with communication.

3.4.1 Coordinating Autonomous Underwater Vehicles

The autonomous vehicle problem described in Example 1.1 is a classic example of

multi-agent coordination under limited communication. What makes the problem

challenging is that the AUVs need a guarantee that they are operating continuously

despite being in distinct regions, and despite being unable to communicate directly.

They must use either a central ship or shore operations as intermediaries for their

communication and can communicate only when surfaced.

The problem of constructing an appropriate plan reduces to one of finding an

appropriate set of times for the AUVs to surface in order to guarantee sufficient

communication. In other words, we want a way to evaluate whether, given a set of

planned surfacings, there is enough information to prevent AUVs from operating in

the same location. Our approach for doing so is to construct a delay function 𝛾 for

each vehicle 𝑣 representing the amount of delay between when some other vehicle 𝑤

acts and when 𝑣 learns the result of 𝑤’s action.

The simplest way to approach this problem is to introduce a minimum rate at

which each vehicle surfaces. For examples, 𝑣 could surface every 9 hours, and 𝑤

could surface every 6 hours. This gives us at worst a 9 hour delay between when

𝑤 reports the results of its actions back to shore operations and when 𝑣 learns the

results (since 𝑤’s report may have arrived immediately after 𝑣’s previous surfacing).

There is at most a 6 hour delay between when 𝑤 takes an action and when it reports

that action. Hence, there is at most a 15 hour delay in observation between vehicles

𝑣 and 𝑤.

In many instances, this amount of delay is sufficient to ensure proper operations if

the AUVs are in general far away from each other and operating over large distances

and timescales. In the event that this approach is insufficient, is possible to adopt

more complex surfacing strategies to improve the level of coordination between ve-

63

hicles. So long as it is possible to calculate the maximum amount of time that can

elapse between an event happening and a vehicle learning about it, it is possible to

use delay controllability to evaluate the feasibility of a set of planned surfacings.

3.4.2 Robotics

Next, we consider how the techniques presented in this thesis can be used to improve

the operation of an in-home robotic assistant.

Quantifying Success

One goal of an effective in-home robotic assistant would be to anticipate the needs

of their human partner and to be proactive in the execution of household chores,

which can include things like meal prep, cleaning, and finding lost items scattered

throughout the home. In order to determine what the needs of its human counterpart

are, most robots are likely to have an on-board state estimation system that provides

estimates about the state of the world. From these estimates, the robot can then

determine how best to support its human counterpart.

However, since estimates are probabilistic at best, we want to quantify the likeli-

hood that a robotic agent can execute a given plan successfully. To do so, we construct

a CCMP and use it to bound the overall probability of success.

First, we must consider the space of available delay functions. For each contingent

event, the robot can either infer that it occurred or fail to make the inference, meaning

that for each 𝑥𝑐, either 𝛾(𝑥𝑐) = 0 or 𝛾(𝑥𝑐) = ∞. We assume that some a priori

probability distribution is known that characterizes how likely the robot is to infer

that the event actually occurred.

Given this setup, it is relatively straightforward to model this kind of problem,

and in fact, we can use the same generalized technique for all possible types of delay

functions. If we let 𝑑 be a function mapping contingent events to proposed bounds on

their delay, we can use a cost function 𝐶(𝛾) = 1− 𝑃
(︂⋀︀
𝑥𝑐

[𝛾(𝑥𝑐) ≤ 𝑑(𝑥𝑐)]

)︂
. If we find

an optimal cost solution, our probability of success is bounded below by 1 − 𝐶(𝛾).

64

Amazingly, our approach does not make any real assumptions about the probability

distribution itself, other than the fact that it is computable.

With this cost function, we can then apply the algorithms from Chapter 5 to

determine the minimum cost that still guarantees successful execution which in turn

gives us a lower-bound on our solution.

Asking for Help

We now have the ability to use CCMPs to quantify the likelihood of success of an

in-home robotic agent. But the previous problem assumed that the robot acted

passively, waiting for information to arrive about the world. In reality however, an

effective robotic agent must also be able to ask for help, and when it finds itself in a

situation where it is uncertain about what is happening, asking a human counterpart

for more information can help repair situations that were otherwise marked as failures

in the previous characterization. While asking in all instances is a way to guarantee

success, a large number of queries from the robotic agent is likely to be undesirable

from the perspective of its human counterpart.

Again, we construct a CCMP for our situation, but in this instance, we use a cost

function that counts the number of times the robot interrupts its human counterpart.

In other words, we let 𝐶(𝛾) = |{𝛾(𝑥𝑐) ̸= ∞}|. When we solve this CCMP, we then

get a contingency plan for our robotic agent. For any solution 𝛾 to the CCMP, the

robot now modifies its policy; for each contingent event 𝑥𝑐, if the robot does not have

enough certainty to determine that 𝑥𝑐 has occurred within 𝛾(𝑥𝑐) time of when it may

have earliest occurred, then it asks the robotic counterpart for help. By adopting this

policy, the estimated number of interruptions is now upper-bounded by the result

returned by the CCMP and in fact can be improved in practice during execution.

In Chapter 5, we show how we can improve this approach even further. The

delay function 𝛾 representing the solution to our CCMP operates pessimistically. It

assumes that no contingent event 𝑥𝑐 is observed sooner than 𝛾(𝑥𝑐) after it occurs. In

reality, however, there may be several instances in which it is observed sooner. In

such cases, the adaptive algorithms from Chapter 5 can be leveraged to further refine

65

the optimal choice of 𝛾 to guarantee success while, in this case, minimizing further

interruptions.

66

Chapter 4

Delay Controllability

Consider the difficulty of scheduling events in a scenario where multiple agents have

to coordinate with each other. From the perspective of any one agent, the possi-

ble times of actions of other agents may be bounded, but the actual time taken for

any given action can be highly uncertain; planning under this kind of uncertainty

can present a real challenge. If all agents are in constant communication with one

another, creating a schedule under uncertainty reduces to a known problem, that of

determining dynamic controllability. However, the assumption of constant and in-

stantaneous communication is not a realistic one. Delay controllability offers a way

to model these types of problems, and in this chapter, we introduce the algorithms

and corresponding proof theory that illustrate how to check delay controllability effi-

ciently. In this chapter and Chapter 6, we introduce a model for dynamic scheduling

under uncertainty that factors in communication constraints. In this chapter, we

consider that communication is delay but that delay is deterministic. In Chapter 6,

we generalize this model to the case where communication itself is uncertain.

Existing controllability approaches can be less than ideal for modeling these types

of multi-agent problems. Agents might only relay the relevant information and may

only offer it after some indeterminate delay or perhaps not at all; hence dynamic

controllability tends to be overly optimistic and not robust. Strong controllability

scheduling techniques give valid solutions by using pre-scheduling to remove the need

to communicate. However, too often the strong controllability approach is overly

67

conservative, as it assumes that external uncertainty is never reduced along the way

through observations. Delay controllability provides a way to create robust schedules

for realistic problems with communication outages and delays without being overly

conservative.

One of the strengths of delay controllability as a model is that it generalizes the

principles of dynamic and strong controllability, allowing us to build on the shoulders

of previously established research. We apply familiar concepts while retaining the

runtime complexity and efficiency of the best of these algorithms. In this chapter in

particular, we show how to infer new constraints on STNUs and check controllability

by extending and generalizing a set of constraint derivation rules provided by [40].

This enables us to adapt a highly efficient dynamic controllability checking algorithm

to handle delay controllability [38]. We also demonstrate correctness by modifying a

known dynamic controllability execution strategy and its proof of correctness [28].

Beyond building a polynomial-time delay controllability checker, there are many

interesting bodies of work that could be extended by incorporating delay controlla-

bility. Conditional Simple Temporal Networks with Uncertainty extend the temporal

network model by allowing conditional enforcement of constraints based on the obser-

vation of pre-specified events. It uses dynamic controllability to determine appropriate

execution strategies [18] and could similarly admit delays in the observation of these

conditions. For more specialized use cases, incremental dynamic controllability checks

show improvements over non-incremental solutions [6, 41, 42, 47, 48], and the same

approaches likely transfer over to provide incremental variants of delay controllability

checking. While we do not cover how to extend delay controllability to these concepts

in this work, we believe that such extensions are well within reach.

This chapter provides the formal foundations for solving delay controllability prob-

lems as was defined in Chapter 3. We provide an efficient sound and complete algo-

rithm for checking delay controllability, which demonstrates that our generalization

allows us to capture and describe many scenarios with restricted communication,

without sacrificing runtime performance. Our approach gives us a single 𝑂(𝑛3) algo-

rithm that is capable of checking either strong or dynamic controllability (as well as

68

everything in between), reinforcing the notion that these two concepts are different

instances of a more general idea.

We validate this work by providing an empirical evaluation of delay controllabil-

ity. We show that attempting to capture the nuances of delay controllability using

dynamic or strong controllability as an approximation yields execution policies that

are either inaccurate or overly conservative. We also demonstrate that delay con-

trollability is fast enough in practice for use as a subroutine in large planning and

execution systems.

4.1 Approach

In this chapter, we present a series of algorithms for determining whether a particular

STNU is delay controllable with respect to a particular delay function 𝛾 (formal

definitions can be found in Chapter 3). Our approach for producing such an algorithm

proceeds as follows.

We start by showing how to perform propagation on the constraints encoded in an

STNU in order to generate new constraints. Constraint propagation is performed in

service of finding a semi-reducible negative cycle, and we correspondingly show that

an STNU is delay controllable if and only if the STNU’s constraints do not entail the

presence of a semi-reducible negative cycle. We conclude by presenting an algorithm,

DelayDijkstra, and showing that the algorithm is able to determine whether it is

possible to generate semi-reducible negative cycles in an STNU in 𝑂(𝑛3) time.

4.2 Constraint Propagation

Much as we did with STNs, to evaluate STNU delay controllability we use graphical

formalisms to represent and reason about STNUs and their constraints directly (see

Figure 4-1a). In these graphs, we use solid arrows to represent requirement constraints

and dashed-line arrows to represent contingent constraints. When we evaluate STNU

delay controllability, we similarly use an extended version of the STN distance graph,

69

B C

D

[5, 5][20, 20]

A

B

D

20

b:0 B:-30

0

30

-20 5

A

[0, 30]

C

-5

a) b)

Requirement Link
Contingent Link

Figure 4-1: (a) A graphically represented STNU. (b) The same STNU represented
using its labeled distance graph formulation.

called the labeled distance graph [37] (see Figure 4-1b). We start by describing the

semantics of labeled edges and then describe how to produce a labeled distance graph

from an STNU.

Semantically, the edges of a distance graph represent constraints. An edge of the

form 𝐴
𝑢−→ 𝐶 implies that 𝐶 − 𝐴 ≤ 𝑢. The purpose of labeled edges in an STNU’s

labeled distance graph is to represent conditional constraints. Because an STNU

involves events that are outside the scheduler’s control, it becomes necessary to reason

conditionally about scheduling requirements that selectively apply, depending on the

durations of contingent constraints; it is possible that if a contingent constraint takes

on its minimum possible duration, the scheduler responds in one way, but if it takes

on its maximum possible duration, the scheduler may respond entirely differently.

In the case of labeled edges, we say that a lower-case edge of the form 𝐴
𝑐:𝑥−→ 𝐶

enforces the constraint “whenever the duration of the contingent constraint ending

70

-60

45
40

-20

B:-40

b:20

-30
15 -15

75

A B

D

C

𝝲(B) = 40

Figure 4-2: A recreation of Example 3.2 in labeled distance graph form.

at 𝐶 were to take on its lowest possible value, 𝐶 − 𝐴 ≤ 𝑥”. Similarly, an upper-

case edge of the form 𝐵
𝐶:𝑥−−→ 𝐴 enforces “𝐴 − 𝐵 ≤ 𝑥 whenever the duration of the

contingent constraint ending at 𝐶 takes on its maximal possible value”. With our

representation of constraints as edges, our algorithm derives implied path constraints

(both conditional and unconditional) by considering paths through the graph.

To generate the labeled distance graph, we first treat the STNU as an STN,

converting contingent constraints to requirement constraints, and generate the derived

STN’s distance graph. We then add additional labeled edges to the graph for each

contingent constraint. Given a contingent constraint of the form 𝐴
[𝑢,𝑣]
==⇒ 𝐶, we also

add a lower-case edge 𝐴 𝑐:𝑢−→ 𝐶 and an upper-case edge 𝐶 𝐶:−𝑣−−−→ 𝐴.

In general, searching the labeled distance graph for an inconsistency means that

we have to quantify over all possible values for the antecedent variables of the con-

ditional statements. In other words, we have to quantify over all possible values of

the contingent events. Under a brute force scheme, this yields an exponential num-

ber of possible combinations. Accordingly, the more that we eliminate conditional

constraints, the less the algorithm has to branch and the easier it is to evaluate

71

consistency.

Because the constraints and conditions of an STNU all involve events and because

events are scheduled in temporal order, our algorithm can use this ordering to sim-

plify our reasoning by taking conditional constraints and indicating how they apply

unconditionally. Imagine we are considering a constraint of the form “if the contingent

constraint ending at event 𝐹 takes on its maximum possible duration, then event 𝐺

must be scheduled by 10 minutes after event 𝐸 at the latest.” In addition, we sep-

arately know that we cannot infer the duration of the contingent constraint ending

at 𝐹 sooner than 25 minutes after 𝐸. In such a case, if we scheduled 𝐺 more than

10 minutes after 𝐸, but before we learned the value of 𝐹 , it may be possible that we

learn that 𝐹 takes on its maximum, causing us to violate our conditional constraint.

In order to avoid this, we must unconditionally schedule 𝐺 to occur no more than 10

minutes after 𝐸. This is because we have no way of learning whether the contingent

constraint ending at 𝐹 takes on its maximum duration in time for us to safely ignore

the conditional constraint.

Furthermore, because each edge in a labeled distance graph corresponds to a con-

straint, we can use paths in the distance graphs as proxies for deriving new constraints

that apply to our original problem. In this way, we can leverage highly efficient graph

algorithms as a way to more quickly explore the constraint space and determine

whether it is possible to construct a schedule for our STNU. For any path through

the graph, we can derive a new implicit inequality constraint based on the endpoints

of that path with weight equal to the weight of the path and whose label is the union

of all edge labels in the path.

To illustrate this process, we walk through Example 3.2 and demonstrate how

to use the paths through individual constraints to determine that the entire system

is uncontrollable (see Figure 4-2). In subsequent sections, we demonstrate how this

procedure is automated using graph algorithms.

The simplest way to derive new constraints is in the same manner that we do

for STNs. We take a set of edges along the path and produce a new edge whose

start, end, and weight are the start, end, and accumulated weight of the path. In our

72

-60

45

-20

B:-40

b:20

-30
15 -15

75

A B

D

C

30

40
𝝲(B) = 40

Figure 4-3: A recreation of Example 3.2 in labeled distance graph form after adding
one new derived constraint.

example, we start by considering the path from B to D (see Figure 4-3). The path

has two edges, 𝐵 45−→ 𝐶 and 𝐶
−15−−→ 𝐷, and we construct 𝐵 30−→ 𝐷. This denotes the

inequality 𝐷 − 𝐵 ≤ 30 and requires 𝐷 to happen no more than 30 minutes after 𝐵,

which is consistent with two constraints in the original STNU, “𝐶 must happen 30

to 45 minutes after 𝐵” and “𝐷 must happen exactly 15 minutes before 𝐶”.

We also derive a new constraint between 𝐴 and 𝐷. While it is possible to combine

𝐴
40−→ 𝐵 with our newly derived edge 𝐵 30−→ 𝐷, we get a tighter constraint if we use

the lower-case edge, 𝐴 𝑏:20−−→ 𝐵.

From 𝐵
−20−−→ 𝐴, we know that the earliest that 𝐵 may happen is 20 minutes after

𝐴. In addition, from our derived constraint, 𝐷 must happen no more than 30 minutes

after 𝐵. Unfortunately, it is not possible for us to know exactly when 𝐵 happens until

40 minutes after the fact, given that 𝛾(𝐵) = 40. As a result, we know that, if we

schedule 𝐷 to occur after we observe 𝐵, we will violate 𝐵 30−→ 𝐷. Similarly, if we

schedule 𝐷 to occur more than 50 minutes after 𝐴, but assign 𝐷 its value before we

observe 𝐵, there is a chance that 𝐵 actually happens at 20 minutes and we again

violate 𝐵 30−→ 𝐷. To achieve consistency, we must enforce that 𝐷 is scheduled for no

73

-60

45

-20

B:-40

b:20

-30
15 -15

75

A B

D

C

30

50

40
𝝲(B) = 40

Figure 4-4: A recreation of Example 3.2 in labeled distance graph form after adding
two new derived constraints.

-60

45
40

-20

B:-40

b:20

-30
15 -15

75

A B

D

C

30

35

50

𝝲(B) = 40

Figure 4-5: A recreation of Example 3.2 in labeled distance graph form after adding
three new derived constraints.

more than 50 minutes after 𝐴. This constraint is represented as 𝐴 50−→ 𝐷 (see Figure

4-4). In the next subsection we show how to derive these constraints automatically.

74

Finally, we show why this example is uncontrollable. We construct a new shortest

path from 𝐴 to 𝐵, using 𝐴 50−→ 𝐷, that continues through 𝐷
15−→ 𝐶 and 𝐶

−30−−→ 𝐵.

This yields the edge 𝐴 35−→ 𝐵, which tightens the old edge from 𝐴 to 𝐵 (see Figure

4-5).

This new constraint tells us that 𝐵 must happen no more than 35 minutes after

𝐴. But 𝐵 is a contingent event, hence not chosen by the scheduler; it depends on the

actual length of the commute. The contingent constraint has an upper-bound of 40

minutes, which disagrees with the 35 minute upper-bound. We have a contradiction,

and the network is uncontrollable.

We derive this contradiction by combining 𝐴 35−→ 𝐵 and 𝐵 𝐵:−40−−−→ 𝐴, which yields a

negative cycle in the graph that contains label 𝐵. This negative cycle corresponds to

the conditional statement that whenever the contingent constraint ending at 𝐵 takes

on its maximum possible value, we have a contradiction. A system is controllable only

if for every possible realization of contingent link durations, or for every projection,

it is possible to construct a valid schedule. As a result, given that we have found a

possible projection in which we cannot construct a valid schedule, namely the one

where 𝐴 =⇒ 𝐵 takes on its maximum possible value, we know that the network is not

delay controllable.

It is worth noting that finding this type of contradiction is equivalent to determin-

ing delay controllability and reduces to checking for the existence of a semi-reducible

negative cycle on an STNU’s labeled distance graph. This can be done in polyno-

mial time. While we will shortly explain the details of semi-reducible negative cycles

in much greater depth, our high-level aim is to draw an analogy between checking

feasibility in STNs and STNUs.

It is worth noting that our approach for automatically recognizing inconsistencies

will closely mirror the approach used to find inconsistencies in STNs. For STNs, we

construct a distance graph and search for a negative cycle. For STNUs, we construct

a labeled distance graph and search for a generalized version of a negative cycle,

called a semi-reducible negative cycle. Before introducing semi-reducible negative

cycles in detail, we show how to propagate our constraints and generate new edges,

75

Edge Generation Rules
Input edges Conditions Output edge

No-Case Rule 𝐴
𝑢−→ 𝐷, 𝐷 𝑣−→ 𝐵 N/A 𝐴

𝑢+𝑣−−→ 𝐵

Upper-Case Rule 𝐴
𝑢−→ 𝐷, 𝐷 𝐶:𝑣−−→ 𝐵 N/A 𝐴

𝐶:𝑢+𝑣−−−→ 𝐵

Lower-Case Rule 𝐴
𝑐:𝑥−→ 𝐶, 𝐶 𝑤−→ 𝐷 𝑤 < 𝛾(𝐶), 𝐶 ̸= 𝐷 𝐴

𝑥+𝑤−−→ 𝐷

Cross-Case Rule 𝐴
𝑐:𝑥−→ 𝐶, 𝐶 𝐸:𝑤−−→ 𝐷 𝑤 < 𝛾(𝐶), 𝐸 ̸= 𝐶,

𝐶 ̸= 𝐷
𝐴

𝐸:𝑥+𝑤−−−−→ 𝐷

Label Removal
Rule

𝐵
𝐶:𝑢−−→ 𝐴, 𝐴

[𝑥,𝑦]
==⇒ 𝐶 𝑢 > −𝑥 𝐵

𝑢−→ 𝐴

Table 4.1: Edge generation rules for a labeled distance graph

representing valid constraints in a labeled distance graph.

4.2.1 Edge Generation Rules

In this section, we describe rules to derive new constraints from old ones, much like

we did in the preceding section, but in a complete fashion. We use these generated

constraints later to check for inconsistencies and evaluate the delay controllability of

an STNU. For brevity, we use our edge notation as shorthand for the corresponding

constraints.

To derive implied constraints and check for controllability for STNUs, Morris [40]

introduced a set of edge generation rules, called reductions. Our key extension to

these reductions, in order to handle delay controllability, is to include modifications

that model non-zero observation delays of contingent events (see Table 4.1). In this

section, we give an intuitive illustration of these rules and how they generate new

valid constraints over the original STNU, while the formal proofs can be found in

Appendix C. In section 4.3, we prove that this set of rules produces a complete set of

derived constraints, in that they can always be used to determine the controllability

of an STNU.

To illustrate the operation of these rules, we provide a series of example STNUs

and indicate what new constraints we can generate from the existing set of constraints.

Note that while these are valid illustrations of the above rules, these examples make

many assumptions that are above and beyond what is required by the rules. These

76

include the relative ordering of the events and whether particular constraints are

requirement or contingent constraints.

We start with the no-case and upper-case rules. The no-case rule operates like the

edge generation rule for STN distance graphs. By following a path in the distance

graph of unlabeled edges, we construct a new constraint from the start, end, and

accumulated weight of the path.

[x, y]

[_, y + v]

[u, v]
A B C

Figure 4-6: Example demonstrating the no-case rule.

Figure 4-6 illustrates a simple example involving the application of the no-case

rule. By the figure, we know that 𝐵 must happen at most 𝑦 units of time after 𝐴 and

that 𝐶 must happen at most 𝑣 units of time after 𝐵. By the transitive property, this

allows us to construct a new constraint from 𝐴 to 𝐶, which says that 𝐶 must happen

no more than 𝑦 + 𝑣 units of time after 𝐴. This is represented by the addition of the

new constraint in blue, which has no lower-bound, but has upper-bound 𝑦 + 𝑣.

Next, we consider the upper-case rule. The upper-case rule behaves like the no-

case rule, but one of the edges has an upper-case label. The upper-case label enforces a

condition on one of the constraints in the path, but because all other edges correspond

to unconditional constraints, they also hold under the condition specified by the

upper-case label, meaning that the entire path constraint holds under the upper-case

label condition.

In Figure 4-7, we present an example with a single contingent link and a single

requirement link to demonstrate the kind of inferences made by the upper-case rule.

In this case, we use the upper-case rule to automatically make inferences about the

lower-bound from 𝐴 to 𝐶. We know that 𝐶 must happen at least 𝑢 units of time

77

[x, y]

[y + u, _] if B takes on maximum

[u, v]
A B C

Figure 4-7: Example demonstrating the upper-case rule.

after 𝐵, but when 𝐵 happens is outside of the scheduler’s control. We know that 𝐶

must always, unconditionally, happen at least 𝑥 + 𝑢 units of time after 𝐴 (we can

derive this using the no-case rule). However, in certain instances, we do have a tighter

lower-bound. Namely, in cases where the contingent link ending at 𝐵 takes on its

maximum possible duration, then 𝐶 must happen at least 𝑦 + 𝑢 units of time after

𝐴. This resulting conditional constraint, seen in blue in Figure 4-7, is automatically

generated by the upper-case rule.

Next come the lower-case and cross-case rules. These are the first rules that

strengthen conditional constraints to unconditional ones and the first ones that take

into account the effects of delay.

A

B

[x, y]

[u, v]
(u > 0)

𝝲(C) = d

C

[_, x - u]

Figure 4-8: Example demonstrating the lower-case rule.

We start by providing an example application of the lower-case rule (see Figure

4-8). In this scenario, we have a contingent link from 𝐴 to 𝐶 and a requirement link

78

constraining the relative timing of 𝐵 and 𝐶. What makes this particular example

notable is that 𝐵 is guaranteed to happen before 𝐶 is observed (this happens so long

as 𝑢 > −𝑑, which is always the case if 𝑢 > 0). The new constraint generated by the

lower-case rule is that 𝐵 must happen at most 𝑥− 𝑢 units of time after 𝐴.

In order to see why this constraint applies, it is useful to consider a proof by

contradiction. Imagine that it were possible for 𝐵 to occur more than 𝑥−𝑢 time after

𝐴. In order for this to be permissible, all other constraints must also be respected,

regardless of the duration of the contingent link ending at 𝐶. It is important to note

that in this situation, the scheduler must always pick a time for event 𝐵 before it

sees when 𝐶 happens. As a result, if it picks a time such that 𝐵 − 𝐴 > 𝑥− 𝑢, there

is a possibility the scheduler eventually learns that 𝐶 happened exactly 𝑥 units of

time after 𝐴. If we 𝐶 − 𝐴 = 𝑥 and subtract the equation 𝐵 − 𝐴 > 𝑥 − 𝑢, we get

𝐶 −𝐵 < 𝑢, which violates our original constraint. Thus, the constraint generated by

the lower-case rule, 𝐵 − 𝐴 ≥ 𝑥− 𝑢 holds unconditionally.

The cross-case rule follows the same logic as the lower-case rule. However, in this

instance, we are combining two conditional edges, one upper-case and one lower-case,

hence, the use of the term cross-case.

The final rule is the label removal rule. Like the lower-case and cross-case rules,

the label removal rule eliminates a label by recognizing that we have to assign val-

ues to both events in a constraint before we can determine whether the antecedent

represented by the label is true. Whereas in the previous two rules, we eliminated a

lower-case label, with the label removal rule, we remove upper-case labels.

We present the label removal rule in Figure 4-9. We start by applying the upper-

case rule to generate a conditional constraint between 𝐴 and 𝐵 (see Figure 4-9a).

Note that the conditional constraint only applies if the contingent link ending at 𝐶

takes on its maximum possible duration. The label removal rule, however, tells us

that in this scenario it is safe to make the conditional constraint unconditional.

We illustrate as follows. If we know that the contingent link ending at 𝐶 is not

taking on its maximum possible duration, then we are free to ignore this constraint,

as the antecedent is false. However, if we are scheduling 𝐴 more than 𝑣 − 𝑦 units of

79

B B

A A

[x, y] [x, y]

[u, v] [u, v]

C C

[_, v - y]
if C takes on
its maximum

[_, v - y]

(y - v < x) (y - v < x)(a) (b)

Figure 4-9: Example demonstrating the label removal rule. In part (a), we have the
first new constraint we can add via a straightforward application of the upper-case
rule. In part (b), given the assumption that 𝑦 − 𝑣 < 𝑥, we can remove the condition
on the constraint as a result of the label removal rule.

time before 𝐵 (and 𝑣− 𝑦 > −𝑥), then we will not yet have observed if the contingent

link ending at 𝐶 is taking on its maximum duration. Thus, in order to ensure that

execution proceeds correctly, we must conservatively ensure that 𝐴 is always scheduled

no more than 𝑣 − 𝑦 before 𝐵, to account for the possibility that the contingent link

ending at 𝐶 might take on its maximum possible value.

There are still additional rules that can be derived above and beyond the set of five

provided so far. However, as we show in the following sections, this set of five rules

is refutation complete; it is sufficient to apply these rules to quiescence to determine

whether an STNU is delay controllable.

4.3 Verifying Delay Controllability

The purpose of applying these rules and generating additional constraints is to de-

termine whether or not an STNU is controllable. After performing constraint propa-

gation, we search for an inconsistency to tell us whether the STNU is in fact uncon-

trollable.

In the case of STNs, the presence of a negative cycle was sufficient to indicate

that the temporal network is inconsistent. Unfortunately the presence of a negative

80

[20, 40] [30, 45]
A B C

𝝲(B) = 0

40 45

-20

B:-40

-30
A D B

b:20

Figure 4-10: Example demonstrating the incorrect belief that the presence of a neg-
ative cycle implies that the network is uncontrollable. The STNU on the left is delay
controllable, but the edges in blue in the labeled distance graph on the right form a
negative cycle.

cycle through arbitrary sets of edges, both labeled and unlabeled, in an STNU’s

labeled distance graph does not imply that the STNU is uncontrollable. Because

some of the edges only enforce constraints conditionally, a negative cycle may exist

that relies on two conditions that are never simultaneously true. Consider Figure

4-10; in this example, we have an STNU that is delay controllable, but its labeled

distance graph has a negative cycle, as seen in blue. The reason this cycle does not

indicate that the original STNU is uncontrollable is that one of the constraints of the

negative cycle holds only if the contingent link 𝐴 =⇒ 𝐵 takes on its minimum possible

duration, whereas the other constraint only holds if the same contingent link takes

on its maximum possible value.

In order to determine whether an STNU is delay controllable with respect to 𝛾, we

extend the concept of a semi-reducible negative cycle from the dynamic controllability

literature [37].

Definition 4.1. Semi-Reducible Negative Cycle [37]

A labeled distance graph is said to have a semi-reducible negative cycle if the set

of constraints represented by the edges of the labeled distance graph entails a set of

edges that form a negative cycle with only unlabeled and upper-case edges.

When generalizing semi-reducible negative cycles for use in delay controllability,

because the application of some of the edge generation rules depends on the specific

delay function 𝛾, we say that a negative cycle is semi-reducible with respect to 𝛾.

81

If we can apply a series of transformations that ensures that the resulting negative

cycle is free of lower-case edges, then we never encounter a situation where two dif-

ferent constraints fail to hold simultaneously. If we only have upper-case edges, then

all constraints may hold if every contingent link takes on its maximum possible dura-

tion. Because controllability asks whether it is possible to construct a valid schedule

in all possible projections, finding an inconsistency for one possible assignment of

contingent link durations is sufficient to fail the delay controllability test.

4.4 Finding Semi-Reducible Negative Cycles

As in the case for dynamic controllability, the presence of a semi-reducible negative

cycle means that an STNU is not delay controllable with respect to 𝛾. Before we

prove that these two concepts are equivalent, we provide an algorithm for detecting

semi-reducible negative cycles in an STNU, which is based off of an 𝑂(𝑛3) algorithm

for determining dynamic controllability in STNUs [38].

4.4.1 Algorithm

Before explaining the operation of the algorithm in detail, we walk through this

algorithm step-by-step with a simple example, before giving a sketch of its operation

at a higher level.

Input: A labeled distance graph, 𝐺 = ⟨𝑉,𝐸⟩; A delay function 𝛾
Output: Whether the STNU derived from the distance graph is delay

controllable with respect to 𝛾
Initialization:

1 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠← the set of all vertices with incoming negative edges;
DelayControllable?:

2 for 𝑣 ∈ 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠 do
3 𝑐𝑦𝑐𝑙𝑒𝐹𝑟𝑒𝑒?←SRNCFree?(𝐺, 𝛾, 𝑣, [𝑣], 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠);
4 if !𝑐𝑦𝑐𝑙𝑒𝐹𝑟𝑒𝑒? then
5 return 𝑓𝑎𝑙𝑠𝑒;
6 return 𝑡𝑟𝑢𝑒;

Algorithm 1: Delay Controllability algorithm

82

Input: Labeled distance graph 𝐺 = ⟨𝑉,𝐸⟩, delay function 𝛾, terminal node 𝑠,
𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘, and negative nodes 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠

Output: Whether the current walk is cycle-free
Initialization:

1 𝑄← 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒();
2 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠← []; # shortest distances for semi-reducible path;
3 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[⟨𝑠, ∅⟩]← ⟨0, ∅⟩;
4 for 𝑒 ∈ 𝑠.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠() do
5 if 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 < 0 and !𝑒.𝑙𝑜𝑤𝑒𝑟𝐶𝑎𝑠𝑒() then
6 𝑄.𝑎𝑑𝑑(⟨𝑒.𝑓𝑟𝑜𝑚, 𝑒.𝑙𝑎𝑏𝑒𝑙⟩, 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡);
7 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[⟨𝑒.𝑓𝑟𝑜𝑚, 𝑒.𝑙𝑎𝑏𝑒𝑙⟩] ← ⟨𝑒.𝑤𝑒𝑖𝑔ℎ𝑡, 𝑒⟩

SRNCFree?:
8 if 𝑠 ∈ 𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘[1 : 𝑒𝑛𝑑] then
9 return 𝑓𝑎𝑙𝑠𝑒;

10 while 𝑄.𝑠𝑖𝑧𝑒() > 0 do
11 𝑣, 𝑙𝑎𝑏𝑒𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡← 𝑄.𝑝𝑜𝑝();
12 if 𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 0 then
13 𝐺.𝑎𝑑𝑑(⟨𝑣, 𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡⟩);
14 else
15 if 𝑣 ∈ 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠 then
16 𝑛𝑒𝑤𝑆𝑡𝑎𝑐𝑘 ← [𝑣].𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘);
17 𝑟𝑒𝑠𝑢𝑙𝑡← SRNCFree?(𝐺, 𝛾, 𝑣, 𝑛𝑒𝑤𝑆𝑡𝑎𝑐𝑘, 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠);
18 if !𝑟𝑒𝑠𝑢𝑙𝑡 then
19 return 𝑓𝑎𝑙𝑠𝑒;
20 for 𝑒 ∈ 𝑣.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠() do
21 if 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 0 and (!𝑒.𝑖𝑠𝐿𝑜𝑤𝑒𝑟𝐶𝑎𝑠𝑒() or 𝑒.𝑙𝑎𝑏𝑒𝑙 ̸= 𝑙𝑎𝑏𝑒𝑙) then
22 𝑤 ← 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡+ 𝑤𝑒𝑖𝑔ℎ𝑡;
23 if 𝑄.𝑎𝑑𝑑𝑂𝑟𝐷𝑒𝑐𝐾𝑒𝑦(⟨𝑒.𝑓𝑟𝑜𝑚, 𝑙𝑎𝑏𝑒𝑙⟩, 𝑤) then
24 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[⟨𝑒.𝑓𝑟𝑜𝑚, 𝑙𝑎𝑏𝑒𝑙⟩]← ⟨𝑤, 𝑒⟩;
25 𝑙𝑜𝑤𝑒𝑟 ← (𝑒.𝑓𝑟𝑜𝑚).𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐿𝑜𝑤𝑒𝑟𝐸𝑑𝑔𝑒();
26 if 𝑙𝑜𝑤𝑒𝑟 ̸= 𝑛𝑢𝑙𝑙 and 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 < 𝛾(𝑙𝑜𝑤𝑒𝑟.𝑙𝑎𝑏𝑒𝑙) then
27 if 𝑄.𝑎𝑑𝑑𝑂𝑟𝐷𝑒𝑐𝐾𝑒𝑦(⟨𝑙𝑜𝑤𝑒𝑟.𝑓𝑟𝑜𝑚, 𝑙𝑎𝑏𝑒𝑙⟩, 𝑤 + 𝑙𝑜𝑤𝑒𝑟.𝑤𝑒𝑖𝑔ℎ𝑡)

then
28 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠[⟨𝑙𝑜𝑤𝑒𝑟.𝑓𝑟𝑜𝑚, 𝑙𝑎𝑏𝑒𝑙⟩]←

⟨𝑤 + 𝑙𝑜𝑤𝑒𝑟.𝑤𝑒𝑖𝑔ℎ𝑡, 𝑙𝑜𝑤𝑒𝑟⟩;
29 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑠);
30 return 𝑡𝑟𝑢𝑒;

Algorithm 2: Function SRNCFree?

Example Walkthrough

To illustrate how the algorithm works, we perform delay controllability checking on

the example in Figure 4-11, which contains a subset of the constraints from Example

83

Requirement Link
Contingent Link

[20, 40]

[30, 45]

A

B

C

A

B

C

𝝲(B) = 40 𝝲(B) = 40

45

40

b:20 B:-40

20

-30

15

-15(b)(a) [15, 15]
D D

Figure 4-11: (a) Example of an STNU that is uncontrollable when 𝛾(𝐵) = 40. (b)
The same STNU represented as a labeled distance graph.

3.2 that together still render the network uncontrollable.

The algorithm start by collecting all nodes that have incoming negative edges in

the labeled distance graph (Algorithm 1, line 1), which gives us [𝐴,𝐵,𝐷], and starts

performing SRNCFree? on the nodes of the list (lines 2 & 3; see Figure 4-12). For

this example, we assume that the algorithm arbitrarily picks node 𝐴 to start and

enqueues all incoming edges with negative weight (Algorithm 2, lines 4-7), before

starting its walk through the labeled distance graph, using a variant of Dijkstra’s

algorithm (lines 10-28).

It is important to note that the algorithm walks through the graph backwards

(see line 20 for the reference to incoming edges). It does so in order to simplify the

act of picking successor edges, which are used to guarantee that walks are only along

semi-reducible paths. Specifically, a lower-case edge with label 𝑐 can only be reduced

if followed by an edge with weight less than 𝛾(𝐶). It is difficult to look-ahead and

see whether some set of reductions could produce an edge with low enough weight to

84

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

Figure 4-12: Step 1 of the walkthrough. SRNCFree? called with node 𝐴.

apply the lower-case or cross-case rules, but when walking in reverse, it is easy to see

that the weight of the path that has been walked so far comes under the lower-case

rule’s threshold 𝛾(𝐶).

The first node dequeued by the algorithm is 𝐵 (line 11), which is reached using

𝐵
𝐵:−40−−−→ 𝐴, and because 𝐵 has incoming negative edges, we recurse (lines 15, 17; see

Figure 4-13).

The algorithm repeats this process again by calling SRNCFree? with 𝐵 and

dequeues the node 𝐶 (line 11) before adding its successors (lines 20-28). Next to

be dequeued is 𝐷 (line 11), which is of distance -15 away from 𝐵 (see Figure 4-14.

Because 𝐷 is also a negative node, the algorithm again recurses (line 17; see Figure

4-15).

With the recursive call to 𝐷, SRNCFree? terminates for the first time. 𝐶 is

enqueued (lines 4-7) using 𝐶
−15−−→ 𝐷, and when 𝐶 is later dequeued (line 11), the

only edge that provides a new, shorter path is 𝐵 45−→ 𝐶 (see Figure 4-16). When 𝐵 is

85

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30

C: -30
Q

Figure 4-13: Step 2 of the walkthrough. We recurse and call SRNCFree? with node
𝐵.

reached, SRNCFree? terminates and adds 𝐵 30−→ 𝐷 to the graph as a newly derived

semi-reducible path (lines 12-13; see Figure 4-17). The recursive call then returns

and resumes the stack frame that had terminal node 𝐵 (line 30; see Figure 4-18).

In the previous recursive call, 𝐷 had just been reached, so now the algorithm

is about to consider the additional edges it can take to continue the path. One

of the edges that could be considered is the newly added 𝐵
30−→ 𝐷. However, this

extension would not be enqueued, as the path 𝐶
−30−−→ 𝐵,𝐷

15−→ 𝐶,𝐵
30−→ 𝐷 does not

yield a shorter path and so fails the check at line 23. However, the algorithm still

must perform the lookahead at lines 25-28. Since the weight of the new 𝐵
30−→ 𝐷

is less than 𝛾(𝐵), the lower-case reduction is implicitly applied to create 𝐴 50−→ 𝐷

from 𝐴
𝑏:20−−→ 𝐵 and 𝐵

30−→ 𝐷 (see Figure 4-19). When the continuation of Dijkstra’s

algorithm eventually reaches 𝐴, the edge 𝐴 35−→ 𝐵 is newly added (line 13; see Figure

4-20) and return (line 30).

The algorithm finally returns to our original recursive call that was invoked with

86

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
Q

Figure 4-14: Step 3 of the walkthrough. We dequeue 𝐶 −30−−→ 𝐵 and enqueue 𝐷 15−→ 𝐶.

node 𝐴 (see Figure 4-21). The algorithm was about to consider 𝐵’s extensions (lines

20-28) and now has the new edge 𝐴 35−→ 𝐵. But by taking that edge, the algorithm

returns back to 𝐴, since the path of 𝐵 𝐵:−40−−−→ 𝐴 and 𝐴
35−→ 𝐵 has total weight -5. 𝐴

has incoming negative edges; thus, the algorithm recurses again. However, because 𝐴

was already in the call stack (line 8), the algorithm returns false, meaning the STNU

is recognized as not delay controllable (see Figure 4-22).

Algorithm Sketch

We now give a high-level sketch of how the algorithm operates and why it is designed

in the way that it is. It is most useful to start by considering the operation of

SRNCFree? (Algorithm 2).

SRNCFree? implements a variant of Dijkstra’s algorithm, performing a single-

destination shortest path search to find the shortest semi-reducible path to each

initial terminal node 𝑠 in the graph. Note that whenever a semi-reducible negative

87

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
Q

SRNCFree?(D)

distances
D: 0
C: -15

C: -15
Q

Figure 4-15: Step 4 of the walkthrough. We recurse and call SRNCFree? with node
𝐷.

cycle exists, the concept of a shortest semi-reducible path between two nodes is not

well-defined. Hence, if our search for shortest semi-reducible paths starting from

some node fails, we know that there must be a semi-reducible negative cycle in the

labeled distance graph. Accordingly, Algorithm 1 serves mainly as a wrapper around

SRNCFree? in order to guarantee that SRNCFree? is called from every relevant

node in the graph to check that the shortest semi-reducible paths are well-defined

everywhere.

It is worth noting that Dijkstra’s algorithm is incapable of handling negative

edges. To accommodate this restriction, SRNCFree? only considers those negative

edges connected to the original input node 𝑠 and discards all others; if there exists

a guarantee that the only possible negative edge in a path is the very first one, then

Dijkstra’s algorithm operates just fine.

The algorithm works by walking along paths from the initial node 𝑠, continuing

its walk using non-negative edges until there are no edges it can take along its walk

88

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
Q

SRNCFree?(D)

distances
D: 0
C: -15
B: 30

C: -15
B: 30

Q

Figure 4-16: Step 5 of the walkthrough. We dequeue 𝐶 −15−−→ 𝐷 and enqueue 𝐶 45−→ 𝐵.

or the weight of the path eventually become positive. The algorithm walks edges

in reverse from terminal node 𝑠 to all other nodes, in order to simplify the act of

picking successor edges, to guarantee that walks are only along semi-reducible paths.

Specifically, a lower-case edge with label 𝑐 can only be reduced if followed by an edge

with weight less than 𝛾(𝐶). It is difficult to look-ahead and see whether some set

of reductions could produce an edge with low enough weight, but when walking in

reverse it is easy to see that the weight of the path that has been walked so far comes

under the lower-case rule’s threshold 𝛾(𝐶). If a semi-reducible path eventually takes

on a non-negative weight, the algorithm reduces the path down to a single edge, adds

it to the graph, and continues its walk.

So far our sketch has ignored most negative edges in that it does not consider

negative edges except those connected to initial node 𝑠. Whenever the algorithm

reaches a node that has an incoming edge with negative weight, it recursively calls

SRNCFree? on that node to begin a new sub-walk whose only negative edge is con-

89

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30 30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
Q

SRNCFree?(D)

distances
D: 0
C: -15
B: 30

C: -15
B: 30

Q

Figure 4-17: Step 6 of the walkthrough. Edge 𝐵 30−→ 𝐷 (in blue) is added to the
labeled distance graph.

nected to the sub-walk’s initial node. The recursive call either eventually completes

successfully (potentially involving subsequent recursive calls), in which case all of the

non-negative extensions of that edge have been added to the graph, or it continues

recursing indefinitely as its walk continues. If we were to infinitely recurse, we know

we have found a semi-reducible negative cycle, since each recursive sub-call found a

semi-reducible negative path, and all those semi-reducible negative paths when com-

bined form a semi-reducible negative cycle. Note that this algorithm never actually

enters infinite recursion, as it maintains the set of nodes 𝑠 that have been considered

recursively in the variable 𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘 and checks whether the same terminal node 𝑠

has already been considered (line 8 of Algorithm 2).

90

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30 30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
Q

Figure 4-18: Step 7 of the walkthrough. We return to the previous recursive call that
was invoked with node 𝐵.

4.4.2 Correctness

We now move on to proving that Algorithm 1 returns true if and only if there are no

semi-reducible negative cycles.

Theorem 4.1. Algorithm 1 is sound and complete with respect to determining whether

an STNU’s labeled distance graph is free of semi-reducible negative cycles with respect

to delay function 𝛾.

Proof. By Lemmas 4.2 and 4.3, we know that Algorithm 1 is sound and complete.

We prove this in parts by proving each direction of the if and only if independently.

We start by considering what happens when the algorithm returns false.

Lemma 4.2. If Algorithm 1 returns false on STNU 𝑆 and delay function 𝛾, then 𝑆

has a semi-reducible negative cycle with respect to 𝛾.

91

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30 30

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
A: 35

Q
A: 35

50

Figure 4-19: Step 8 of the walkthrough. New edge 𝐴 50−→ 𝐷 (in green) is derived by
performing a lower-case reduction combining 𝐴 𝑏:20−−→ 𝐵 and 𝐵

30−→ 𝐷. The new edge
is only used implicitly in this stack frame and is not added to the labeled distance
graph.

Proof. Algorithm 1 only returns false if a recursive call to SRNCFree? returns false,

which only happens if terminal node 𝑠 was already present in the call stack. Consider

the situation that would have 𝑠 show up in the call stack twice.

We know that we only make a recursive call if the weight of the path we are

considering is negative (lines 14, 17). This means that if 𝑠 shows up in the call stack

twice, we have a series of negative paths that start and end at 𝑠, implying that we

have found a negative cycle.

In order to prove that it is a semi-reducible negative cycle, we show that each path

popped from 𝑄 is a semi-reducible path. First, we note that for a particular terminal

node 𝑠, there is at most one label that can be assigned to any path that we build

with SRNCFree?. Because our STNU is in normal form, no upper-case labeled

edges share an endpoint, and we also know that no upper-case labeled edges share

92

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30 30

35

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(B)

distances
B: 0
C: -30
D: -15

D: -15
A: 35

Q

50

A: 35

Figure 4-20: Step 9 of the walkthrough. Edge 𝐴 35−→ 𝐵 (in blue) is added to the
labeled distance graph.

their endpoint with an unlabeled negative edge. This means that at line 6, we only

consider unlabeled edges and at most one upper-case edge. Because all upper-case

edges have negative weight, we know our path never adopts another label value. All

upper-case edges are initially negative and so are ignored by line 21. However, we

do have to consider upper-case edges that are positive and added to the graph by a

different call to line 13. But because the label removal rule gives us a guarantee that

we can always apply it to an upper-case edge with non-negative weight, we can elect

to only add unlabeled edges to the graph.

Since we know that for a particular call to SRNCFree? that we only have to

consider one type of label, ensuring that our path is semi-reducible becomes much

simpler. At line 21, we ensure that we do not perform an illegal cross-case reduction

due to labels matching, and at line 26, we make sure that we only apply cross-case or

lower-case reductions if the existing path weight is within the bounds specified by 𝛾.

We do not have to perform the same type of check at line 21 because the else at line

93

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30 30

35

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

Figure 4-21: Step 10 of the walkthrough. We return to the previous recursive call
that was invoked with node 𝐴.

14 guarantees that the total weight of the path so far is negative. Thus, the paths

that we build up are semi-reducible, and if our main algorithm returns false, we have

a guarantee that the STNU has a semi-reducible negative cycle under 𝛾.

To complete our proof, we must also show that if the labeled distance graph

implied by an STNU and delay function 𝛾 has a semi-reducible negative cycle, then

our algorithm will find one.

Lemma 4.3. If 𝑆 has a semi-reducible negative cycle with respect to delay function

𝛾, then Algorithm 1 returns false.

Proof. Consider any semi-reducible negative cycle that contains no negative semi-

reducible sub-cycles. We know that we can partition the negative cycle into a series

of semi-reducible paths such that every path has only one negative weight edge and

that edge is the final edge in the path. Note that some of these partitions may consist

of just a single negative node.

94

A

B

C

𝝲(B) = 40

45

40

b:20 B:-40

20

-30 30

35

15

-15
D

negNodes: [A, B, D]

SRNCFree?(A)

distances
A: 0
B: -40 [B]

B: -40 [B]
Q

SRNCFree?(A)

Uncontrollable

Figure 4-22: Step 11 of the walkthrough. We invoke SRNCFree? again with node
𝐴, which implies the STNU is not delay controllable with respect to 𝛾. The edges in
red represent the semi-reducible negative cycle that can be extracted.

We know that there must be at least one negative edge such that if we walked

backwards along the semi-reducible negative cycle starting from that edge, our weight

never becomes non-negative. If not, we could take every such eventually non-negative

path extension and remove those edges from the cycle. The only edges remaining

would be non-negative ones, and we would arrive at a contradiction, since our original

cycle had negative total weight.

Consider a negative edge such that when we walk backwards from that edge along

the semi-reducible path, the path weight becomes non-negative. We know that if

SRNCFree? is called on that edge, that path will be collapsed and added to the

graph as a single edge (line 13), as the 𝑎𝑑𝑑𝑂𝑟𝐷𝑒𝑐𝐾𝑒𝑦 method only modifies our queue

if there are shorter weights, which guarantees that we find the path with shortest

weight. In our semi-reducible negative cycle, we replace that path with the newly

generated edge. We can repeat this process until we have no more edges whose walks

95

eventually become non-negative.

Since we are interested in eliminating lower-case edges, we need to make sure that

every lower-case edge that is used in a semi-reducible negative cycle is found and

reduced away. Since our algorithm starts at a negative edge and then traverses non-

negative edges forward until the semi-reducible path weight becomes non-negative, we

know that whenever our weight is yet to become positive, we can always take a lower-

case edge. However, in instances where 𝛾 > 0, it is possible that we want to continue

our walk to eliminate a lower-case edge instead of terminating at the first non-negative

edge. This is especially true when we have a path of the form 𝐴
𝑏:𝑥−→ 𝐵 𝐵, and we

want to eliminate the lower-case edge with some subsequence of the path, instead of

the entire path. Handling this look-ahead reduction appropriately is one of the main

complications of the introduction of delay functions.

Because we always start with a negative edge and add only non-negative edges,

the two easiest ways to reduce a lower-case edge are by reducing it against the whole

path, or by replacing it with its immediate predecessor. Any longer subsequence of

edges that does not include the initial negative edge is going to have cost at least as

large, and we can only reduce the lower-case edge if the total path length is less than

𝛾. Lines 26-28 guarantee that we always do a lookahead for any incoming lower-case

edges to see if they can be immediately reduced against the current edge that we

are considering. If they can, we immediately perform the reduction and enqueue the

combined edge. If not, we do nothing and let the edge be handled normally.

For the negative edges that remain, we know that if we were to run SRNCFree?

from any one of them, our algorithm would return false, since the successful comple-

tion of any one SRNCFree? call is dependent on the next. The algorithm would

continue walking the shortest semi-reducible paths making recursive calls until the

call stack detected that there was infinite recursion (line 8). Since our main algorithm

guarantees that we eventually call SRNCFree? for all nodes with negative incoming

edges, we have a guarantee that if there is a semi-reducible negative cycle, we return

false.

Stringing the two lemmas together, Theorem 4.1 concludes that our algorithm is

96

sound and complete. What remains is to show is that the algorithm completes in

𝑂(𝑛3) time.

Theorem 4.4. Algorithm 1 operates in 𝑂(𝑛3) time.

Proof. First note that we only call SRNCFree? for a terminal node 𝑠 if we first

verify that 𝑠 ∈ 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠 (lines 2-3 of Algorithm 1; line 15 of Algorithm 2). Whenever

SRNCFree? returns true for terminal node 𝑠, we know it has been removed from

𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠 (line 29 of Algorithm 2), and whenever SRNCFree? returns false, we

immediately return false for all ancestor calls (lines 3-5 of Algorithm 1 and lines 17-

19 of Algorithm 2). Because we never add values to 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠, this means that we

call SRNCFree? at most 𝑛 times in total.

Now we analyze the runtime of SRNCFree? independent of any recursive calls.

We are implicitly running two versions of Dijkstra’s algorithm simultaneously, one

with labeled paths and one with unlabeled paths. While this doubles the number of

items added to the queue and the number of overall operations, the doubling has no

effect on the overall runtime of Dijkstra’s algorithm, which is 𝑂(𝑚+ 𝑛 log 𝑛).

However, when we consider the total number of edges, it is more than the initial 𝑚

that belong to the labeled distance graph 𝐺. Each time SRNCFree? is called, 𝑛 new

edges are potentially added to the graph (line 13), meaning to be safe we must assume

that there are 𝑂(𝑛2) edges in total, raising the total runtime of DelayDijktsra to

𝑂(𝑛2).

Putting it together, we run SRNCFree? at most 𝑛 times, giving us a total

worst-case runtime of 𝑂(𝑛3).

4.5 Semi-Reducible Negative Cycles and Controlla-

bility

In this section, we provide a proof indicating that an STNU is delay controllable

with respect to delay function 𝛾 if and only if its labeled distance graph has no semi-

reducible negative cycles with respect to 𝛾. We start by showing that the presence

97

of a semi-reducible negative cycle proves that the corresponding STNU is not delay

controllable. To demonstrate the other direction, we show that the absence of a

semi-reducible negative cycle means that it is possible to construct a valid execution

strategy for all projections under the given observation delay; if we can construct

a valid execution strategy, then by definition, the STNU is delay controllable. Our

main theorem is as follows:

Theorem 4.5. Delay controllability of an STNU 𝑆 with respect to 𝛾 can be checked

in 𝑂(𝑛3) time.

Proof. With Lemma 4.6 and Lemma 4.9, we show that 𝑆 is delay controllable if and

only if 𝑆 is free of semi-reducible negative cycles. By Theorem 4.1, we show that we

can determine whether a semi-reducible negative cycle exists in 𝑂(𝑛3) time, implying

that Algorithm 1 gives us an 𝑂(𝑛3) check for delay controllability.

4.5.1 Semi-Reducible Negative Cycles Imply Uncontrollabil-

ity

Lemma 4.6. If the labeled distance graph of some STNU, 𝑆, has a semi-reducible

negative cycle with respect to delay function 𝛾, then 𝑆 is not delay controllable with

respect to 𝛾.

Proof. Given a semi-reducible negative cycle, we know that the cycle can be trans-

formed into a cycle without lower-case edges by some combination of reductions.

Consider the semi-reducible negative cycle after those reductions.

Given the new cycle, we can continue to combine all of its unlabeled edges together

using the no-case reduction or combine unlabeled edges with upper-case edges using

the upper-case reduction. Since each reduction reduces the number of present edges,

we can iteratively apply this until we are either left with a single unlabeled self-edge

or a cycle of upper-cases edges.

If we end with a single self-edge, then any projection of contingent durations will

yield an inconsistent STN, since the negative self-edge is a negative cycle. In this

case, we know that 𝑆 is not delay controllable with respect to 𝛾.

98

If we end with a cycle of upper-case edges, then each edge is of the form 𝐵
𝐶:𝑢−−→ 𝐴,

where the original contingent constraint was of the form 𝐴
[𝑥,𝑦]
==⇒ 𝐶. This means

that, if we have not yet observed that 𝐶 has occurred (which we will have not before

execution), we may be required to enforce the constraint 𝐴−𝐵 ≤ 𝑢. However, we get

this equation for all edges in our cycle. Because we are evaluating delay controllability

prior to execution, we cannot infer that any contingent constraints have yet occurred,

so there exists a possible projection in which all upper-case constraints are active.

In particular, it is the instance in which all contingent links take on their maximum

possible duration, where all constraints in the cycle will hold. If we sum the left and

right hand sides of the constraints, the left side will telescope to zero, and the right

will reduce to the weight of the cycle, which is negative. If we take 𝑤 to be the weight

of the cycle, this gives us 0 ≤ 𝑤 < 0, yielding a contradiction.

Thus, whenever we find a semi-reducible negative cycle with respect to delay

function 𝛾 in the labeled distance graph for STNU 𝑆, we know that 𝑆 is not delay

controllable with respect to 𝛾.

4.5.2 Finding an Execution Strategy

In order to show the converse, that a STNU whose labeled distance graph is free of

semi-reducible negative cycles is delay controllable with respect to 𝛾, we show that

in those instances we can always construct an execution strategy that satisfies all

constraints after observing the outcomes of contingent constraints only after their

specified delay has elapsed. Our process for generating an execution strategy closely

follows that of dynamic controllability by Hunsberger [28], as well as its proof of

correctness.

Our execution strategy is based on computing the shortest semi-reducible paths

from a simulated start event 𝑍 to all other events. If we find such paths for all

events, then our strategy is to schedule the next available event, like we do for STNs,

according to the bounds given by the shortest semi-reducible paths.

Before we elaborate our execution strategy in greater depth, we need to prove a

99

few properties of labeled distance graphs that have no semi-reducible negative cycles.

We do this to show that the notion of a shortest semi-reducible path in these labeled

distance graphs is well-defined.

First, we show that the number of possible edges we can generate with our edge

generation rules is bounded.

Lemma 4.7. If an STNU’s labeled distance graph does not have a semi-reducible

negative cycle with respect to delay function 𝛾, then a finite number of edges can be

generated from the original STNU’s labeled distance graph, with the edge generation

rules from Table 4.1. In particular, no more than 𝑂(𝑛3) rounds of applications of

edge generation rules are needed to generate all possible edges.

Proof. We define the following edge generation strategy. Let 𝐸0 be the set of edges we

start with in our labeled distance graph. To generate the set of edges 𝐸𝑖+1 from 𝐸𝑖,

we take all pairs of edges from 𝐸𝑖 and see if we can apply any of the edge generation

rules to produce a new edge. Then for each new edge we generate, we try to apply

the Label Removal rule to see if we can generate additional edges. We take all edges

from 𝐸𝑖 and all newly generated edges, and for each triple (start node, end node,

label), we store the shortest edge for that triple in 𝐸𝑖+1. We terminate when the set

of output edges remains unchanged after a round of generation.

If there are no semi-reducible negative cycles, then there is at most 𝑛3 +𝑛2 rounds

of edge generation. We know that for any edge 𝑒 that newly shows up in round 𝑖+ 1,

at least one of its parent edges was generated in round 𝑖. If not, 𝑒 would have been

generated in an earlier round and in round 𝑖 + 1, it would be discarded, since it was

not the shortest edge for its corresponding triple. Thus, if there are 𝑘 rounds, we

can take an edge generated in round 𝑘, back out a sequence of edge transformations

responsible for creating it, and know that we have at least one edge from the sequence

generated at each round. We always pick the shortest edge for any particular start

node, end node, and label triple during edge generation, meaning there are at most

𝑛3 + 𝑛2 such triples, if we ignore lower-case edges, since there are 𝑛2 start and end

node pairs and 𝑛 + 1 possible labels, including the unlabeled state. It is safe for us

100

to ignore lower-case edges in the output of edge generation, since none of the edge

generation rules produce lower-case edges.

Assume for the sake of contradiction that there are 𝑘 > 𝑛3 + 𝑛2 rounds of edge

generation. We can take an edge generated in round 𝑘 and back out a series of 𝑘 edge

transformations, one per round, which were necessary to generate that edge. Of the

𝑘 outputs, we know that at least two edges must share the same triple (start node,

end node, label). Call the rounds that output those two edges round 𝑖 and round 𝑗

and the corresponding edges 𝑒𝑖 and 𝑒𝑗. If 𝑖 < 𝑗, we also know that the weight of the

edge outputted in round 𝑗 is less than the weight of the edge outputted in round 𝑖.

For convenience, we call the start node of our edges 𝐴 and their end node 𝐵.

We show that if there is a series of transformations that we can apply to 𝑒𝑖 to

produce 𝑒𝑗, then there must exist a semi-reducible negative cycle and we have a

contradiction. Since the iterative application of edge generation rules either extends

an edge forward or backward, we can model the transformation from 𝑒𝑖 to 𝑒𝑗 as a

path involving 𝑒𝑖 and several other edges where the final path has the same start and

endpoint as 𝑒𝑗. Our path has 𝑗− 𝑖+ 1 edges, so after exactly 𝑗− 𝑖 applications of the

edge generation rules, we would create 𝑒𝑗.

If we consider this path, we notice that it contains subpaths from the start of 𝑒𝑗

(𝐴) to the start of 𝑒𝑖 (𝐴) and from the end of 𝑒𝑖 (𝐵) to the end of 𝑒𝑗 (𝐵). Both

subpaths are cycles (with one possibly being empty), and since the weight of 𝑒𝑗 is less

than the weight of 𝑒𝑖, we know that at least one of the cycles is negative. Now we

show that if one of these cycles is negative, it is also semi-reducible.

First consider the case where the path 𝐵 𝐵 has negative weight. We know

that each edge of 𝐵 𝐵 acts as the successor edge in one of the four binary edge

generation rules since each edge is eventually combined with 𝑒𝑖. We notice that the

only valid edges that can act as successor edges in the reduction rules are upper-case

and unlabeled edges, so by definition this cycle is semi-reducible.

Now assume that the path 𝐵 𝐵 is non-negative. This implies that the 𝐴 𝐴

has negative weight. Here again, we know that these edges are applied one at a time

to an intermediate product, but instead, these edges act as predecessor edges in the

101

binary edge generation rules. This means that they must all be either lower-case or

unlabeled edges.

We know that a negative cycle of all lower-case or unlabeled edges is semi-

reducible. Since all lower-case edges have non-negative weight, the sum of the weights

of all unlabeled edges in the cycle must be strictly less than zero. If a lower-case edge

exists in the cycle, there must be at least one such edge that is followed by a series

of unlabeled edges whose combined weight is negative, since all lower-case edges have

non-negative weight. Since ∀𝑥𝑐 ∈ 𝑋𝑐, 𝛾(𝑥𝑐) ≥ 0, we know we can apply a series of no-

case reductions followed by a lower-case reduction to eliminate one lower-case edge.

These invariants continue to hold for any negative cycle composed solely of lower-case

or unlabeled edges, so we can continue eliminating lower-case edges in this way, until

they are all gone. This shows that our sub-cycle is semi-reducible.

If edge generation is unbounded, we have a series of transformations that transform

𝑒𝑖 into 𝑒𝑗 and can find a semi-reducible negative cycle. Thus, if there are no semi-

reducible negative cycles, then the edge generation rules only produce a finite number

of edges, all of which can be found after 𝑂(𝑛3) rounds.

Knowing that there is a limit to the number of possible edges that can be generated

is useful for determining whether the notion of a shortest semi-reducible path with

respect to delay function 𝛾 is well-defined for an STNU’s labeled distance graph. In

other words, for each pair of nodes 𝐴 and 𝐵, there is some value 𝑘, such that no

semi-reducible path from 𝐴 to 𝐵 is shorter than 𝑘 in the STNU’s labeled distance

graph. We prove that shortest semi-reducible paths are well-defined whenever a

labeled distance graph is free of semi-reducible negative cycles.

Lemma 4.8. If an STNU’s labeled distance graph does not have a semi-reducible

negative cycle with respect to some delay function 𝛾, then for every pair of nodes

𝐴,𝐵 in the labeled distance graph, there exists some 𝑘 that is less than the length of

the shortest semi-reducible path between 𝐴 and 𝐵. Hence, the notion of a shortest

semi-reducible path is well defined.

102

Proof. Assume that our labeled distance graph does not have a semi-reducible nega-

tive cycle with respect to 𝛾. By Lemma 4.7, we know that there is a finite number of

edges that can possibly be generated by the edge generation rules.

Examine any semi-reducible path between 𝐴 and 𝐵. Since the path is semi-

reducible, we know that we can apply a set of edge generation rules to yield a path

with the same weight that does not have lower-case edges. If our path has any

sub-cycles, we know we can remove them without increasing the path length, since

our STNU is free of semi-reducible negative cycles and all of our sub-cycles are free

of lower-case edges and thus semi-reducible. But if we look at the resulting semi-

reducible path, it is bound in weight, since there are only finitely many possible edges

that can be generated by the rules and thus that can be picked for use in the path.

Thus, if an STNU is free of semi-reducible negative cycles, then there is a shortest

semi-reducible path between all nodes.

Whenever an STNU has a valid execution strategy, we know that the STNU is

delay controllable, so if we can construct an execution strategy for any graph on

which semi-reducible shortest paths is well-defined, we know that not having a semi-

reducible negative cycle is sufficient for being delay controllable. Because shortest

semi-reducible paths are computable and well-defined, we can use them in an ex-

ecution strategy for STNUs to define bounds on when individual events should be

executed. Much of this proof resembles the one from [28], but special care is taken

to show that the introduction of delay does not introduce new problems in the main

arguments of the proof.

Lemma 4.9. If the labeled distance graph of an STNU, 𝑆, does not have a semi-

reducible negative cycle with respect to delay function 𝛾, then 𝑆 is delay controllable

with respect to 𝛾.

Proof. We prove this claim by specifying an execution strategy that is valid as long

as the shortest semi-reducible path is well-defined on a labeled distance graph. Then

we show that our execution strategy always maintains the invariants that the labeled

103

distance graph is free of semi-reducible negative cycles and that we never exceed an

executable event’s upper-bound for possible execution.

We derive the lower- and upper-bounds for an event’s execution by looking at

the shortest semi-reducible path between 𝑍 and other nodes, where 𝑍 represents the

earliest occurring executable event, which by convention occurs at 0. If the shortest

semi-reducible path between 𝑍 and 𝐵 is 𝑢 while the shortest semi-reducible path

between 𝐵 and 𝑍 is −𝑙, we say that 𝐵 has lower-bound 𝑙 and upper-bound 𝑢. By

Lemma 4.8, we know that the shortest semi-reducible path is well-defined, but for

this proof we do not need an efficient means of computing it.

At any given time 𝑡, we schedule our next event to execute as follows. First,

we search across all executable events that have yet to be assigned and find the

ones with the earliest lower-bounds. If the selected events have lower-bound greater

than 𝑡, our plan is to execute them at their lower-bound. Otherwise, that event is

executed immediately (at time 𝑡), as our model allows for instantaneous execution.

Every time an event is executed or a contingent event is observed, we re-determine

what the next event to execute is. After all executable events have been specified,

we reveal the remaining unobserved contingent events and verify that the resulting

STNU projection is consistent.

Along the way, we also make sure to remove any constraints that are no longer

valid. In particular, for any contingent constraint 𝐴
[𝑥,𝑦]
==⇒ 𝐶, if 𝛾(𝐶) + 𝑥 time has

passed since 𝐴 was executed, we can safely remove the lower case edge 𝐴 𝑐:𝑥−→ 𝐶.

That lower-case edge represents a bound that must be enforced if the contingent

constraint were to take on its lowest possible value, but because 𝛾(𝐶) + 𝑥 time has

passed, we know that it cannot have its minimum possible value.

We now proceed with some case analysis to show that our execution strategy is

sound. First we consider what happens when we observe a contingent event. Then we

consider what happens when we execute an executable event. Whenever we know the

new value of an event 𝐵, whether we executed or observed it, that occurred at time

𝑡, we fix that point in our labeled distance graph by adding constraints 𝑍 𝑡−→ 𝐵 and

𝐵
−𝑡−→ 𝑍. We show that in either case, if the original graph was free of semi-reducible

104

negative cycles, then the resulting graph is also free of semi-reducible negative cycles.

We also show that at every step along the way, no unexecuted event’s upper-bound

ever drops below the current time.

Case 1 - Contingent Event. Assume that we just observed the value of 𝐴
[𝑥,𝑦]
==⇒ 𝐶

and see that 𝐶 occurred at time 𝑡. Since 𝑥, 𝑦 ≥ 0 and 𝛾(𝐶) ≥ 0, we know that

executable event 𝐴 must have been scheduled before we observed the value of 𝐶. Say

that 𝐴 occurred at time 𝜏 . We can now add constraints between 𝑍 and 𝐶 of weight

𝑡 and −𝑡. In addition to adding the two new constraints, we remove the 𝐴 𝑐:𝑥−→ 𝐶

constraint and the 𝐶 𝐶:−𝑦−−−→ 𝐴 constraint. Those constraints represented the fact that

𝐴 −→ 𝐶 could possibly take on any value between 𝑥 and 𝑦, but because we know the

true value of that constraint, it is incorrect to make inferences based on values that

we know it cannot take on. For the sake of contradiction, assume that the addition

of our two new constraints create a semi-reducible negative cycle.

XA A

C C

-𝛕
𝛕

C: -y c: x

-t t

Z Z

(a) (b)

Original Edge
Newly Added Edge

Removed Edge

Original Edge
Newly Added Edge

Removed Edge

Figure 4-23: (a) Diagram indicating that the observation of 𝐶 occurring at time 𝑡
creates no semi-reducible negative cycles that use 𝐶 −𝑡−→ 𝑍. The path 𝑋 𝐶 starts
with a lower-case edge if it is non-empty. (b) Another diagram indicating the same
thing for the other added edge, 𝑍 𝑡−→ 𝐶.

We know that 𝐶 −𝑡−→ 𝑍 cannot be part of a semi-reducible negative cycle. If it

105

were, then after modifying the set of edges in the graph, we would have some semi-

reducible path 𝑍 𝑋 and some (possibly empty) path 𝑋 𝐶, starting with a

lower case edge, such that the total weight of their paths is 𝛼, where 𝛼 < 𝑡 (see

Figure 4-23a).

If 𝑋 𝐶 is empty, we know that 𝑍 𝐶 is a semi-reducible path, and a

contradiction immediately follows. 𝑍 𝐶 does not have a lower-case 𝑐 edge, since

that edge had already been removed. This means that we can perform an upper-case

reduction with 𝐶
𝐶:−𝑦−−−→ 𝐴 and 𝑍 𝐶. Then combining it with 𝐴

−𝜏−→ 𝑍, we have

a semi-reducible cycle with weight 𝛼 − 𝑦 − 𝜏 < 𝑡 − 𝑦 − 𝜏 . But we also know that

𝑡 ≤ 𝜏 + 𝑦 by construction, so we have that 𝛼 − 𝑦 − 𝜏 < 0 and thus we would have

already had a semi-reducible negative cycle, which is a contradiction.

Now we consider what happens if 𝑋 𝐶 is not empty and the newly added edge

provides us a negative cycle. This means that the addition of an edge with weight −𝑡

would be enough to reduce the lower-case edge. But by the same reasoning, we know

that 𝑋 𝐶 does not have a lower-case 𝑐 edge, as we could have instead substituted

in the combination of the more negative 𝐶
𝐶:−𝑦−−−→ 𝐴 and 𝐴

−𝜏−→ 𝑍 to achieve the

same reduction. We would then have violated our precondition that we start with

no semi-reducible negative cycles. Thus, the new edge 𝐶 −𝑡−→ 𝑍 cannot be part of a

semi-reducible negative cycle.

We also know that 𝑍 𝑡−→ 𝐶 cannot be part of a semi-reducible negative cycle.

If it were, there would be some semi-reducible path 𝐶 𝑍 with weight 𝛼, where

−𝛼 > 𝑡 ≥ 0 (see Figure 4-23b). In that case, before we substituted in the edges,

we could have created a semi-reducible negative cycle with the semi-reducible path

𝐶 𝑍, 𝑍 𝜏−→ 𝐴, and 𝐴
𝑐:𝑥−→ 𝐶. In order for this to be the case, there must have

been a semi-reducible path 𝐴 𝑍 that uses 𝐴 𝑐:𝑥−→ 𝐶 and 𝐶 𝑍. We know that

the semi-reducible path 𝐶 𝑍 with weight 𝛼 does not have any upper-case 𝐶 edges

because we removed them. The only way then that we would be unable to apply the

lower-case rule, using 𝐴 𝑐:𝑥−→ 𝐶 and 𝐶 𝑍, would be if 𝐶 were immediately followed

by some series of edges that collapsed down to either 𝐶 𝐷:𝛽−−→ 𝐵 or 𝐶 𝛽−→ 𝐵, where

𝛽 > 𝛾(𝐶). In the case where the reduced edge has label 𝐷, we can apply the label

106

removal rule, since 𝛽 > 𝛾(𝐶) ≥ 0 ≥ −𝐷, meaning we only have to consider the case

where 𝐶 is followed by 𝐶 𝛽−→ 𝐵.

Since 𝛼 < 0, we know that there must be more edges in the sequence, and we

can continue reducing forward using the no-case or upper-case rules. At every point,

if the weight of the path is greater than 𝛽, we can apply the label removal rule and

continue reducing forward. Eventually, the value of the edge drops below 𝛽, since the

total weight of the path is 𝛼 < 0 < 𝛽, meaning that we can apply the lower-case rule.

The semi-reducible cycle composed of 𝐶 𝑍, 𝑍 𝜏−→ 𝐴, and 𝐴
𝑐:𝑥−→ 𝐶 has weight

𝛼+ 𝜏 +𝑥. Since 𝜏 +𝑥 ≤ 𝑡, our semi-reducible cycle has weight 𝛼+ 𝜏 +𝑥 ≤ 𝛼+ 𝑡 < 0.

Thus, we would have a semi-reducible negative cycle and so whenever we assign a

contingent event, we do not create any new semi-reducible negative cycles.

We also know that no unexecuted event’s upper-bound ever dips below the current

time, 𝑡+ 𝛾(𝐶). Assume for the sake of contradiction that the upper-bound of 𝐵 was

greater than or equal to 𝑡+ 𝛾(𝐶) before we observed the value of 𝐶 and then dipped

to a value of less than 𝑡 + 𝛾(𝐶) afterwards. This can only happen if there is a new

semi-reducible path from 𝑍 to 𝐵 with value less than 𝑡 + 𝛾(𝐶). Such a path would

have to include one of the new edges. However, it does not include 𝐶 −𝑡−→ 𝑍 because

then the full path would be composed of 𝑍 𝐶, 𝐶 −𝑡−→ 𝑍, and 𝑍 𝐵. Since there

are no semi-reducible negative cycles, we can just look at the shorter 𝑍 𝐵 directly.

Assume that after adding the new edges, we have a semi-reducible path from 𝑍 to

𝐵 with value less than 𝑡+𝛾(𝐶). It must be the case that there is some semi-reducible

path 𝐶 𝐵 with weight 𝛼 < 𝛾(𝐶), as the only way the path could decrease is if

it took one of the new edges and the only such new edge that qualifies is 𝑍 𝑡−→ 𝐶.

But look what would have happened before we substituted in the new edges. If we

take 𝑍 𝜏−→ 𝐴, 𝐴 𝑐:𝑥−→ 𝐶, and the semi-reducible path 𝐶 𝐵 with weight 𝛼, we know

we can apply the lower-case reduction that combines 𝐴 𝑐:𝑥−→ 𝐶 and the semi-reducible

path 𝐶 𝐵, since 𝛼 < 𝛾(𝐶). That means that we had a semi-reducible path from 𝑍

to 𝐵 with weight 𝜏 + 𝑥+𝛼 ≤ 𝑡+𝛼 < 𝑡+ 𝛾(𝐶), which violates our initial assumption

that the shortest semi-reducible path from 𝑍 to 𝐵 had weight at least 𝑡+𝛾(𝐶). Thus,

observing a contingent event does not cause the upper-bound of an unexecuted event

107

to drop below the current time.

Case 2 - Executable Event. Assume that we just assigned a value to executable

event 𝐴 at time 𝑡. First, we show that this does not introduce any semi-reducible

negative cycles.

Imagine that there was a new semi-reducible negative cycle that used edge 𝑍 𝑡−→ 𝐴.

That means that there existed some other semi-reducible path 𝐴 𝑍 with weight

−𝛼 < −𝑡 that existed before the introduction of new edges. However, that would

have implied that 𝐴’s lower-bound 𝛼 was greater than 𝑡, and we would not have

executed 𝐴 at this time.

Now assume that there was a new semi-reducible negative cycle that used edge

𝐴
−𝑡−→ 𝑍. That means that there existed some other semi-reducible path 𝑍 𝐴 with

weight 𝛼 < 𝑡 that existed before the introduction of new edges. However, that would

have implied that 𝐴’s upper-bound should have been 𝛼, which is less than 𝑡. Since

we maintain the precondition that no unexecuted event can have an upper-bound less

than the current time, we have a contradiction. Thus, the assignment of an executable

event 𝐴 cannot create a new semi-reducible negative cycle.

Now, we show that the assignment of the value 𝑡 to 𝐴 cannot cause some other

event 𝐵’s upper-bound to fall below 𝑡. Assume that the assignment did cause 𝐵’s

upper-bound to drop. This implies that after adding the new edges, we have a semi-

reducible path from 𝑍 to 𝐵 with weight less than 𝑡, and we know that the path must

use 𝑍 𝑡−→ 𝐴. It must use a new edge for the weight to drop, and if we used 𝐴
−𝑡−→ 𝑍,

the full semi-reducible path would look like 𝑍 𝐴, 𝐴 −𝑡−→ 𝑍, and 𝑍 𝐵. Since

there are no semi-reducible negative cycles, we would have at least as short a path

by just taking 𝑍 𝐵 directly.

This would imply that there is some semi-reducible path from 𝐴 to 𝐵 with weight

𝛼 < 0. Since 𝐵 has not been executed yet, we also know that its lower-bound is 𝛽 ≥ 𝑡,

implying that there exists some semi-reducible path 𝐵 𝑍 with weight −𝛽. But

this means that we have a semi-reducible cycle 𝑍 𝑡−→ 𝐴, 𝐴 𝐵 with weight 𝛼, and

𝐵 𝑍 with weight −𝛽. However, this yields a contradiction since 𝑡+𝛼−𝛽 ≤ 𝛼 < 0,

meaning that this would create a semi-reducible negative cycle, which we know cannot

108

happen.

Thus, whenever we observe or execute an event, we keep our STNU free of semi-

reducible negative cycles and preserve the executability of our STNU, since no ex-

ecutable event’s upper-bound dips below the current time. Since we have a valid

execution strategy, this means that if an STNU is free of semi-reducible negative

cycles, it is delay controllable with respect to 𝛾.

Putting these lemmas together, we see that an STNU 𝑆 is delay controllable with

respect to 𝛾 if and only if 𝑆 is free of semi-reducible negative cycles. In the next

section, we conclude the proof of Theorem 4.5 by showing that we can check for the

presence of semi-reducible negative cycles in 𝑂(𝑛3) time.

4.6 Experimental Results

In this section, we present our experimental evaluation of delay controllability. We

start by comparing strong, dynamic, and delay controllability against one another,

focusing on the respective correctness of the algorithms. We show that dynamic

controllability often incorrectly marks certain situations as controllable due to its

failure to consider limitations in communication, and that strong controllability, while

correct, is often overly conservative.

We then consider the practicality of using delay controllability by examining the

runtime of our algorithm. We show that delay controllability runs fast enough to al-

low on-board evaluation in vehicles that have limited computational power. We also

compare the runtimes of delay controllability to dynamic and strong controllability.

The results show that delay controllability is an adequate replacement for dynamic

controllability in virtually all settings and that mixed strategies (involving check-

ing strong controllability first and then checking for delay controllability on failure)

may be worth pursuing, depending on the expected distribution of input temporal

networks.

109

4.6.1 Setup

Across our set of experiments, we evaluate the performance of delay controllability

across two different sets of STNUs. The first is a set of randomly derived STNUs

intended to be representative of a wide range of possible STNUs. The second is a set

of STNUs meant to model AUV deployments. This second set is highly structured

and scales naturally by altering the number of AUVs and the length of each AUV’s

mission.

In order to capture the difference in correctness across the different controllabil-

ity checks, we evaluate the outcomes of these checks on a set of randomly generated

STNUs. Our choice to use random STNUs was based on the desire to evaluate our

results across a broad range of possible STNU structures that were representative of

those that we might see in practice. Each random STNU has 10 disconnected con-

tingent constraints with lower-bound 0 and an integer upper-bound uniformly chosen

between 1 and 4. For the delay controllability checks, the observation delay was also

an integer uniformly chosen between 1 and 4. For each pair of contingent constraint

endpoints, we created a requirement constraint between the two with probability 1
40

.

Each requirement constraint has a lower-bound of 0 and an integer upper-bound uni-

formly chosen between 1 and 4. These parameters were experimentally tuned in order

to ensure that there was a good mix of controllable and uncontrollable problems. We

select these specific parameters because they represent a reasonable trade-off between

simplicity in degenerate cases and sufficient complexity to exhibit interesting behav-

iors.

To evaluate our algorithm’s runtime at scale, we modify the autonomous under-

water vehicle (AUV) example used in previous works to evaluate dynamic controlla-

bility algorithms [6]. These were also used in the thesis work presented by [61]. In

the AUV scenario, multiple vehicles navigate to a few different sites, parameterized

by an uncontrollable duration, and spend some time collecting data at each location,

an activity whose exact duration is specified by the AUV. To extend the example for

delay controllability, we opted to simulate a series of planned communication outages

110

throughout the course of AUV operation. We randomly assigned each contingent con-

straint an observation delay of either zero or infinity, representing periodic failures in

communication that may be due to issues like an AUV navigating to a communica-

tion dead zone, where it has to execute a pre-compiled script, instead of waiting for

instruction from a central operator.

For the purposes of our experiments, we uniformly randomly sampled the time

taken to navigate between sites from the integers between 0 and 10,000, and for the

time spent conducting science. For the time required to collect data, we set the lower-

bound to 0 and let the upper-bound be specified by the prior formula. If we let 𝑢 and

𝑙 represent the upper and lower-bounds of the previous navigation task and 𝑟 be a

random integer uniformly sampled between 0 and 10,000, then the upper-bound for

time spent conducting science is specified by max(𝑢−𝑙+𝑟− 10,000
𝑣·𝑎 , 0), where 𝑣 and 𝑎 are

the number of vehicles and number of activities per vehicle, respectively. Without the

𝑟− 10,000
𝑣·𝑎 term, the given durations allow a schedule to be precomputed, as the STNU

would be strongly controllable. By adding in the correction term, in expectation it is

infeasible to complete one of the scheduled activities if the corresponding navigation

task is unobserved; this ensures that our set of temporal networks has a reasonable mix

of controllable and uncontrollable networks. There is an additional global temporal

constraint enforcing that each AUV must finish its activities within 5000 · 𝑎 units of

time to simulate mission-wide deadlines.

4.6.2 Results

In the random STNU case, we constructed 1000 different STNUs, and determined

whether they were dynamically, delay, or strongly controllable. Strong controllability

acts as a more conservative version of delay controllability, labeling 21.4% of problem

instances unsolvable where a valid policy does in fact exist (Table 4.2). In contrast,

dynamic controllability ignores some of the constraints of the problem and in 43.1% of

problem instances claims a viable strategy exists when one cannot in fact be guaran-

teed (Table 4.3). Delay controllability represents a significant improvement above and

beyond existing controllability checks. Absent significant differences in the efficiency

111

of these algorithms, there is no reason to prefer using strong or dynamic controllabil-

ity to model communication delays in the resolution of temporally uncertain events.

The rest of our results serve to explore this line of argumentation in detail and show

that delay controllability checking performs well in practice (Figure 4-24).

Delay controllable Delay uncontrollable

Strongly controllable 162 0

Strongly uncontrollable 44 794

Table 4.2: Delay vs. strong controllability results.

Delay controllable Delay uncontrollable

Dynamically controllable 206 342

Dynamically uncontrollable 0 452

Table 4.3: Delay vs. dynamic controllability results.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 500 1000 1500 2000 2500 3000 3500

R
un

tim
e (

s)

of nodes in STNU

Delay Controllability Runtimes

Maximum

75th percentile

50th percentile

25th percentile

Figure 4-24: Runtime of delay controllability checkers on STNUs of different sizes.
Shown are the 25th, 50th, 75th percentile, and maximum runtimes for STNUs of each
size.

112

Figure 4-25: Runtimes of dynamic, delay, and strong controllability checkers on large
STNUs. The runtimes are split based on the controllability of the network. DelC
stands for delay controllability, DC stands for dynamic controllability, and SC stands
for strong controllability.

In turning to runtime analysis, we shift our focus to the AUV experiments. We

ran 50 trials with each of 10, 20, 30, and 40 different vehicles, as well as with 10, 20,

30, and 40 activities per vehicle for a total of 800 trials.

Our results indicate that our delay controllability checker is sufficiently fast for

use in practice, taking under 1.5 seconds on the biggest networks we experimented

with (see Figure 4-24). Most actual temporal network models have no more than a

few hundred nodes, meaning that for most purposes delay controllability checking can

be used as an efficient subroutine in more complex planning systems. For reference,

AUV experiments conducted jointly with MERS and WHOI in November 2019 off

the coast of Santorini involved no more than three vehicles operating simultaneously,

each with fewer than 30 activities. The AUV in use was compute-limited but was

able to run a fully capable delay controllability checker and dispatcher well within

113

the sub-second budget afforded to it.

However, in order to truly evaluate the empirical performance of our delay con-

trollability algorithm, it is important to compare the speed of delay controllability

checking to the speed of checking other forms of controllability.

To investigate, we examined the relative performance of our AUV examples at

our maximum problem size of 40 vehicles and 40 activities per vehicle, observing the

runtime of dynamic, delay, and strong controllability algorithms (Figure 4-25). In

order to get a sense of how performance is likely to differ across different examples,

we split our results based on whether the underlying STNU was strongly controllable,

not strongly controllable but still delay controllable, not delay controllable but still

dynamically controllable, or entirely uncontrollable. We do so in order to understand

the difference in performance of these algorithms at boundary conditions.

The resulting experiments demonstrated that, as expected, strong controllability

checking proceeds significantly faster than delay controllability checking, and that

there is a slight difference between dynamic and delay controllability checking, but

that difference is not statistically significant. In our problem instances, strong control-

lability checks complete significantly faster than other controllability checks, taking

under 0.1 seconds (see Figure 4-25), making it the fastest of all checks. When delay

controllability and dynamic controllability checks return the same answer, whether

indicating success or failure, delay controllability checking incurs a slight overhead,

though the difference is not statistically significant; when both say the problem is

controllable they take 1.3 seconds, whereas when they both see that the network is

uncontrollable, they take under 0.1 seconds. When the two results do differ, delay

controllability returns a result much more quickly, taking on average 0.5 seconds (see

Figure 4-25). This matches intuitions from prior work, which empirically demon-

strated that networks that are uncontrollable return faster from controllability check-

ing procedures than networks that are controllable [6]; in instances where delay and

dynamic controllability disagree, the given network would be dynamically but not

delay controllable. This is important for planning, not only because correctness must

be guaranteed in the presence of communication delays, but because most of the time

114

spent by planners is in refuting infeasible candidate plans.

4.6.3 Discussion

On their own, these results match existing expectations and mirror the difference

in asymptotic complexity across the algorithms. But from an empirical perspective,

they offer additional insight into how we may be able to combine the algorithms to

achieve better results in practice.

The differences in performance across different situations encourage us to take a

portfolio approach to solving controllability problems, where we first check strong

controllability and, in the event that the network is uncontrollable, we then check

delay controllability. Strong controllability checks are overly conservative but, espe-

cially on large networks, finish much faster than delay controllability checks. In the

event that an STNU is strongly controllable, checking strong controllability first saves

a significant amount of time, whereas in the event that the network is not strongly

controllable but is delay controllable, we only add a small overhead. (Note that the

exact amount of overhead depends largely on the temporal network’s size.).

Adopting this approach, however, depends heavily on the statistical distributions

associated with the underlying temporal networks. If networks tend to often be

strongly controllable, then checking strong controllability first has the potential to

incur dramatic savings. In contrast, if the input networks tend not to be strongly

controllable, regardless of whether they are delay controllable, the savings afforded by

strong controllability checks are likely irrelevant as most strong controllability checks

are immediately followed by a (comparatively) expensive delay controllability check.

4.7 Conclusion

In this chapter, we formally introduced delay controllability and showed how, with

appropriate choices of our delay function 𝛾, we can define dynamic and strong control-

lability in terms of delay controllability. We then provided an 𝑂(𝑛3) algorithm that

is capable of determining delay controllability, demonstrating a fundamental equiva-

115

lence between dynamic and strong controllability, and then continued by evaluating

the empirical attributes of delay controllability, showing that it provides a level of ex-

pressiveness beyond dynamic and strong controllability while still being fast enough

to use in practice.

In offering a set of algorithms for efficient evaluation of delay controllability, we

have now constructed a communication model that can be efficiently used by real-

time executives when evaluating the feasibility of multi-agent problems. This work

provides the backbone for the work in the remaining chapters by providing a medium

for discussing delayed communication in multi-agent execution and is used when con-

structing communication strategies and handling uncertain and noisy communication.

116

Chapter 5

Determining Communication

Strategies during Plan Execution

When executing multi-agent temporal plans, individual agents are uncertain about

the behavior of other agents and must communicate in order to resolve that ambiguity.

While these agents might have the ability to promptly deliver updates, there may be

reasons why delivering immediate updates is expensive. For example, an autonomous

underwater vehicle may have equipment on-board to immediately transfer information

to any other agent, but powering it up may use precious battery power, needed for

the rest of its mission. It may make sense to use a slower and less expensive means

of communicating about its actions or to omit relaying information about that action

altogether.

In Chapter 3, we defined the Communication Cost Minimization Problem (CCMP),

whose aim is to establish a set of communication windows that guarantee plan success,

while minimizing the associated cost of communication. To verify whether any par-

ticular set of communication windows is feasible, we can evaluate the windows in the

context of a temporal network using delay controllability (see Chapter 4). However,

two open questions remain. First is the question of how to effectively pick commu-

nication windows when there are costs associated with communicating at particular

times and how to bound the communication costs associated with a given plan. The

second related question is how to adjust the provided communication windows when

117

communication deviates from the expected plan during execution. It is important

to note that our approach is agnostic as to the particulars of the input delay-cost

function, as long as the delay-cost function is admissible (i.e. it is not more costly to

learn information later). This chapter focuses on how to derive solutions to CCMPs

and offers three main contributions.

First, we provide an algorithm for deriving delay controllability conflicts, which

will be used to guide our search for solutions to CCMPs. We augment existing delay

controllability detection algorithms to output a conflict whenever a temporal plan is

uncontrollable due to overly delayed communication. The returned conflict provides

a disjunction of inequality constraints with the requirement that at least one must

be satisfied in order to make the overall problem controllable. This is essential, as

these conflicts allow us to employ conflict-directed search techniques to find potential

solutions to CCMPs over an otherwise continuous and unbounded space [60]. Our

work on delay controllability conflict extraction matches the best-known performance

of dynamic controllability conflict extraction techniques [6].

Second, we explore three different variants of conflict-directed search for CCMPs,

one guaranteed to output the lowest-cost delay function that still renders the input

STNU delay controllable and two whose outputs may not be optimal. We analyze

guarantees and performance of each of them. We show that, for certain STNUs, the

sub-optimal algorithms can provide at best a polynomial approximation of the true

optimal cost, but that in practice they provide a reasonable approximation, while

performing faster in practice.

Third, we provide a series of algorithms for adjusting communication windows

online when communication deviates from expected execution. In situations where

planned communication is inherently unstable, causing communication to drop-out

and reconnect sporadically, agents should be able to adjust their planned communica-

tion when necessary to adapt to failure as well as when adjustment can opportunisti-

cally improve the outcome of a plan. Our approach in constructing these algorithms

involves maintaining an ever-approaching temporal horizon, after communications

are interrupted, that represents the latest point in time that communication can be

118

restored, in order for the remaining execution to satisfy all constraints. The online

scheduler is then able to optimistically keep execution alive until communication is

restored or the horizon is exceeded. Our temporal horizon maintenance makes heavy

use of the delay controllability conflict extraction techniques developed in service of

the offline CCMP solver to find the optimal horizon and maintains a store of those

conflicts to efficiently relax our temporal horizon when communication is restored.

5.1 Approach

In this chapter, we are interested in solving the problem of determining when agents

need to communicate about their problems. We use two different strategies to ap-

proach this problem, an offline one and an online one.

The offline problem constructs a set of deadlines for communication that guaran-

tee success and are optimal with respect to a cost associated with communication.

Formally, the offline problem can be solved directly, by generating valid solutions to

a CCMP. A CCMP takes as input an STNU 𝑆 and an admissible delay-cost function

𝐶, which assigns a real-value cost to each possible delay function 𝛾. A solution to

a CCMP is a delay function 𝛾, such that 𝑆 is delay controllable with respect to 𝛾;

an optimal solution is the delay function 𝛾 that has minimum cost 𝐶(𝛾) across all

solution to the CCMP.

We say that a delay function 𝛾 that is a solution for a CCMP represents a commu-

nication window for the original STNU. In other words, the delay function 𝛾 describes

for each contingent event 𝑥𝑒, the amount of time that an agent may wait before com-

municating the timing of that action. As such, we use communication window and

delay function interchangeably when describing algorithms for solving CCMPs.

Searching for an optimal-cost solution to a CCMP can be expensive, as the search

space is continuous and unbounded; the solution to a CCMP is a delay function

that outputs a real-valued delay for each contingent event. To handle this difficulty,

the algorithm should learn from infeasible solutions to guide our search towards an

optimal result. To do so, we rely on conflicts, which serve as certificates explaining

119

why our original network is uncontrollable.

We break our original problem into a master and sub-problem. The goal of the

master problem is to generate a candidate solution, in other words a delay function,

that resolves all known conflicts and admits a low cost under the input cost function.

The sub-problem evaluates the delay controllability of the input STNU with respect

to the master problem’s chosen delay function and outputs a conflict on failure.

This chapter presents the machinery for solving the master and sub-problem.

We start with the sub-problem present a conflict extraction subroutine that can be

used in conjunction with a delay controllability checking algorithm to extract conflicts

efficiently. We then present a series of different conflict-directed search algorithms that

are used in subroutines by the master problem in order to generate new candidates.

Together these two systems work in concert to solve the original CCMP.

This fundamental work on handling the offline approach is instrumental for solving

the online case. In the online version of the problem, agents may deviate from the

prescribed deadlines for communication. An effective online algorithm should be

able to reactively adapt to missed deadlines, but should also be opportunistic when

communication happens sooner than expected.

The online version of the problem can be trivially reduced to the offline prob-

lem by recomputing optimal strategy after all events and communications. However,

each re-computation involves inputs that are virtually identical. In this chapter, we

also discuss how to exploit these similarities in cases where communication disrup-

tion comes in the form of unexpected outages. In service of this problem, we present

a series of algorithms that are used to maintain temporal horizons in the presence

of unexpected changes in communication. In response to these changes, execution

is maintained for as long as possible and can optimistically recover when other ap-

proaches may have preemptively halted

120

5.2 Conflict Extraction

We start by introducing an algorithm that explains how to extract delay controllability

conflicts. This routine is crucial both for offline and online approaches to determining

when agents must communicate, but we will discuss this algorithm initially in the

context of solving the sub-problem of the offline method.

The problem of finding an offline solution to a CCMP is partially that of under-

standing which set of delay functions can be used to ensure that the input STNU

is delay controllable (the other part is finding a low-cost delay function). In order

to find this set of delay functions, we can use conflict-directed search (as part of the

master problem) to understand what properties of delay functions would make the

original STNU uncontrollable. As such, we need a way to extract conflict related to

delay controllability.

In the case of delay controllability, we know that the presence of a semi-reducible

cycle in our STNU represents a conflict, and from it, we can extract reasons why

a particular choice of delay function was uncontrollable. Correspondingly, it makes

sense to modify the algorithm used by our sub-problem for checking delay controlla-

bility, changing it into one that checks delay controllability and extracts a conflict if

the STNU is not delay controllable. Our conflict-extraction algorithm builds on top

of the original delay controllability algorithm [3] through the maintenance of some

additional state and is based on the original work of conflict extraction and resolution

by [21].

The original delay controllability algorithm (Algorithm 3) works by invoking a

variant of Dijkstra’s algorithm from each negative weight edge. The calls to Dijkstra’s

algorithm are responsible for finding the shortest semi-reducible paths from each node

to all others in the graph. The subroutine is recursively invoked any time another

negative edge is found, and when an infinite recursion is detected, we know that

we have found a cycle composed of at least one and possibly many semi-reducible

negative paths. More detail on the correctness of the original algorithm can be found

in Chapter 4.

121

Input: Labeled distance graph, 𝐺 = ⟨𝑉,𝐸⟩;
delay function 𝛾
Output: Whether the STNU derived from the distance graph is delay

controllable and if not, the edges embodying the conflict
Initialization:

1 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠← the set of all vertices with incoming negative edges;
2 𝑛𝑜𝑣𝑒𝑙← []; list of newly added edges;
3 𝑝𝑟𝑒𝑑𝑠← {}; mapping of function call to predecessors;

DelayControllable?:
4 for 𝑣 ∈ 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠 do
5 𝑐𝑦𝑐𝑙𝑒𝐹𝑟𝑒𝑒?, 𝑒𝑑𝑔𝑒𝑠←DelayConflictDijkstra(𝐺, 𝛾, 𝑣, 𝑝𝑟𝑒𝑑𝑠, 𝑛𝑜𝑣𝑒𝑙,

[𝑣], 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠);
6 if !𝑐𝑦𝑐𝑙𝑒𝐹𝑟𝑒𝑒? then
7 return 𝑓𝑎𝑙𝑠𝑒, ExtractConflicts(𝑒𝑑𝑔𝑒𝑠, 𝑛𝑜𝑣𝑒𝑙, 𝑝𝑟𝑒𝑑𝑠)
8 return 𝑡𝑟𝑢𝑒, ∅

Algorithm 3: Delay Controllability algorithm that reports conflicts

To efficiently extract delay controllability conflicts, we augment Algorithm 3 to

return the detected conflict. Lines 16-21 of Algorithm 2 are where we assemble

the edges that compose the semi-reducible negative cycle. Whenever a recursive

call to DelayConflictDijkstra returns false, we know that at some point in

the call stack, we discovered a semi-reducible negative cycle. However, the entire

chain of edges is not necessarily part of the cycle. We use the third return value of

DelayConflictDijkstra to specify one node that is known to be part of the cycle.

At line 20, we augment the list of edges that compose the negative cycle, and at line

21, we signal that we have fully specified a semi-reducible negative cycle because we

have returned to a node we have already visited.

A key property of this new algorithm is that it preserves the algorithm’s 𝑂(𝑛3) run-

time, as maintaining the additional data structures only incurs a constant overhead.

Each call to ExtractEdgePath adds at most 𝑛 edges to our list, and Extract-

EdgePath is called at most once per call to DelayConflictDijkstra. Because

DelayConflictDijkstra is called at most once per node, it adds an additional

overhead of 𝑂(𝑛2), which is dominated by the normal runtime of the algorithm.

Finally, the call to ExtractConflicts in line 7 of Algorithm 3 takes the list

of edges composing the cycle and replaces any newly added edges with the original

122

Input: Labeled distance graph 𝐺 = ⟨𝑉,𝐸⟩, delay function 𝛾, start node 𝑠, list of
predecessor edges 𝑝𝑟𝑒𝑑𝑠, list of new edges, 𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘, and 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠

Output: Whether the current walk is cycle-free, and the edges composing a
semi-reducible negative cycle

Initialization:
1 𝑄← 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒();
2 𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡← {𝑠 : ⟨0, ∅⟩}; 𝑢𝑛𝑙𝑎𝑏𝐷𝑖𝑠𝑡← {𝑠 : ⟨0, ∅⟩};
3 for 𝑒 ∈ 𝑠.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠() if 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 < 0 and !𝑒.𝑙𝑜𝑤𝑒𝑟𝐶𝑎𝑠𝑒() do
4 𝑄.𝑎𝑑𝑑(⟨𝑒.𝑓𝑟𝑜𝑚, 𝑒.𝑙𝑎𝑏𝑒𝑙⟩, 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡);
5 (𝑒.𝑙𝑎𝑏𝑒𝑙 == ∅ ? 𝑢𝑛𝑙𝑎𝑏𝐷𝑖𝑠𝑡 : 𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡)[𝑒.𝑓𝑟𝑜𝑚] ← ⟨𝑒.𝑤𝑒𝑖𝑔ℎ𝑡, 𝑒⟩

DelayConflictDijkstra:
6 if 𝑠 ∈ 𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘[1 : 𝑒𝑛𝑑] then
7 return 𝑓𝑎𝑙𝑠𝑒, ∅, 𝑠;
8 𝑝𝑟𝑒𝑑𝑠[𝑠]← ⟨𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡, 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡⟩;
9 while 𝑄.𝑠𝑖𝑧𝑒() > 0 do

10 𝑣, 𝑙𝑎𝑏𝑒𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡← 𝑄.𝑝𝑜𝑝();
11 if 𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 0 then
12 𝐺.𝑎𝑑𝑑(⟨𝑣, 𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡⟩);
13 𝑛𝑜𝑣𝑒𝑙.𝑎𝑑𝑑(⟨𝑣, 𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡⟩);
14 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒;
15 if 𝑣 ∈ 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠 then
16 𝑛𝑒𝑤𝑆𝑡𝑎𝑐𝑘 ← [𝑣].𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑎𝑙𝑙𝑆𝑡𝑎𝑐𝑘);
17 𝑟𝑒𝑠𝑢𝑙𝑡, 𝑒𝑑𝑔𝑒𝑠, 𝑒𝑛𝑑← DelayConflictDijkstra(𝐺, 𝛾, 𝑣, 𝑝𝑟𝑒𝑑𝑠,

𝑛𝑜𝑣𝑒𝑙, 𝑛𝑒𝑤𝑆𝑡𝑎𝑐𝑘, 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠);
18 if !𝑟𝑒𝑠𝑢𝑙𝑡 then
19 if 𝑒𝑛𝑑 ̸= ∅ then
20 𝑒𝑑𝑔𝑒𝑠.𝑎𝑑𝑑(ExtractEdgePath(𝑠, 𝑣, 𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡, 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡));
21 𝑒𝑛𝑑← (𝑒𝑛𝑑 == 𝑠) ? ∅ : 𝑒𝑛𝑑;
22 return 𝑓𝑎𝑙𝑠𝑒, 𝑒𝑑𝑔𝑒𝑠, 𝑒𝑛𝑑;
23 for 𝑒 ∈ 𝑣.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠() where 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ≥ 0 and (!𝑒.𝑖𝑠𝐿𝑜𝑤𝑒𝑟𝐶𝑎𝑠𝑒() or

𝑒.𝑙𝑎𝑏𝑒𝑙 ̸= 𝑙𝑎𝑏𝑒𝑙) do
24 𝑤 ← 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡+ 𝑤𝑒𝑖𝑔ℎ𝑡;
25 𝑙← (𝑙𝑎𝑏𝑒𝑙 ̸= ∅ and 𝑤 > −𝛾(𝑙𝑎𝑏𝑒𝑙) ? ∅ : 𝑙𝑎𝑏𝑒𝑙;
26 𝑑𝑖𝑠𝑡← 𝑙 ̸= ∅ ? 𝑙𝑎𝑏𝑒𝑙𝐷𝑖𝑠𝑡 : 𝑢𝑛𝑙𝑎𝑏𝐷𝑖𝑠𝑡;
27 if 𝑄.𝑎𝑑𝑑𝑂𝑟𝐷𝑒𝑐𝐾𝑒𝑦(⟨𝑒.𝑓𝑟𝑜𝑚, 𝑙⟩, 𝑤) then
28 𝑑𝑖𝑠𝑡[𝑒.𝑓𝑟𝑜𝑚]← ⟨𝑤, 𝑒⟩;
29 𝑙𝑜𝑤𝑒𝑟 ← (𝑒.𝑓𝑟𝑜𝑚).𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝐿𝑜𝑤𝑒𝑟𝐸𝑑𝑔𝑒();
30 if 𝑙𝑜𝑤𝑒𝑟 ̸= 𝑛𝑢𝑙𝑙 and 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 < 𝛾(𝑙𝑜𝑤𝑒𝑟.𝑙𝑎𝑏𝑒𝑙) and

𝑄.𝑎𝑑𝑑𝑂𝑟𝐷𝑒𝑐𝐾𝑒𝑦(⟨𝑙𝑜𝑤𝑒𝑟.𝑓𝑟𝑜𝑚, 𝑙⟩, 𝑤 + 𝑙𝑜𝑤𝑒𝑟.𝑤𝑒𝑖𝑔ℎ𝑡) then
31 𝑑𝑖𝑠𝑡[𝑙𝑜𝑤𝑒𝑟.𝑓𝑟𝑜𝑚]← ⟨𝑤 + 𝑙𝑜𝑤𝑒𝑟.𝑤𝑒𝑖𝑔ℎ𝑡, 𝑙𝑜𝑤𝑒𝑟⟩;
32 𝑛𝑒𝑔𝑁𝑜𝑑𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑠);
33 return 𝑡𝑟𝑢𝑒, ∅, ∅;

Algorithm 4: Function DelayConflictDijkstra

123

edges that were used to derive them. The resulting output is our conflict.

5.2.1 Resolving Conflicts

Now that we have a way of extracting conflicts when our STNU is uncontrollable, we

need a way to reason about and resolve them. In this context, resolving a conflict

involves specifying a set of constraints that must hold for our chosen delay function in

order for the input STNU to be delay controllable. Since delay controllability conflicts

manifest as semi-reducible negative cycles, resolving these conflicts means we need

to adjust our delay function in a way that prevents the semi-reducible negative cycle

from forming.

Given a semi-reducible negative cycle, there are two ways to eliminate it: make

the cycle non-negative or make it non-semi-reducible. Since our communication win-

dows and choice of 𝛾 have no impact on the length of edges in the STNU’s labeled

distance graph representation, modifying our communication windows will not affect

the weight of the cycle. Hence, we should instead focus our attention on how to

modify 𝛾 to eliminate the property of semi-reducibility.

To modify 𝛾 to eliminate the property of semi-reducibility, we need to ensure that

our modification prevents the application of some reduction rule that was used in

the creation of the original semi-reducible negative cycle. There are three reduction

rules that involve 𝛾: the label removal rule, the lower-case reduction rule, and the

cross-case reduction rule (see Table 4.1). We need only focus on the latter two in

order to resolve all conflicts.

Lemma 5.1. Adjusting 𝛾 to eliminate a label removal reduction is not sufficient to

eliminate a semi-reducible negative cycle.

Proof. With the reduction rules we provided, we know that all generated upper-case

edges which share a label end at the same node, which is the starting node of the

corresponding lower-case edge. If a label removal was needed to allow a lower-case

reduction by the corresponding lower-case edge, the lower-case edge and upper-case

edge whose label is being removed would form a cycle since the original labeled edges

124

share that endpoint. This gives us two possibilities.

In the first, the resulting cycle is non-negative. If this were the case, we could

excise the sub-cycle and still be left with a semi-reducible negative cycle. This means

that adjusting 𝛾 to try to eliminate the label removal reduction is strictly less useful

than adjusting it to eliminate other reductions.

In the second, the generated cycle is negative. Assume that the original contin-

gent edge is of the form 𝐴
[𝑢,𝑣]
==⇒ 𝐵 and that we can reduce the upper-case edge to

some form 𝐴
𝐵:𝑥−−→ 𝐶 where 𝑥 > −𝑢 in order to apply the label removal reduction.

Notice, however, that this situation is impossible. In order for the label removal to

be necessary to generate the semi-reducible negative cycle, every prefix of the path

between the lower-case edge and upper-case edge needs to have weight at least 𝛾(𝐵)

in order to preclude a lower-case reduction. This means that the total weight of the

cycle is at least 𝑢 + 𝛾(𝐵) + 𝑥. But because 𝑥 > −𝑢, we have that the total weight

of the cycle is greater than 0. Thus, we do not need to worry about adjusting 𝛾 to

preclude label removals.

Now, we explain how to change 𝛾 to resolve delay controllability conflicts and

how we have a guarantee that iterative resolutions will eventually lead us to a valid

solution.

Theorem 5.2. If an STNU is controllable when 𝛾 = 0 (dynamically controllable),

then if the STNU has a delay controllability conflict for any particular choice of 𝛾,

we can always adjust 𝛾 to eliminate a lower-case or cross-case reduction.

Proof. A semi-reducible negative cycle is one where we can apply edge reductions

to eliminate lower-case edges. In particular, the lower-case and cross-case reduction

rules are the rules directly responsible for eliminating those edges, and by Lemma

5.1, we know it is safe to ignore label removal reductions.

For every lower-case edge from our conflict’s semi-reducible negative cycle, we use

the following approach for invalidating the reduction and thus stopping the formation

of the semi-reducible negative cycle. From a lower-case edge with label 𝑏, we find the

125

shortest subpath of the cycle that immediately follows the lower-case edge such that

its total weight is less than 𝛾(𝐵). We know such a subpath exists because all lower-

case edges have non-negative weight and the total weight of the cycle is negative.

If the weight of the subpath is non-negative, we adjust our 𝛾(𝐵) to be equal to its

weight.

If we cannot adjust any value of 𝛾 because all of the successive subpaths are

negative, then we have a contradiction. This same semi-reducible negative cycle

would still be present when 𝛾 = 0, and the original STNU would not be dynamically

controllable.

5.3 Minimum-Cost Communication

With an efficient way to extract delay controllability conflicts and solve our sub-

problem, we can now focus on identifying low-cost and ultimately minimum-cost

values of 𝛾 which yield delay controllable networks in service of solving the master

problem. In this section, we present three solutions that are all based on a form of

conflict-directed search. The first two have no optimality guarantees but are fast in

practice, and the third is a conflict-directed best-first search that is guaranteed to

yield an optimal value of 𝛾.

5.3.1 Conflict-Directed Search

Our initial approach at finding a feasible set of communication windows (Algorithm 5)

uses conflicts to iteratively refine its choice of delay function 𝛾. Before we proceed with

a potentially costly search process, we first check at line 1 to see whether the original

STNU is dynamically controllable (or whether it is delay controllable with respect

to 𝛾 = 0). Since decreasing observation delays always preserves controllability, we

know that if the STNU is not dynamically controllable, we have no chance of finding

a suitable delay function and can safely avoid the search process.

Once we have a guarantee that there does exist some value of 𝛾 which makes

126

Input: Labeled distance graph, 𝐺 = ⟨𝑉,𝐸⟩ for STNU;
Output: A valid delay function 𝛾 or ∅ if one does not exist;
GreedyCommCost:

1 if !DelayControllable?(𝐺, 𝛾(_) = 0) then
2 return ∅;
3 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← 𝛾(_) =∞;
4 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡← DelayControllable?(𝐺, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
5 while !controllable do
6 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒.𝑝𝑖𝑐𝑘𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡);
7 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡← DelayControllable?(𝐺, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒);
8 return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒;
Algorithm 5: GreedyCommCost, an algorithm that performs different vari-
ants of greedy search to find a valid delay function 𝛾 for an input STNU that is
delay controllable.

the STNU delay controllable, we can begin our search for an optimal delay function.

Each conflict returned from the delay controllability check (lines 4, 7) represents a

disjunction of modifications we could make to our delay function to eliminate this

particular conflict.

A brief walkthrough of the operation of Algorithm 5 is shown in Figures 5-1 and 5-

2. The algorithm starts by checking that the input STNU (Figure 5-1a) is dynamically

controllable. Once satisfied that it is, it constructs a delay function where 𝛾(𝑥𝑐) =∞

for all 𝑥𝑐 and checks delay controllability.

After our first check, we see that the network is not delay controllable with respect

to 𝛾 and receive back a conflict (see edges in red in Figure 5-1b). The only way we

can resolve the conflict in this context is by changing the input delay function in a

way that eliminates the derived semi-reducible negative cycle. We know that two

lower-case reductions were applied to yield this cycle. The first involves 𝐴 𝑏:0−→ 𝐵 and

𝐵
0−→ 𝐶. The second involves 𝐶 𝑑:0−→ 𝐷 and 𝐷 1−→ 𝐸. The conflict can then be resolved

if either 𝛾(𝐵) ≤ 0 or 𝛾(𝐷) ≤ 1.

The specific choice of how the conflict is resolved depends on the resolution method

and the associated delay-cost function, but for the sake of the walkthrough, we can

assume that 𝛾 is modified by setting 𝛾(𝐷) = 1 (see Figure 5-2a). Checking for delay

controllability yields another conflict, and though the edges involved are the same

127

A A

B B

C C

D D

E E

[0, 3]

[0, 3]

[0, 1]

[-3, 0]
[0, 1]

𝝲(B) = ∞
𝝲(D) = ∞

03

1

0

d:0

D:-1

3

0

b:0

B:-3

(a) (b)

Figure 5-1: (a) Our initial input STNU. The initial delay controllability check is per-
formed assuming that the two contingent events, 𝐵 and 𝐷 are completely unobserved.
(b) The STNU is not delay controllable with respect to the given 𝛾 and the delay
controllability conflict is shown in red.

(see Figure 5-2b), the potential set of resolutions is not.

To resolve the conflict we must eliminate a lower-case or cross-case reduction used

to create the semi-reducible negative cycle. The first lower-case reduction again uses

edges 𝐴 𝑏:0−→ 𝐵 and 𝐵
0−→ 𝐶. The other reduction is this time a cross-case reduction

involving 𝐶 𝑑:0−→ 𝐷 and 𝐷 𝐵:−2−−−→ 𝐴, where 𝐷 𝐵:−2−−−→ 𝐴 is generated from edges 𝐷 1−→ 𝐸,

𝐸
0−→ 𝐵, and 𝐵

𝐵:−3−−−→ 𝐴. It is worth noting that adjusting 𝛾 cannot eliminate the

cross-case reduction since we cannot introduce a negative delay in observation. As a

result, the only remaining way to resolve the conflict is to set 𝛾(𝐵) = 0, and when

checking for delay controllability we find that the STNU is in fact delay controllable

with respect to the newly derived 𝛾.

In the walkthrough, we were intentionally vague about how we picked between

the two possible resolutions for our conflict. Here we introduce two such methods for

doing so. The first two approaches that we introduce and evaluate, blind search and

lowest-cost-resolution search (LCRS), employ different conflict resolution strategies

to find an approach that works and are represented by different implementations of

the 𝑝𝑖𝑐𝑘𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 function in line 6 of Algorithm 5. Instead of keeping track of all

possible branches, we choose a single disjunct to resolve and continue checking for

128

A A

B B

C C

D D

E E

[0, 3]

[0, 3]

[0, 1]

[-3, 0]
[0, 1]

𝝲(B) = ∞
𝝲(D) = 1

03

1

0

d:0

D:-1

3

0

b:0

B:-3

(a) (b)

Figure 5-2: (a) After one iteration, 𝛾 is updated to rectify the original conflict and
we set 𝛾(𝐷) = 1. (b) We generate the same set of edges (in red) for the conflict, but
the choices we have to resolve it are slightly different because of the input 𝛾.

delay controllability. Note that any potential solution must resolve at least one of the

disjuncts in every available conflict, but doing so is not sufficient to guarantee that the

solution yields a delay controllable STNU. If our choice was insufficient, subsequent

controllability checks would yield additional conflicts.

In the case of blind search, we non-deterministically commit to any of the possible

conflict resolutions, and in the case of LCRS, we commit to the conflict resolution

with lowest possible cost. In expectation, blind search is quicker to pick a conflict

resolution, but LCRS may find solutions that are overall lower in cost. While neither

approach is optimal, both approaches are guaranteed to eventually find a satisfying

delay function 𝛾 that yields a controllable STNU since they will eventually resolve all

conflicts.

5.3.2 Conflict-Directed Best-First Search

While blind search and LCRS are appealingly simple, that they are not guaranteed to

be optimal is cause for concern. In fact, we are unable to provide guarantees that our

search procedures are within a constant factor approximation of optimal. In extreme

instances, these search processes can yield results that are polynomially worse than

129

Requirement Link
Contingent Link

A

B

C0D0

C1

C2

Ck-1

Ck

D1

D2

Dk-1

[0, 3k]

[0, 3k]

[-3k, 0]
[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

[0, 1]

Figure 5-3: This 𝑘-adversarial STNU is dynamically controllable but is not delay
controllable if 𝛾 = ∞. Requiring that 𝛾(𝐵) = 0 is necessary and sufficient to make
the STNU delay controllable.

optimal.

Theorem 5.3. Blind search and LCRS are not guaranteed to yield results within a

constant factor of optimal.

Proof. Consider the STNU presented in Figure 5-3, which we call a 𝑘-adversarial

STNU, and imagine that we want to find a minimum-cost delay function 𝛾 making it

controllable. For simplicity, assume that our cost function is 𝐶(𝛾) =
∑︀
𝑥𝑐

1
1+𝛾(𝑥𝑐)

. When

called on this STNU, DelayControllable? identifies a semi-reducible negative

cycle that includes 𝐴 =⇒ 𝐵 and 𝐶𝑖 =⇒ 𝐷𝑖 for all 0 ≤ 𝑖 < 𝑘. The corresponding

resolution to that conflict requires that either 𝛾(𝐵) = 0 or for some 0 ≤ 𝑖 < 𝑘,

𝛾(𝐷𝑖) = 1.

With a blind approach, we pick random disjuncts to satisfy until the STNU is

130

controllable. However, each choice to relax 𝛾(𝐷𝑖) makes no overall progress towards

the controllability of the STNU. Only when 𝛾(𝐵) = 0 does the STNU become control-

lable. In expectation, 𝑘
2

relaxations happen before blind search relaxes 𝛾(𝐵). Since

each relaxation of 𝛾(𝐷𝑖) to 1 incurs a cost of 1
2

and relaxing 𝛾(𝐵) to 0 incurs a cost

of 1, in expectation blind search incurs a cost of 1 + 𝑘
4
.

With LCRS, the results are even worse. LCRS always elects to resolve the conflict

by letting some 𝛾(𝐷𝑖) = 1 since this incurs a cost of 1
2

whereas letting 𝛾(𝐵) = 0 incurs

a cost of 1. As such, the greedy approach updates 𝛾(𝐷𝑖) for all 𝑘 such contingent

constraints before updating 𝛾(𝐵). On this STNU, the greedy approach incurs a cost

of 1 + 𝑘
2
, whereas the optimal approach has a cost of just 1. These results motivate

our interest in developing an optimal algorithm.

Input: Labeled distance graph, 𝐺 = ⟨𝑉,𝐸⟩ for STNU, and a cost function 𝐶;
Output: A delay function 𝛾 that is of minimal cost or ∅ if one does not exist;
Initialization:

1 𝑞𝑢𝑒𝑢𝑒← [] // queue of candidate 𝛾 functions;
MinCommCost:

2 if !DelayControllable?(𝐺, 𝛾(_) = 0) then
3 return ∅;
4 𝑞𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑(𝛾(_) =∞);
5 𝛾 ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝();
6 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡← DelayControllable?(𝐺, 𝛾);
7 while !controllable do
8 𝑞𝑢𝑒𝑢𝑒.𝑎𝑑𝑑(𝛾.𝑎𝑙𝑙𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡));
9 𝑞𝑢𝑒𝑢𝑒.𝑠𝑜𝑟𝑡𝐵𝑦(𝐶);

10 𝛾 ← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝();
11 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡← DelayControllable?(𝐺, 𝛾);
12 return 𝛾;
Algorithm 6: Algorithm that computes the minimum-cost delay function for a
given STNU.

Our optimal algorithm for finding a minimal communication cost (Algorithm 6) is

a form of conflict-directed best-first search (CDBFS) and works as follows [60]. Like

with the greedy algorithm, we immediately check if the STNU is controllable with

respect to 𝛾 = 0 or whether it is dynamically controllable (lines 2-3).

131

Once we know that a solution can be found, we now have to find the lowest-cost

solution. Since we know that our cost function 𝐶 is component-wise monotonically

decreasing, we start with the lowest cost communication pattern possible, 𝛾 = ∞,

and add it to our queue.

Every time we use a delay function that makes the given STNU uncontrollable

and results in a conflict, we use that conflict to generate a set of delay functions to

try later. For the value of 𝛾 we last checked, we derive modifications that each satisfy

one of the provided disjuncts. We always choose the lowest cost value that satisfies

the disjunct, which occurs when the delay for a contingent event is exactly equal to

the conflict’s upper-bound. By Theorem 5.2, we know that we will eventually reach

a solution and because we are using best-first search, we know it will be optimal.

5.4 Handling Communication Outages

The algorithms that we have introduced to this point have been focused on solving

offline CCMPs. In this section, we describe one particular uncertainty model for

online CCMPs that is common in practice and show how we can adaptively react

to that uncertainty to preserve our ongoing plan for as long as possible where other

approaches might prematurely abort.

5.4.1 Execution Model

As inspiration for our model, we consider the deployment of multiple autonomous

underwater vehicles (AUVs) and a typical plan that might be generated for a candi-

date scientific mission [53, 1]. In a typical mission, a series of AUVs work in concert

with a primary crew responsible for picking up and dropping off the AUVs at specific

locations and times. Each AUV is responsible for independently navigating to and

surveying scientific locations, and across all actions there is some degree of temporal

uncertainty.

In an idealized model, the primary crew can constantly monitor the progress of

the AUVs with the use of a low-bandwidth acoustic modem. In reality though, the

132

acoustic modem may at times be unreliable, and it may not be possible to constantly

communicate with an AUV. At certain moments during execution, the AUV may

surface to better localize its position and at these times we can guaranteeably com-

municate with the vehicle.

This unreliable medium of communication will form the basis of our main model.

We assume that each AUV has some degree of temporal flexibility with which it can

perform its actions and that while those choices are made autonomously, they are

in general immediately visible to the primary crew responsible for coordination and

eventual pickup. In instances where communication becomes unreliable, our goal is to

robustly monitor execution, only discarding the plan when the growing uncertainty

makes it impossible to continue with the current plan and accounting for the fact

that we may eventually receive the information we need. Crucially, we assume that

communication for individual AUVs are independent, meaning that if we learn about

one event that we had previously missed, we have no guarantee that we learn about

other events, and if we fail to learn about an event, it does not negatively affect other

events.

5.4.2 Monitoring Execution

A robust execution monitoring system that functions under unreliable communication

needs to be able to make decisions based on the information currently available and to

maintain a temporal plan horizon which dictates how long the current plan is feasible.

In this chapter, we will focus primarily on the problem of maintaining a temporal plan

horizon, as many solutions exist for dispatching plans under temporal uncertainty

[23, 35]. By augmenting an existing plan executive with our set of data structures,

namely a list of delay controllability conflicts, a list of missed events mapping events

to the earliest times at which they might have actually occurred, a delay function 𝛾,

and a single real-valued variable ℎ representing the temporal plan horizon, it becomes

possible to make that executive robust to interruptions in communication.

At the beginning of execution, our data structures are initialized with an empty

conflict list, an empty list of missed event times, some initial delay function 𝛾, which

133

we use to represent the expected set of delays in communication assuming no inter-

ruptions, and a temporal horizon set to ℎ = ∞, which represents the time by which

communication must be restored in order for execution to have a chance of success-

fully completing. As plan execution progresses, we update these data structures to

account for changes made to ongoing communication. In particular, the two types

of events that can affect a temporal plan’s horizon are communications going down,

causing us to miss potential events, and communications being restored, causing us

to learn about events that we had previously missed.

To handle these two cases, we introduce two callbacks that when added to an

execution monitoring system are able to appropriately handle changes to the under-

lying communication state. The first, MissedEventCallback (Algorithm 7), is

triggered when communications are down and we detect that it is possible that we

missed some event. Whenever communication goes down and an event is missed, we

update our delay function 𝛾 to indicate that the event is unobservable (line 2) and

derive a new operating delay function (line 3) which represents a delay function under

the belief that communication will be restored by the horizon ℎ. The remaining work

is to update our temporal horizon now that another event has been missed.

To do so, MissedEventCallback uses delay controllability conflicts to deter-

mine the maximum delay from the event that was just missed that can be tolerated

while still guaranteeing that the system as a whole is controllable. Each delay con-

trollability conflict is a disjunction of linear inequalities of the form 𝛾(𝑥𝑐) ≤ 𝑑𝑐 with

the guarantee that at least one of the inequalities must be satisfied in order for the

overall network to be controllable. We use the conflict-extracting version of the delay

controllability algorithm (Algorithm 3) to efficiently find these conflicts to guide our

search for a satisfying 𝛾.

The primary control loop of MissedEventCallback involves checking if the

STNU is controllable with respect to some updated delay function, 𝛾′ (lines 4-9). If

the STNU is deemed to be uncontrollable, RequiredHorizonForConflict (Al-

gorithm 9) uses the returned conflict to derive a new horizon from which we can

construct a delay function which satisfies the conflict.

134

Despite the fact that a conflict has many possible disjuncts that can be satis-

fied and therefore many possible delay functions that would satisfy the conflict, Re-

quiredHorizonForConflict can satisfy all conditions with a single new temporal

plan horizon. By maximizing the possible temporal plan horizon, we are preferentially

choosing to solve the conflict in a way that both resolves the conflict and maximizes

overall flexibility.

RequiredHorizonForConflict works by returning the latest possible horizon

that satisfies the conflict or by returning ∅ which signals that the conflict is already

solved by the input delay function 𝛾. The algorithm starts by iterating over every

inequality in the conflict of the form 𝛾(𝑥𝑐) ≤ 𝑑𝑐 (Algorithm 9, line 2). If we find that

our original 𝛾 already satisfies the conflict, we can return ∅ immediately (Algorithm

9, lines 3-4). If not, we know we can satisfy the conflict by updating our delay

function to have 𝛾′(𝑥𝑐) = 𝑑𝑐. Doing so puts our time horizon at 𝑡𝑚(𝑥𝑐) + 𝑑𝑒, where

𝑡𝑚(𝑥𝑐) represents the earliest time that we believe event 𝑥𝑐 might have occurred in

accordance with the observed communication failure. As a result, across all events

𝑥𝑐 contained in the conflict, we want to resolve the conflict by picking the 𝑥𝑐 that

maximizes 𝑡𝑚(𝑥𝑐) + 𝑑𝑒 (Algorithm 9, lines 6-8). Note that the state required to

calculate 𝑡𝑚 is updated using the 𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠 data structure (Algorithm 7,

line 1; Algorithm 8, line 1).

As we continue to check for controllability in MissedEventCallback and get

updated horizons from RequiredHorizonForConflict, we eventually converge

to a delay function that is controllable. If there is no further change to existing com-

munication channels, then so long as communication is restored by the time specified

by the temporal plan horizon, execution is guaranteed to succeed. If communication

is not restored by the temporal plan horizon, then some constraints will necessarily be

violated. However, because it is possible for communication to be restored, we need

to consider how to take that new information into account to appropriately adjust

our temporal plan horizon.

The second callback needed to maintain an accurate temporal plan horizon, Ob-

servedEventCallback (Algorithm 8), is called after communication is restored

135

Input: Missed event 𝑒; current time 𝑡; STNU 𝑆; current delay function 𝛾;
𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠; current horizon ℎ; 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐿𝑖𝑠𝑡

Output: A modified delay function 𝛾 and horizon ℎ representing the time at
which successful execution can no longer be guaranteed

Initialization:
1 𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠[𝑒]← 𝑡;
2 𝛾[𝑒]←∞;
3 𝛾′ ← DelaysGivenHorizon(𝛾, ℎ,𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠);

MissedEventCallback:
4 𝑐𝑜𝑛𝑡𝑟?, 𝑐𝑜𝑛𝑓𝑙 ← DelayControllable(𝑆, 𝛾′);
5 while not 𝑐𝑜𝑛𝑡𝑟? do
6 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐿𝑖𝑠𝑡.𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑜𝑛𝑓𝑙);
7 ℎ← RequiredHorizonForConflict(𝑐𝑜𝑛𝑓𝑙,𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠, 𝛾′);
8 𝛾′ ← DelaysGivenHorizon(𝛾, ℎ,𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠);
9 𝑐𝑜𝑛𝑡𝑟?, 𝑐𝑜𝑛𝑓𝑙 ← DelayControllable(𝑆, 𝛾′);

10 return 𝛾, ℎ;
Algorithm 7: Callback when an expected communication event is missed.

and we learn the true times that certain events occurred. The strategy of Ob-

servedEventCallback closely resembles that of MissedEventCallback; after

recording the newly observed event, the algorithm makes the optimistic assumption

that we can guarantee controllability without observing any of the events that were

lost due to communication outages. It then uses RequiredHorizonForConflict

to tighten the temporal plan horizon.

Unlike in the approach of MissedEventCallback, we can avoid the expensive

calls to DelayControllability by reusing the conflicts that were derived from

previous callback invocations (see Algorithm 7, line 1). Under our model, learning

about an event after communication is restored is equivalent to reducing the delay in

its observation, and reducing delay in observation never introduces new conflicts.

We iterate through all conflicts, checking if the conflicts are resolved by the new

information (Algorithm 8, lines 5-6), and for those that do not, we take the minimum

required horizon across all conflicts as our final horizon (lines 7-8). By picking the

minimum horizon across all conflicts, we guarantee that our choice of horizon

Together, these two callbacks allow us to actively maintain our temporal plan

horizon, allowing us to maximize the time before re-planning becomes necessary.

136

Input: Missed event 𝑒; current time 𝜏 ; event time 𝑡𝑒; STNU 𝑆; current delay
function 𝛾; current horizon ℎ; 𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠; 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐿𝑖𝑠𝑡

Output: A modified delay function 𝛾 and horizon ℎ representing the time at
which successful execution can no longer be guaranteed

Initialization:
1 𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑒);
2 𝛾[𝑒]← 𝜏 − 𝑡𝑒;

ObservedEventCallback:
3 for 𝑐𝑜𝑛𝑓𝑙 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐿𝑖𝑠𝑡 do
4 ℎ′ ← RequiredHorizonForConflict(𝑐𝑜𝑛𝑓𝑙,𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠, 𝛾);
5 if ℎ′ == ∅ then
6 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝐿𝑖𝑠𝑡.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐𝑜𝑛𝑓𝑙);
7 else if ℎ′ < ℎ then
8 ℎ← ℎ′;
9 return 𝛾, ℎ;
Algorithm 8: Callback when communication is restored and we learn about a
past event.

Input: conflict 𝑐; existing delay function 𝛾; 𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠
Output: A new horizon representing the time at which communication must be

restored in order for the conflict to be resolved
Initialization:

1 ℎ← ∅;
RequiredHorizonForConflict:

2 for (𝑒𝑣𝑒𝑛𝑡, 𝑑𝑒) ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 do
3 if 𝛾[𝑒𝑣𝑒𝑛𝑡] ≤ 𝑑𝑒 then
4 return ∅;
5 if ∃𝑡𝑚 : (𝑒𝑣𝑒𝑛𝑡, 𝑡𝑚) ∈ 𝑚𝑖𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑇 𝑖𝑚𝑒𝑠 then
6 𝑛𝑒𝑤𝐻𝑜𝑟𝑖𝑧𝑜𝑛← 𝑡𝑚 + 𝑑𝑒;
7 if ℎ == ∅ or ℎ < 𝑛𝑒𝑤𝐻𝑜𝑟𝑖𝑧𝑜𝑛 then
8 ℎ← 𝑛𝑒𝑤𝐻𝑜𝑟𝑖𝑧𝑜𝑛;
9 return ℎ;

Algorithm 9: Derive a new horizon given a delay controllability conflict.

5.5 Experimental Results

In this section, we provide empirical evaluations of our algorithms for solving CCMPs,

showing the empirical efficacy of our suboptimal search algorithms for pre-computing

communication strategies. In particular, we are interested in evaluating the relative

speed and performance of the different approaches for solving the master problem

and to determine which of the three approaches are best-suited for use in practice.

137

Qualitatively, the search algorithms we have presented so far have very different

properties. Blind search and LCRS have much lower overhead but have no guarantees

of optimality. In contrast, CDBFS is guaranteed to output a delay function that is

optimal with respect to the inputted cost function but can be much slower. In this

section, we present our empirical analysis as a way to better characterize exactly how

different these approaches are and when it might be preferable to use one over the

other. Across all examples, we see that LCRS and blind search tend to run much

faster than CDBFS, and in more typical instances, we see that the solutions returned

by LCRS are near optimal.

5.5.1 Experiment Setup

Our experimental analysis will compare the performance of our three different search

algorithms, both in terms of speed and in terms of the quality of the solutions they

return

We start by examining the performance of our algorithms on 𝑘-adversarial STNUs.

We performed 50 trials each with parameters 𝑘 = 10, 20, 30, 40, 50, and for all ex-

periments, we assumed a cost function of 𝐶(𝛾) =
∑︀
𝑥𝑐

1
1+𝛾(𝑥𝑐)

as is typical in the 𝑘-

adversarial STNU setup. This analysis allows us to examine behavior in the most

difficult scenarios. While we expect the quality of the suboptimal algorithms, blind

search and LCRS, to match the theoretical results which indicate that they perform

polynomially worse than CDBFS, we also care to understand what the runtime trade-

offs across all three algorithms look like.

𝑘-adversarial STNUs present a significant challenge to all of our algorithms, but

most STNUs in practice do not look like our 𝑘-adversarial ones. In order to validate

whether the trends observed over 𝑘-adversarial STNUs hold more generally, we want

to run our experiments for randomly generated STNUs as well.

Our random STNUs are composed of 𝑘 independent contingent constraints which

each have a lower-bound of 0 and an integer upper-bound uniformly chosen between

1 and 4. For each pair of endpoints between distinct contingent constraints, we add

a requirement constraint between the two with probability 1
4𝑘

. Since there are a total

138

of 4𝑘(𝑘 − 1) constraints that could be drawn between them, this gives us STNUs

that have in expectation 𝑘 − 1 requirement constraints between the 𝑘 contingent

constraints. Each requirement constraint has a lower-bound of 0 and an integer

upper-bound chosen uniformly between 1 and 4. For our analysis, we ensure that our

50 trials are selected from the set of random STNUs that are dynamically controllable

but not strongly controllable. In instances where the STNU is either not dynamically

controllable or is already strongly controllable, the algorithms either reject or accept

immediately, respectively, making comparisons across the algorithms uninteresting.

5.5.2 Results

We start by considering the results of our algorithms when run on 𝑘-adversarial

STNUs. As expected, wee see that LCRS always outputs a solution with cost 1 + 𝑘
2
,

blind search outputs a cost that converged in expectation to 1 + 𝑘
4
, and CDBFS

always outputs a unit cost solution. Thus, from an optimality perspective, we know

that for 𝑘-adversarial STNUs, blind search and LCRS perform polynomially worse

than CDBFS.

Runtime for Adversarial STNUs

Problem Size

R
un

tim
e

(m
ill

is
ec

on
ds

)

Figure 5-4: The runtimes of the solutions outputted by the search algorithms when
run on 𝑘-adversarial STNUs.

However as we scale up the problem size, we see that the difference in runtime

performance between the suboptimal approaches and CDBFS starts to grow (Figure

5-4). For each of the different problem sizes, we find that CDBFS has a significantly

slower runtime than the suboptimal searches (𝑝 << 0.01) with no significant difference

139

between blind search and LCRS.

While there is a clear trade-off between the approaches, the data we have presented

so far is for one specific type of graph. In order to validate that these trends hold

more generally, we also ran the same experiments for randomly generated STNUs.

Figure 5-5: The runtimes of the solutions outputted by the search algorithms when
run on random graphs.

Figure 5-6: The quality of the solutions outputted by the search algorithms when run
on random graphs. Quality is given by the optimal cost divided by the cost of the
returned solution with a score of 1.0 representing the optimal solution.

Our experiments on random STNUs demonstrate that the differences we saw in

runtime between the optimal and suboptimal approaches persist (Figure 5-5). At

problem sizes of 𝑘 = 30, 40, 50, CDBFS is slower than both suboptimal searches

(𝑝 < 0.05). But in the random case, we also start to see a difference between blind

search and LCRS. At 𝑘 = 30, 40, 50, LCRS is significantly faster than blind search

(𝑝 << 0.01).

140

When we turn our attention to cost, however, we see that on random graphs, we

see a strong improvement in our results (Figure 5-6), as compared to the performance

of our algorithms on the 𝑘-adversarial problems. Across all problem sizes, we see

that on average blind search is within 35% of optimal, and even more remarkably, on

average LCRS is within 1.5% of optimal on average. Given the massive difference in

speed and the close approximation of optimal results, this provides strong support

for the use of LCRS in low-cost communication window generation.

5.6 Conclusion

In this chapter, we introduced a series of techniques for generating solutions for

CCMPs in both the offline and online instances. To produce communication windows

that guaranteed successful execution, we provided an efficient means of extracting

delay controllability conflicts and used those conflicts as a means of guiding our

search through a continuous state space. The three algorithms we presented for the

master problem in solving offline CCMPs, blind search, LCRS, and CDBFS, all have

very different properties with the first two being significantly faster with the last one

guaranteeing optimality. While we provide theoretical results demonstrating that

the suboptimal searches can behave polynomially worse than CDBFS, in practice we

expect that LCRS provides highly competitive results with significant improvements

in speed.

141

142

Chapter 6

Chance-Constrained Variable Delays

In Chapter 3, we introduced formalisms for modeling uncertain delays in the observa-

tions of events through variable-delay controllability and chance-constrained variable-

delay controllability. These models build heavily on delay controllability checking in

STNUs (Chapter 4), and for each contingent event, we provide either a bounded in-

terval or probability distribution representing the amount of time that may pass after

an event occurs before an agent learns that it occurs. In this chapter, we provide a

series of algorithms that solve these problems while offering three main contributions.

First, we provide an efficient algorithm for checking variable-delay controllability

of STNUs. We approach the problem by creating a parallel STNU that is delay

controllable with respect to a static delay function if and only if our original network

is controllable. If we let 𝑛 be the number of events in our schedule and 𝑚 be the

number of constraints, we can apply this transformation in 𝑂(𝑚+𝑛) time, and since

controllability checking under fixed observation can be performed in 𝑂(𝑛3) time [3],

we can similarly check variable-delay controllability in 𝑂(𝑛3) time. Along with a

controllability check, we also show how to derive an execution strategy for the online

scheduling of controllable networks with uncertain observations. The same approach

used to assess the controllability of the network yields a new, less expressive network

that is controllable with respect to some fixed-delay observations. We show how only

a few modifications are needed to reduce the variable-delay execution problem to that

of finding an execution strategy on the less expressive network.

143

Second, we augment variable-delay controllability by adding risk bounds and by

considering chance-constrained variable-delay controllability of temporal problems.

Variable-delay controllability makes use of set-bounded notions of uncertainty and

discards important distributional data that can help make quantitative probabilistic

claims about the chance of success during execution. We show how to efficiently

reason over variable distributions in the uncertain observation of events and provide

algorithms for constructing such strategies.

Finally, we provide an empirical characterization of the quality of variable-delay

controllability as contrasted against controllability checks that approximate the model

using fixed delays. We show that even for the best approximations, the false positive

rate is low but not zero, indicating that it is most appropriate to check variable-

delay controllability directly. We supplement this work with an evaluation of chance-

constrained variable controllability

The ability to model, validate, and execute temporal networks under observational

uncertainty represents a unique and significant improvement over the state of the art.

With previous temporal controllability formalisms, inference only flowed forward with

time. Observations that happened in the future had no impact on our beliefs about

past events. In contrast, our approach provides a rigorous means of incorporating

future observations in our updated beliefs about past events.

6.1 Determining Controllability

We first start by considering the set-bounded variable-delay controllability problem.

Our strategy for determining whether a given STNU 𝑆 is variable-delay controllable

with respect to a set-bounded 𝛾 is to instead construct a related STNU 𝑆 ′ that is

delay controllable with respect to a derived delay function 𝛾′.

It is important to note that we do not expect 𝑆 ′ and 𝛾′ to be expressive enough

to model our original problem. Because our focus is on checking the controllability

of our problem, it suffices for us to focus on the worst-case areas of our problem,

or the situations that are hardest to schedule, and we construct 𝑆 ′ and 𝛾′ with that

144

end in mind. We prove that if it is possible to construct a policy that handles the

worst-case areas, that same policy can be applied to other areas of the original STNU,

not captured by 𝑆 ′ and 𝛾′.

To construct 𝑆 ′ and 𝛾′, we start by copying the original graph 𝑆. We then make

a series of iterative modifications to our new outputs so that they capture the con-

trollability of our original input. We start by updating our definition of 𝛾′ based on

observed values of 𝛾.

Lemma 6.1. For any contingent event 𝑒 ∈ 𝑋𝑒 in 𝑆, if 𝛾−(𝑒) = 𝛾+(𝑒), we can express

the same behavior in 𝑆 ′ using 𝛾′(𝑒) = 𝛾+(𝑒).

Proof. If 𝛾−(𝑒) = 𝛾+(𝑒), then 𝛾 already emulates a fixed-delay for event 𝑒. Assigning

𝛾′(𝑒) = 𝛾+(𝑒) makes no change to the proposed controllability, since the modified 𝑆 ′

and 𝛾′ cover the same scenarios as 𝑆 and 𝛾.

Lemma 6.2. If 𝛾+(𝑒) = ∞ for some particular 𝑒 ∈ 𝑋𝑒, we can express the same

behavior in 𝑆 ′ using 𝛾′(𝑒) =∞

Proof. If 𝛾+(𝑒) = ∞, then in some scenarios, 𝑒 is unobservable in 𝑆. It does not

matter that in some instances we may learn about 𝑒 after some delay; controllability

checking is about verifying that a valid execution strategy exists in all scenarios. Thus,

if we can verify that 𝑆 ′ is controllable when 𝑒 is unobservable (when 𝛾′(𝑒) = ∞),

then we know that 𝑆 is controllable whenever 𝑒 is observed after 𝑡 ∈ 𝛾(𝑒), since

a valid execution strategy could always choose to ignore the observation. If 𝑆 ′ is

uncontrollable when 𝛾′(𝑒) = ∞, then we also similarly know that we would not be

able to find a valid execution strategy if 𝑒 ended up unobservable in 𝑆.

After repeated applications of Lemmas 6.1 and 6.2, we are left with a series of

contingent events whose variable-delay function values represent finite ranges. Since

the delay in observation is an uncertain and uncontrollable duration, a naive attempt

at transforming the model would be to model observation itself as a contingent con-

straint (Figures 6-1a, 6-1b). This structure better equips us to reason about the

controllability and execution of our original problem, but it is important to realize

145

𝝲(e) ∈ [𝝲-, 𝝲+]

Z Y Z

E E

X X

𝝲(e) = ∞

𝝲(y) = 0

[𝝲-, 𝝲+] [u, v]

[a, b][a, b]

[u, v]

Requirement Link
Contingent Link

(a) (b) (c)

[u - max(𝝲-, XY - b),
 v - min(𝝲+, XY - a)]

Z

Y

X

[a + 𝝲-, b + 𝝲+]

𝝲(y) = 0

Z

Y

X

[a + 𝝲+, b + 𝝲-]

(d)

𝝲(y) = 0

[u - 𝝲-, v - 𝝲+]

Figure 6-1: (a) A contingent constraint followed by a requirement constraint in our
original STNU. (b) An equivalent (improper) STNU, which has a fixed-delay function
instead of a variable-delay one. 𝐸 becomes unobservable, and instead we immediately
observe an explicit event 𝑌 after some uncertain delay. (c) An STNU that encodes
a sufficient set of semantics to guarantee successful execution at runtime. 𝑋𝑌 refers
to the true observed duration of the contingent constraint from 𝑋 to 𝑌 . (d) A
valid equivalent STNU, which has a fixed-delay function instead of a variable-delay
one. The range of the contingent constraint shrinks, but the range of all attached
requirement constraints must also shrink by a corresponding amount.

that this structure is not a valid STNU in the strict sense. In an STNU, all contingent

constraints are required to start at an executable event, whereas this transformation

lets a contingent constraint start at a contingent event. Nonetheless, while normal

STNU algorithms may fail on this structure, we can still leverage it to better under-

stand how to reason about variable-delay execution.

Under this new transformation, the next question we consider is how much infor-

mation the observation of 𝛾 gives us in the worst case. Let [𝑎, 𝑏] be the bounds of

the contingent constraint 𝑋 =⇒ 𝐸. There are two ways to handle these contingent

constraints based on how the uncertainty of the observation compares to the uncer-

tainty of the original constraint. This depends on how the width of the bounds of

the contingent constraint compares to the width of the bounds of possible delays in

observation.

First we consider the case where the width of the bounds of possible delays in

146

𝝲(B)

B

15 30

5

15
Observing B @ t = 33

Figure 6-2: Here we consider a hypothetical execution of an STNU where contingent
event 𝐵 has 𝛾(𝐵) ∈ [15, 30], whereas the contingent constraint ending at 𝐵 takes
time in the range [5, 15]. There are some particular observations for which there is
too much ambiguity to glean any information about the value of 𝐵.

observation is greater than the width of the bounds of the contingent constraint. We

present a simple illustrative example in Figure 6-2.

In Figure 6-2, we consider a situation where the contingent link ending at 𝐵 has

duration in the range [5, 15] while the delay in observation is in the range [15, 30]. If

the event is observed at 𝑡 = 33, then it is possible that 𝐵 happened at the beginning

of the range and the delay in observation was 28 minutes. But it could also be the case

that the event occurred at at the latest possible time, but the delay in observation

was 18 minutes. As a result, there are some observations that give information above

the a priori knowledge of contingent link bounds. Since controllability is about

guaranteeing success in all cases, if we can generate a dynamic schedule when there

is no information, our strategy for doing so suffices, even if we can learn additional

information. Thus, it suffices to solve for the controllability of a corresponding STNU

where there is an infinite delay in observation for this particular event. We show how

to prove and formalize this relationship in the following lemma.

147

Lemma 6.3. If 𝑏− 𝑎 ≤ 𝛾+(𝑒)− 𝛾−(𝑒), we can express the same behavior in 𝑆 ′ using

𝛾′(𝑒) =∞.

Proof. In this situation, there is at least as much uncertainty in the observation of

the event as there is in the occurrence of the event, meaning we have no guarantee

of receiving any meaningful information after observing that the event happened.

Consider the worst-case scenario where we learn that 𝑒 happened 𝑎+ 𝛾+(𝑒) after the

starting executable event. It is clear that the original contingent constraint could have

taken on a value of 𝑎 given this information, but because 𝑎+𝛾+(𝑒)−𝑏 ≥ 𝛾−(𝑒), we also

know that the original constraint could have had a value of 𝑏 and thus been anywhere

in [𝑎, 𝑏]. Since 𝛾 is not guaranteed to give us any information in this instance, in our

derived STNU 𝑆 ′, we can let 𝛾′(𝑒) =∞.

We do not make controllability checking or network execution any harder by going

from a highly uncertain observation to no observation at all. We always know the

starting time of the original contingent constraint, as we choose it ourself, meaning

we still have our original coarse bound [𝑎, 𝑏] on when the event occurs.

We next consider what happens if the width of the contingent link bound [𝑎, 𝑏] is

narrower than the width of the bound on possible observation delay.

Lemma 6.4. If 𝑏 − 𝑎 ≥ 𝛾+(𝑒) − 𝛾−(𝑒), we can replace the bounds of the original

constraint ending at 𝑒 with [𝑎+ 𝛾+(𝑒), 𝑏+ 𝛾−(𝑒)].

Proof. If 𝑏− 𝑎 ≥ 𝛾+(𝑒)− 𝛾−(𝑒), we can take our original contingent constraint with

range [𝑎, 𝑏] and variable-delay 𝛾(𝑒), and in 𝑆 ′ we can transform it into a contingent

constraint [𝑎 + 𝛾+(𝑒), 𝑏 + 𝛾−(𝑒)] with 𝛾′(𝑒) = 0 (see contingent constraint across

Figures 6-1a, 6-1b, 6-1d), folding some of the uncertainty in observing 𝑒 directly into

the contingent constraint.

It is important to notice that the range of the modified contingent constraint

is shorter than the range of possible times at which we would actually notice the

occurrence of 𝑒, [𝑎+ 𝛾−(𝑒), 𝑏+ 𝛾+(𝑒)]. Here again, we rely on the notion that we are

only interested in capturing the worst-case scenario. Imagine that we observed 𝑒 at

148

some time 𝑎+ 𝛾+(𝑒)− 𝜖, where 0 < 𝜖 ≤ 𝛾+(𝑒). We know that the original constraint

occurred at a lower-bound of 𝑎 and that it has an upper-bound of 𝑎+(𝛾+(𝑒)−𝛾−(𝑒))−

𝜖. In contrast, with an observation at 𝑎 + 𝛾+(𝑒), we have a strictly larger range of

possible options for the original contingent constraint, meaning our restriction does

not make the scheduling problem less constrained.

We can make the same argument for the upper-bound. If we observe 𝑒 at some

𝑏 + 𝛾−(𝑒) + 𝜖, then we have an upper-bound of 𝑏 and a lower-bound of 𝑏− (𝛾+(𝑒)−

𝛾−(𝑒))+𝜖. When we instead observe 𝑒 at 𝑏+𝛾−(𝑒), we have the same upper-bound but

a smaller lower-bound at 𝑏− (𝛾+(𝑒)− 𝛾−(𝑒)), meaning the range of possible options

is strictly larger. This means that our modified contingent constraint with 𝛾′(𝑒) = 0

fully captures the worst-case scenarios for 𝑒 with our original 𝑆 and 𝛾.

What remains is to demonstrate how to transform the requirement constraints

attached to 𝑒 such that they represent the original execution semantics of 𝑆. To

validate that this is the case, we first examine what local execution semantics look

like in a variable-delay temporal network (Figures 6-1b, 6-1c).

Lemma 6.5. If we have contingent constraint 𝑋 =⇒ 𝐸 with duration [𝑎, 𝑏], outgo-

ing requirement constraint 𝐸 −→ 𝑍 with duration [𝑢, 𝑣] with an unobservable 𝐸, and

contingent constraint 𝐸 =⇒ 𝑌 with range [𝛾−, 𝛾+], we can replace the original re-

quirement constraint during execution with a new constraint 𝑌 −→ 𝑍 with bounds

[𝑢 − 𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏), 𝑣 − 𝑚𝑖𝑛(𝛾+, 𝑋𝑌 − 𝑎)], where 𝑋𝑌 is the true duration of

𝑋 =⇒ 𝑌 . See Figure 6-1c for reference.

Proof. From an execution perspective, 𝑋 and 𝑌 are the only events that can give

us any information that we can use to reason about when to execute 𝑍 (since 𝐸 is

wholly unobservable).

If we execute 𝑍 based on what we learn from 𝑌 , then we use our information from

𝑌 to make inferences about the true durations of 𝑋 =⇒ 𝐸 and 𝐸 =⇒ 𝑌 , based on 𝑋 =⇒

𝑌 . We know that the lower-bound of 𝐸 =⇒ 𝑌 is at least 𝑋𝑌 − 𝑏 and that its upper-

bound is at most 𝑋𝑌 − 𝑎. But we also have the a priori bounds on the contingent

constraint that limit its range to [𝛾−, 𝛾+]. Taken together, during execution we can

149

infer that the true bounds of 𝐸 =⇒ 𝑌 are [𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏),𝑚𝑖𝑛(𝛾+, 𝑋𝑌 −𝑎)]. Since

we have bounds only on 𝑍’s execution in relation to 𝐸, we can then infer a requirement

constraint 𝑌 −→ 𝑍 with bounds [𝑢−𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏), 𝑣 −𝑚𝑖𝑛(𝛾−, 𝑋𝑌 − 𝑎)].

If we try to execute 𝑍 based on information we have from 𝑋, we must be robust

to any possible value assigned to 𝑋 =⇒ 𝐸. This means that we would be forced to

draw a requirement constraint 𝑋 −→ 𝑍 with bounds [𝑢+ 𝑏, 𝑣 + 𝑎]. But we know that

𝑢−𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏) ≤ 𝑢+ 𝑏−𝑋𝑌 and 𝑣−𝑚𝑖𝑛(𝛾−, 𝑋𝑌 − 𝑎) ≥ 𝑣+ 𝑎−𝑋𝑌 , which

means that the bounds we derived from 𝑌 are at least as expressive as the bounds

that we would derive from 𝑋.

Since we have a local execution strategy that depends on the real value of 𝑋𝑌 , we

can try to apply that strategy to the contingent constraint we restricted in Lemma

6.4, in order to repair the remaining requirement constraints.

Lemma 6.6. If we have an outgoing requirement constraint 𝐸 −→ 𝑍 with duration

[𝑢, 𝑣], where 𝐸 is a contingent event, we can replace the bounds of the original re-

quirement constraint with [𝑢− 𝛾−, 𝑣 − 𝛾+]. See Figure 6-1d for reference.

Proof. If we directly apply the transformation from Figure 6-1c to our original STNU,

we introduce a new complexity in the form of reasoning over 𝑚𝑖𝑛 and 𝑚𝑎𝑥 operations

in our constraint bounds. However, from Lemma 6.4, we know that in a controllability

evaluation context, it is acceptable for us to have the 𝑋 =⇒ 𝑌 constraint take on

stricter range [𝑎 + 𝛾+, 𝑏 + 𝛾−], instead of [𝑎 + 𝛾−, 𝑏 + 𝛾+], meaning for the purposes

of evaluating controllability, we can assume 𝑎 + 𝛾+ ≤ 𝑋𝑌 ≤ 𝑏 + 𝛾−. When we

evaluate the requirement constraint 𝑌 −→ 𝑍, we find that 𝑚𝑎𝑥(𝛾−, 𝑋𝑌 − 𝑏) = 𝛾− and

𝑚𝑖𝑛(𝛾+, 𝑋𝑌 −𝑎) = 𝛾+. This gives us the bounds for the requirement constraint that

we see in Figure 6-1d.

Lemma 6.6 handles outgoing requirement edges connected to contingent events,

but we also must handle incoming edges.

Corollary 6.6.1. If we have an incoming requirement constraint 𝑍 −→ 𝐸 with dura-

tion [𝑢, 𝑣] where 𝐸 is a contingent event, we can replace the bounds of the original

requirement constraint with [𝑢+ 𝛾+, 𝑣 + 𝛾−].

150

Input: STNU 𝑆; variable-delay function 𝛾
Output: An STNU 𝑆 ′ and fixed-delay function 𝛾′
Initialization:

1 𝑆 ′ ← 𝑆.𝑐𝑜𝑝𝑦();
2 𝛾′ ← {};

ConvertToFixedDelay:
3 for 𝑙 ∈ 𝑆 ′.𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠() do
4 𝑒← 𝑙.𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡();
5 𝑎, 𝑏← 𝑙.𝑏𝑜𝑢𝑛𝑑𝑠();
6 if 𝛾+(𝑒) ==∞ or 𝛾+(𝑒) == 𝛾−(𝑒) then
7 𝛾′(𝑒)← 𝛾+(𝑒);
8 else if 𝑏− 𝑎 < 𝛾+(𝑒)− 𝛾−(𝑒) then
9 𝛾′(𝑒)←∞;

10 else
11 𝑙.𝑠𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠(𝑎+ 𝛾+(𝑒), 𝑏+ 𝛾−(𝑒));
12 𝛾′(𝑒)← 0;
13 for 𝑙′ ∈ 𝑒.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑅𝑒𝑞𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠() do
14 𝑢, 𝑣 ← 𝑙′.𝑏𝑜𝑢𝑛𝑑𝑠();
15 𝑙′.𝑠𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠(𝑢− 𝛾−(𝑒), 𝑣 − 𝛾+(𝑒));
16 for 𝑙′ ∈ 𝑒.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑅𝑒𝑞𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠() do
17 𝑢, 𝑣 ← 𝑙′.𝑏𝑜𝑢𝑛𝑑𝑠();
18 𝑙′.𝑠𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠(𝑢+ 𝛾+(𝑒), 𝑣 + 𝛾−(𝑒));
19 return 𝑆 ′, 𝛾′

Algorithm 10: Algorithm for converting a variable-delay controllability problem
to a fixed-delay controllability one.

Proof. A requirement constraint 𝑍 −→ 𝐸 with bounds [𝑢, 𝑣] can be immediately rewrit-

ten as its reverse 𝐸 −→ 𝑍 with bounds [−𝑣,−𝑢]. After reversing the edge, we can

apply Lemma 6.6 to get 𝑌 −→ 𝑍 with bounds [−𝑣 − 𝛾−,−𝑢 − 𝛾+], which we can

reverse again to get 𝑍 −→ 𝑌 with bounds [𝑢+ 𝛾+, 𝑣 + 𝛾−].

Now we put it all together and introduce Algorithm 10 as a complete algorithm for

transforming an STNU 𝑆 and variable-delay function 𝛾 into a corresponding STNU

𝑆 ′ and fixed-delay function 𝛾′, where 𝑆 is variable-delay controllable if and only if 𝑆 ′

is fixed-delay controllable.

Theorem 6.7. We can convert a variable-delay controllability problem into a corre-

sponding fixed-delay controllability problem in 𝑂(𝑚+ 𝑛).

Proof. Initially in Algorithm 10 (lines 6-7), we handle Lemmas 6.1 and 6.2. Next, we

151

check the condition set forth by Lemma 6.3 (lines 8-9) to see if in the worst-case the

observation would fail to give us new information.

Finally, in the remaining part of the algorithm (lines 10-18), we transform all

other contingent constraints and the requirement constraints that are associated with

them. At line 11, we apply the transformation as specified by Lemma 6.4. At lines

13-18, we ensure that all outgoing and incoming requirement constraints are updated

as specified in Lemma 6.6 and Corollary 6.6.1.

Overall, the transformation is efficient, running in linear time. Let 𝑛 be the total

number of events and let 𝑚 be the total number of constraints in an STNU. There

are at most 𝑂(𝑛) contingent constraints, meaning the operations spanning lines 4-12

are applied at most 𝑂(𝑛) times. For each requirement constraint in 𝑆 ′, we modify its

bounds at most once as an outgoing constraint (lines 13-15) and once as an incoming

constraint (lines 16-18). This means that lines 13-18 are executed at most 𝑂(𝑚)

times, meaning the total runtime is 𝑂(𝑚+ 𝑛).

Since we can convert any variable-delay controllability problem into an equivalent-

valued fixed-delay controllability problem, we can use fixed-delay controllability check-

ers to assess the variable-delay controllability of an STNU after transformation.

Theorem 6.8. Variable-delay controllability can be evaluated in 𝑂(𝑛3) time.

Proof. Since the transformation takes 𝑂(𝑚+𝑛) time without changing the size of the

output STNU and fixed-delay controllability checking takes 𝑂(𝑛3) [3], the result is an

𝑂(𝑛3) way to check variable-delay controllability for any STNU since 𝑚 ≤ 𝑛2.

6.2 Variable-Delay Execution

Our algorithmic transformation gives us an efficient way to determine whether an

STNU is variable-delay controllable but the resulting transformation does not give us

an execution strategy for our STNU.

Intuitively, we want to use the resulting STNU from our fixed-delay transforma-

tion to guide execution but we face some limitations. To simplify our controllability

152

checking, we restricted the ranges of many of our contingent constraints. If we tried

to execute the resulting STNU, we would likely encounter a violation, since it is pos-

sible for the world to violate the invariants of our STNU – namely that nature will

respect the bounds of all contingent constraints. However, this problem is not insur-

mountable. We can use our transformed STNU as a guide for execution but amend

our execution semantics slightly, to account for these discrepancies.

Theorem 6.9. Deriving an execution strategy for a variable-delay controllability prob-

lem reduces to finding an execution strategy for a fixed-delay controllability problem.

Proof. The problem lies in a few contingent constraints that in the transformed STNU

have bounds [𝑎 + 𝛾+, 𝑏 + 𝛾−] but in the original STNU have implicit bounds of [𝑎 +

𝛾−, 𝑏+𝛾+]. The reason we were allowed to restrict these bounds is that the execution

of other actions in the STNU were not dependent on the endpoint of this longer

contingent constraint, but rather on some other contingent constraint that had bounds

[𝑎, 𝑏]. In the restricted case, we always had less information about the true duration

of the original contingent constraint, despite the fact that the range itself was smaller.

Armed with this knowledge, the remedy for our execution strategy is relatively

straightforward. We follow the normal fixed-delay execution strategy for our derived

STNU but with two exceptions. First, if the true duration of a contingent constraint

is less than 𝑎 + 𝛾+, we buffer the response and act as if the duration was actually

𝑎+ 𝛾+. It is clear that waiting gives us no extra information.

Second, if more than 𝑏 + 𝛾− time has passed and the contingent constraint has

not reached completion, we act as if it actually reached completion at 𝑏 + 𝛾−. We

can safely assume the earlier completion time because of the information it gives us.

When 𝑏+𝛾− time passes, the value of the original contingent constraint is somewhere

in [𝑏− (𝛾+−𝛾−), 𝑏]. If we were to learn about the value at a later moment, 𝑏+𝛾− + 𝜖,

then the value of the original contingent constraint would be in [𝑏+ 𝜖− (𝛾+− 𝛾−), 𝑏],

which is strictly tighter. Thus, if we assume an earlier completion time, we give

ourselves a strictly harder problem, but we know it is still controllable because this

still maps to our corresponding fixed-delay controllability problem.

153

These changes restrict the information we can learn about the original [𝑎, 𝑏] con-

straint, but since the system is still controllable with this restriction, our execu-

tion strategy remains valid. Thus, finding an execution strategy for an STNU with

variable-delay function reduces to finding an execution strategy for an STNU with a

fixed-delay function.

6.3 Checking Chance-Constrained Controllability

Our work thus far has focused on how to determine whether it is possible to con-

struct a schedule for a temporal network when the uncertainty over when events are

observed is bounded. While this approach provides us a guarantee of robustness, it

often overweights the tail-distribution events that are possible but severely unlikely.

Instead, we often care to ask a related question, which is whether it is possible to

construct a schedule for a temporal network that succeeds most of the time but incurs

a risk of failure in some small set of instances [25, 46, 59].

In general, this problem is remarkably difficult, as it relies on reasoning about the

joint probability of communication events during execution. Without any a priori

conditions on the types of probability distributions made available, generalizing such

reasoning is a hard problem. Instead, however, it is useful to consider how we can

use our set-bounded variable-delay controllability tactics to determine the existence

of a chance-constrained variable-delay controllability solution. If a temporal network

is variable-delay controllable under a set-bounded interpretation, then we know it is

similarly chance-constrained variable-delay controllable under the same parameters.

If we then use our knowledge of the probability distributions to reduce the width of

our set-bounded observation windows, without exceeding the risk bounds and while

guaranteeing set-bounded controllability, then we have provided a guarantee of the

network’s chance-constrained variable-delay controllability. The rest of this section

will elaborate this procedure in more depth.

It is worth noting that our approach for determining chance-constrained control-

lability is sound but incomplete. Every solution we find is guaranteed to be a correct

154

one, but because our solution does not deeply consider the nuances of the probability

distributions themselves, it is possible that a solution exists that uses its intimate

knowledge of the nature of the probability distribution to provide a much lower risk

of failure. The study of more common distributions and their impact on risk of failure

will be the subject of future work.

6.3.1 Approach

Our approach for solving the chance-constrained variable delay controllability problem

in many ways resembles the approach for solving CCMPs that we introduced in

Chapter 5. We decompose our problem in two, introducing a master problem and a

sub-problem.

The master problem is responsible for picking ranges over the distribution of

possible communication, such that those ranges respect the given chance constraint.

It does so by using a non-linear program (NLP) solver, whose goal is to maximize the

probability of a given set of ranges subject to constraints on those ranges. The goal

of the sub-problem solver is to check whether the STNU is variable-delay controllable

with respect to the set-bounded interpretation of those ranges.

As we did in Chapter 5, we use conflicts returned by the sub-problem solver to

guide the master problem in its enumeration of possible distribution ranges. In this

case, we use variable-delay controllability conflicts, which are used to explain why

the STNU is not variable-delay controllable with respect to the input set-bounded

communication ranges. We extract resolutions for these variable-delay controllability

conflicts and frame those resolutions as linear constraints for use by the NLP solver

in the master problem.

In the rest of this section, we explain how to augment our variable-delay control-

lability checking algorithm to return conflicts that can be used to inform our master

problem. We then introduce a method for enumerating solutions that resolve all

known conflicts that can be used to solve the master problem.

155

Walkthrough

Before we go into the details of our algorithms, we start by walking through an exam-

ple to understand how the chance-constrained variable delay controllability algorithm

operates. The entry point to the procedure, as well as the operation of the master

problem, is found in Algorithm 13.

The algorithms for the sub-problem are composed of two parts. In Algorithm 11,

we show how to convert a variable-delay controllability problem to an ordinary delay

controllability problem; this algorithm differs from Algorithm 10 in that it rewrites

the input STNU using 𝛿𝛾, which represents the width of the range, and 𝛾+, which

represents the upper-bound of the range, instead of using 𝛾− and 𝛾+. More detail on

why this change of parameter is used is discussed in the next subsection, but note that

these parameters are going to be the variables over which the NLP solver makes its

decision. In Algorithm 12, we show how to transform a variable-delay controllability

conflict into a set of possible resolutions, represented by linear constraints.

To illustrate the operation of these algorithms, we considered a simplified version

of Example 3.4 (see Figure 6-3). In this problem, we have two agents, Alex and

Sam. Sam walks into the kitchen to make coffee at 8am, and it takes between 15

and 30 minutes for the coffee to be ready. Alex is in another room, but wants to get

coffee between 20 and 30 minutes after it is ready in order to have it at the perfect

temperature.

For the purposes of this problem, we assume that Sam is guaranteed to send an

email to Alex somewhere uniformly in the range of [0, 15]∪ [25, 100] minutes after the

coffee is ready. We walk through a sample algorithm trace to illustrate how we are

able to arrive at the solution that communication over the range [5, 15] guarantees

success and maximizes probability mass.

Algorithm 13 starts by checking to see if it is possible to guarantee controllability

over the entire communication range (line 2). It starts by converting the STNU 𝑆 with

variable-delay function 𝛾 into a corresponding STNU 𝑆 ′ with delay function 𝛾′ using

Algorithm 11 (Algorithm 13, line 5). It then checks to see if 𝑆 ′ is delay controllable

156

[15, 30] [20, 30]
A B C

A: Sam starts making coffee
B: Coffee finishes brewing
C: Alex gets coffee

Figure 6-3: Simplified version of Example 3.4. The time it takes Sam to send an
email is unspecified.

3030

b:15

B:-30

-20-15

A B C

𝝲(B) = ∞

Known Conflict Resolutions:

Current Values:
𝛿𝛄(B) = ∞, 𝛄+(B) = ∞

- [15 + 30 - 20 - 30 ≥ 0] or [𝛿𝛄(B) ≤ 15 and 𝛄+(B) ≠ ∞]

Figure 6-4: The first step of the walkthrough. The algorithm checks to see if the prob-
lem is solvable with no communication. A conflict is found in red and the resolutions
are noted.

with respect to 𝛾′ (Algorithm 13, line 6). In Figure 6-4, we see that the transformed

STNU is not controllable, and the conflict that is extracted is highlighted in red.

Given a conflict, we must provide a series of resolutions for it so the master

problem can generate better candidate ranges. In this case, Algorithm 12 gives us

two possible resolutions that involve altering parameters 𝛿𝛾, which again represents

the width of the window, and 𝛾+, which represents the upper-bound of the range.

The algorithm can either change the parameters to make the negative cycle positive

(Algorithm 12, line 2), or it can change the parameters to ensure that 𝛾′(𝐵) ̸= ∞

after transformation (Algorithm 12, line 5). The first option will never work, as our

choice of parameters does not affect the weight of this particular cycle; note that this

is implicitly handled by lines 12 and 13 of Algorithm 13, as the NLP solver will reject

any program with this constraint as infeasible. Thus, we always must ensure that

𝛿𝛾(𝐵) ≤ 15 and 𝛾+(𝐵) ̸=∞.

157

30

b:15

-15

A B C

𝝲(B) = 100

15 [-𝛿𝛄(B)]

-35 [-𝛿𝛄(B)]

B:-15 [+𝛿𝛄(B)]

Known Conflict Resolutions:

Current Values:
𝛿𝛄(B) = 15, 𝛄+(B) = 100

- [15 + 30 - 20 - 30 ≥ 0] or [𝛿𝛄(B) ≤ 15 and 𝛄+(B) ≠ ∞]
- [30 - 20 - 𝛿𝛄(B) ≥ 0]

Figure 6-5: The second step of the walkthrough. The algorithm checks to see if the
problem is solvable if communication is guaranteed to happen in the range [85, 100].
The conflict that is found involves an annotation, and its resolution is noted.

The NLP solver of our master problem can thus pick any window of size 15 from

the domain [0, 15]∪[25, 100]. We assume here that it picks [85, 100], setting 𝛿𝛾(𝐵) = 15

and 𝛾+(𝐵) = 100. When we apply the transformation to produce a new STNU and

delay function, using Algorithm 11, we find another conflict (see Figure 6-5). In

this case, the negative cycle is generated because of the choices of our parameter

𝛿𝛾(𝐵). In order to prevent this negative cycle from forming, we add the constraint

30− 20− 𝛿𝛾(𝐵) ≥ 0 (Algorithm 12, line 2). Note that this is the first place that we

used the annotations (see annotations in blue in Figure 6-5) that we added to our

STNU (Algorithm 11, lines 12, 13, 18, & 21). The algorithm uses them to understand

exactly how our choice of parameters affect the weights of different edges.

Given the new conflict resolution, our NLP solver must now also enforce that

𝛿𝛾(𝐵) ≤ 10, and we assume it picks the new range [90, 100]. We again find that the

generated STNU is uncontrollable (see Figure 6-6). The two possible resolutions to

the conflict that we extract require that the weights of the negative cycle become

non-negative (Algorithm 12, line 2) or that the lower-case reduction involving edges

𝐴
𝑏:15−−→ 𝐵 and 𝐵

30−→ 𝐶 is eliminated (Algorithm 12, lines 7-12). Note that trying to

make the cycle non-negative will again not work, as was the case in the first pass of

the algorithm (Figure 6-4). Even though the weights of the edges are now different,

the weight of the entire cycle has a +𝛿𝛾(𝐵) term and a −𝛿𝛾(𝐵) term from the edge

annotations, which cancel each other out. The only way to resolve the conflict is to

eliminate the lower-case reduction, which can be done by setting 𝛾+(𝐵) ≤ 30.

158

30

b:15

-15

A B C

𝝲(B) = 100

20 [-𝛿𝛄(B)]

-30 [-𝛿𝛄(B)]

B:-20 [+𝛿𝛄(B)]

Known Conflict Resolutions:

Current Values:
𝛿𝛄(B) = 10, 𝛄+(B) = 100

- [15 + 30 - 20 - 30 ≥ 0] or [𝛿𝛄(B) ≤ 15 and 𝛄+(B) ≠ ∞]
- [30 - 20 - 𝛿𝛄(B) ≥ 0]
- [15 + 30 - 20 - 30 ≥ 0] or [𝛄+(B) ≤ 30]

Figure 6-6: The third step of the walkthrough. The algorithm checks to see if the
problem is solvable if communication is guaranteed to happen in the range [90, 100].
The conflict stems from the fact that 𝛾+(𝐵) = 100, and its resolution, that 𝛾+(𝐵) ≤
30 is noted.

30

b:15

-15

A B C

𝝲(B) = 15

20 [-𝛿𝛄(B)]

-30 [-𝛿𝛄(B)]

B:-20 [+𝛿𝛄(B)]

Known Conflict Resolutions:

Current Values:
𝛿𝛄(B) = 10, 𝛄+(B) = 15

- [15 + 30 - 20 - 30 ≥ 0] or [𝛿𝛄(B) ≤ 15 and 𝛄+(B) ≠ ∞]
- [30 - 20 - 𝛿𝛄(B) ≥ 0]
- [15 + 30 - 20 - 30 ≥ 0] or [𝛄+(B) ≤ 30]

Figure 6-7: The final step of the walkthrough. The conflict resolutions require that
𝛾+(𝐵) ≤ 30 and 𝛿𝛾(𝐵) ≤ 10. Our probability function assigns no probability mass to
communication happening in the range [15, 25], so the algorithm checks whether the
STNU is controllable when communication happens in the range [5, 15]. The STNU
is controllable under these communication bounds, and the algorithm returns that as
the solution.

As part of the final step, the NLP solver must pick a range for the distribution

that satisfies 𝛿𝛾(𝐵) ≤ 10 and 𝛾+(𝐵) ≤ 30. While it could pick a range of [20, 30], our

original probability function assumed that there was no probability mass in the range

[15, 25]. As a result, the NLP solver will instead pick [5, 15] as its range. When the

sub-problem solver transforms the STNU and checks it for controllability, it finds that

the resulting STNU is controllable, which means that if the range [5, 15] is within our

chance constraint, then the problem is chance-constrained variable-delay controllable.

We spend the rest of this section providing the proofs for these algorithms and

their operation.

159

6.3.2 Finding and Resolving Conflicts

Even though our risk-bounding strategy is to take on risk by narrowing the uncer-

tainty windows associated with the observation of each event, the problem of effi-

ciently finding a satisfying set of windows is still difficult, as we are operating over a

large set of continuous, interdependent variables. As such, we need a way to efficiently

prune our search space to guide our search towards a more optimal result. Since our

search strategy reduces to determining whether a choice of observation windows yields

a set-bounded variable-delay controllable network, we turn our attention to deriving

variable-delay controllability conflicts, which are responsible for explaining why our

network is uncontrollable.

Our strategy for determining variable-delay controllability is to reduce the problem

to an analogous network that is evaluated under fixed-delay controllability. In such an

instance, our choice of values for observation windows has direct effects on both the

duration of certain constraints (see Lemma 6.6) and the delay associated with those

constraints (see Lemmas 6.1, 6.2, 6.3). When extracting conflicts associated with

constraint durations, we can take inspiration from dynamic controllability conflict

relaxation methods [62]. In particular, in order to relax the associated delays, we

look to delay controllability relaxation methods [4].

We unfortunately cannot use these methods directly, as we need to tie our conflicts

back to the underlying window choices that produced them. Further, we are only

permitted to make a small subset of all possible modifications to resolve our conflicts.

We know that in general the way to resolve variable-delay controllability conflicts is by

reducing the width of the window or by sliding our window such that it occurs earlier,

as increasing the width of the window and learning information later only makes it

harder to construct an execution strategy. To make conflict extraction much more

straightforward, for the purposes of conflict extraction, we represent our windows

using 𝛾+ and 𝛿𝛾, each of which is a function with domain 𝑋𝑒 and range ∈ R+ ∪{∞},

where 𝛾+, as before, represents the upper-bound of the variable-delay window and 𝛿𝛾

represents the width of the variable-delay window. The constraint 𝛾+(𝑥𝑐) ≥ 𝛿𝛾(𝑥𝑐) is

160

𝝲(e) ∈ [𝝲-, 𝝲+]

Z

E

X

[a, b]

[u, v]

Requirement Link
Contingent Link

(a)

Z Z

Y Y

X X

[a + 𝝲+, b + 𝝲-] [a, b - ẟ𝝲]

(b) (c)

𝝲(y) = 0 𝝲(y) = 𝝲+

[u - 𝝲-, v - 𝝲+] [u + ẟ𝝲, v]

Figure 6-8: (a) A contingent constraint followed by a requirement constraint in our
original STNU. (b) A valid equivalent STNU, which has a fixed-delay function instead
of a variable-delay one. The range of the contingent constraint shrinks, but the range
of all attached requirement constraints must also shrink by a corresponding amount.
(c) Another equivalent fixed-delay STNU with its constraints instead parameterized
in terms of 𝛾+ and 𝛿𝛾.

required to ensure that there are no negative delays in observation. It is worth noting

that 𝛿𝛾 can be equivalently defined by 𝛾+ − 𝛾−. Under this reparameterization, we

can now consider adjustments to each variable independently rather than adjusting

both to achieve the desired effect.

We now show how to transform our network using this alternative description

before explaining the conflict extraction algorithm.

Lemma 6.10. For any STNU 𝑆 with variable delay function 𝛾, we can equiva-

lently represent a contingent constraint 𝑋
[𝑎,𝑏]
==⇒ 𝐸 followed by a requirement constraint

𝐸
[𝑢,𝑣]−−→ 𝑍 under variable-delay function 𝛾 (when 𝑏−𝑎 > 𝛾+(𝑒)−𝛾−(𝑒)) by introducing

a new event 𝑌 and using new edges, 𝑋
[𝑎,𝑏−𝛿𝛾]
====⇒ 𝑌 and 𝑌

[𝑢+𝛿𝛾 ,𝑣]−−−−→ 𝑍, with a new delay

function 𝛾′ that enforces 𝛾′(𝑦) = 𝛾+(𝑒). See Figure 6-8 for details.

Proof. We perform this proof in two steps. First we show that the transformation

of our original set of constraints into a pair 𝑋
[𝑎+𝛾+,𝑏+𝛾−]
=======⇒ 𝑌 and 𝑌

[𝑢−𝛾−,𝑣−𝛾+]−−−−−−−→ 𝑍

161

with fixed-delay function 𝛾′(𝑦) = 0 (see transformation from Figure 6-8a to Figure

6-8b). Then we complete the transformation to the final edges, 𝑋
[𝑎,𝑏−𝛿𝛾]
====⇒ 𝑌 and

𝑌
[𝑢+𝛿𝛾 ,𝑣]−−−−→ 𝑍 with delay function 𝛾′, enforcing 𝛾′(𝑦) = 𝛾+(𝑒). From Lemmas 6.4 and

6.6, we know that the transformation from Figure 6-8a to Figure 6-8b is sound. What

remains is to show that the network in Figure 6-8b is executable if and only if the

one in Figure 6-8c is as well.

First, observe what would happen if we moved event 𝑌 , which we refer to as a

synthetic signaling event, by 𝛾+(𝑒) units of time. We would have to shorten the lower

and upper-bounds of 𝑋 =⇒ 𝑌 while simultaneously elongating the lower and upper-

bounds of 𝑋 −→ 𝑍 by 𝛾+(𝑒). However, doing this changes the execution semantics,

as the scheduling agent now has more time to plan to schedule 𝑍. To offset this,

we require 𝛾′(𝑦) = 𝛾+(𝑒), so that 𝑌 is still observed by the scheduler at its original

intended time. Under this interpretation, we are left with edges 𝑋
[𝑎,𝑏+𝛾−−𝛾+]
=======⇒ 𝑌

and 𝑌
[𝑢−𝛾−+𝛾+,𝑣]−−−−−−−→ 𝑍. But of course, because 𝛿𝛾 = 𝛾+ − 𝛾−, this is the same as

𝑋
[𝑎,𝑏−𝛿𝛾]
====⇒ 𝑌 and 𝑌

[𝑢+𝛿𝛾 ,𝑣]−−−−→ 𝑍. Thus, our transformation is equivalent under the new

control variables 𝛾+ and 𝛿𝛾.

We now introduce our modified algorithm, adapted from Algorithm 10, for con-

verting a variable-delay controllability network to a fixed-delay controllability network

(see Algorithm 11). This modified algorithm outputs a network that will be simpler

for us to extract conflicts from when doing delay controllability checking. The main

differences from our Algorithm 10 are lines 11, 14, 17, and 21; at these points, we

perform the synthetic shifts in the observation of the event to allow us to parameterize

our changes in terms of just 𝛾+ and 𝛿𝛾.

Additionally, at this step we annotate the underlying labeled distance graph edges

with values of 𝛿𝛾 that affect the edge’s weights and annotate whether those values

are used to increase or decrease the edge weight. We use these annotations when

extracting conflicts to understand how best to resolve those conflicts. Specifically, for

each edge in the distance graph that has an annotation, modifying the width of its

stored 𝛿𝛾 will change the length of the edge, altering the available flexibility during

162

Input: STNU 𝑆; variable-delay function 𝛾
Output: An STNU 𝑆 ′ and fixed-delay function 𝛾′
Initialization:

1 𝑆 ′ ← 𝑆.𝑐𝑜𝑝𝑦();
2 𝛾′ ← {};

ConvertToFixedDelayWithWidth:
3 for 𝑙 ∈ 𝑆 ′.𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠() do
4 𝑒← 𝑙.𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡();
5 𝑎, 𝑏← 𝑙.𝑏𝑜𝑢𝑛𝑑𝑠();
6 if 𝛾+(𝑒) ==∞ or 𝛿𝛾(𝑒) == 0 then
7 𝛾′(𝑒)← 𝛾+(𝑒);
8 else if 𝑏− 𝑎 < 𝛿𝛾(𝑒) then
9 𝛾′(𝑒)←∞;

10 else
11 𝑙.𝑠𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠(𝑎, 𝑏− 𝛿𝛾(𝑒));
12 𝑙.𝑢𝑝𝑝𝑒𝑟.𝑎𝑑𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(−𝛿𝛾(𝑒));
13 𝑙.𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑈𝑝𝑝𝑒𝑟.𝑎𝑑𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(+𝛿𝛾(𝑒));
14 𝛾′(𝑒)← 𝛾+(𝑒);
15 for 𝑙′ ∈ 𝑒.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑅𝑒𝑞𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠() do
16 𝑢, 𝑣 ← 𝑙′.𝑏𝑜𝑢𝑛𝑑𝑠();
17 𝑙′.𝑠𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠(𝑢+ 𝛿𝛾(𝑒), 𝑣);
18 𝑙′.𝑙𝑜𝑤𝑒𝑟.𝑎𝑑𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(−𝛿𝛾(𝑒));
19 for 𝑙′ ∈ 𝑒.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔𝑅𝑒𝑞𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠() do
20 𝑢, 𝑣 ← 𝑙′.𝑏𝑜𝑢𝑛𝑑𝑠();
21 𝑙′.𝑠𝑒𝑡𝐵𝑜𝑢𝑛𝑑𝑠(𝑢, 𝑣 − 𝛿𝛾(𝑒));
22 𝑙′.𝑢𝑝𝑝𝑒𝑟.𝑎𝑑𝑑𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛(−𝛿𝛾(𝑒));
23 return 𝑆 ′, 𝛾′

Algorithm 11: Algorithm for converting a variable-delay controllability problem
to a fixed-delay controllability one.

execution.

Our method for extracting conflicts uses the same algorithms as in previous work

for extracting delay controllability conflicts (see Chapter 5, Algorithms 3 and 4) . Our

algorithms search for semi-reducible negative cycles, which indicate that a temporal

network is uncontrollable and thus incapable of being executed. The set of edges asso-

ciated with that cycle must then be modified, for example by a planner or relaxation

algorithm, in order to produce a network that can be executed. In the case of deter-

mining chance-constrained variable-delay controllability, we cannot indiscriminately

modify delays and temporal bounds in order to eliminate semi-reducible negative cy-

163

cles. Instead, we must only modify those constraints whose values are affected by our

choices of 𝛾+ and 𝛿𝛾.

6.3.3 Finding Chance-Constrained Solutions

As described thus far, we apply existing conflict extraction algorithms for delay con-

trollability problems and, while doing so, add annotations that map from edges of

an STNU’s labeled distance graph back to the variables that affect them. We now

turn our attention to resolving those conflicts. When presented with a semi-reducible

negative cycle, there are two possible ways to resolve the conflict. First, we can make

the cycle a non-negative one, and second, we can eliminate the semi-reducibility of

the cycle by changing an edge’s values or the network’s delay function so as to pre-

clude a reduction from taking place. In this section, we introduce a conflict resolution

algorithm (see Algorithm 12) and show how to apply these two tactics to generate

conflict resolutions.

We start by examining our strategies for making a cycle non-negative. To eliminate

the semi-reducible negative cycle by making it non-negative, we must find a way to

adjust 𝛾+ and 𝛿𝛾 such that
∑︀
𝑙

𝑤𝑒𝑖𝑔ℎ𝑡(𝑙) ≥ 0, where 𝑙 are the edges of the semi-

reducible negative cycle. To do so, we can use the annotations directly, to rewrite our

constraint as
∑︀
𝑙

(︃
𝑜𝑟𝑖𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝑙) +

∑︀
𝑎∈𝑙.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠()

𝑎

)︃
≥ 0. In this instance, all of our

annotations are of the form ±𝛿𝛾(𝑒) since 𝛾+ has no impact on the length of edges.

This resolution is added at line 2 of Algorithm 12.

We can take a similar approach to eliminate the semi-reducibility of a cycle. A

cycle is semi-reducible if a series of reductions can be applied such that all lower-case

edges are eliminated. In certain instances, it is possible to adjust the parameters of

the STNU such that the returned cycle is still negative, but certain lower-case and

cross-case reductions can no longer be applied. To identify such permutations, we

add a new set of constraints that, if satisfied, eliminate the cycle.

To do so, we want to find the segment of the cycle that is responsible for elimi-

nating a lower-case edge. For each lower-case edge 𝑙 with label 𝑏, we march forward

164

along the cycle, starting from 𝑙, until the total weight of the subpath is less than

𝛾′(𝑏) and the subpath (including 𝑙) consists of at least two edges; this process is rep-

resented by the while loop at lines 9-11. This subpath generation is guaranteed to

terminate, as the entire cycle has negative weight and for all 𝑒, 𝛾′(𝑒) ≥ 0. We then

add the constraint 𝛾′(𝑏) ≤
∑︀
𝑙′
𝑤𝑒𝑖𝑔ℎ𝑡(𝑙′), where the summation iterates over all edges

𝑙′ following the lower-case edge in our derived subpath. As before, we can represent

the edge weight in terms of the original weight and the effects of 𝛾+ and 𝛿𝛾 with

𝛾′(𝑒) ≤
∑︀
𝑙′

(︃
𝑜𝑟𝑖𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝑙′) +

∑︀
𝑎∈𝑙′.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠()

𝑎

)︃
.

While, as in the previous case, 𝛾+ does not affect any of the edge weights, it does

have an impact on the value of 𝛾′. In the instance where 𝛾′(𝑒) ̸= ∞, then we can

simply write our constraint as 𝛾+(𝑒) ≤
∑︀
𝑙′

(︃
𝑜𝑟𝑖𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝑙′) +

∑︀
𝑎∈𝑙′.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠()

𝑎

)︃
(line

13). However, if 𝛾′(𝑒) = ∞, we have to add new constraints based on the original

values of 𝛾+(𝑒) and 𝛿𝛾(𝑒). We can find ourselves in this situation if either 𝛾+(𝑒) =∞

or if 𝛿𝛾(𝑒) > 𝑏 − 𝑎, so to resolve the conflict in this case, we require modifying our

choices of variables jointly such that 𝛿𝛾(𝑒) ≤ 𝑏−𝑎 and 𝛾+(𝑒) ̸=∞ (line 5). This allows

us to potentially circumvent the lower-case and cross-case reductions by ensuring that

𝛾′(𝑒) ̸=∞ going forward.

It is important to note that the possible resolutions that we extract from our

conflicts may neither be necessary nor sufficient to guarantee the executability of our

network. To address this, we search across candidate permutations, using conflict-

directed search, to find a permutation of 𝛾+ and 𝛿𝛾 that satisfies our risk bounds. We

can be further improve our search process. The cost of taking a resolution is the risk

we incur by ignoring the tail ends of 𝛾’s distribution. By incorporating this cost in a

variant of conflict-directed A* [60], we can significantly speed up our process.

Our final algorithm, used to solve the chance-constrained variable-delay controlla-

bility problem, is inspired by previous work in solving chance-constrained Probabilis-

tic Simple Temporal Networks [59] and interleaves the use of a nonlinear program

solver with conflict-directed search in order to determine whether a given STNU

is controllable with respect to some risk bound (see Algorithm 13). Notably our

165

Input: A semi-reducible negative cycle, 𝐶;
existing observation window parameters 𝛾+ and 𝛿𝛾;
current delay function 𝛾′
Output: A set of possible conflict resolutions
Initialization:

1 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠← []; list of conflict resolutions;
ExtractResolutions:

2 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑

(︃∑︀
𝑙∈𝐶

(︃
𝑜𝑟𝑖𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝑙) +

∑︀
𝑎∈𝑙.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠()

𝑎

)︃
≥ 0

)︃
;

3 for 𝑙 ∈ 𝐶.𝑙𝑜𝑤𝑒𝑟𝐸𝑑𝑔𝑒𝑠() do
4 if 𝛾′(𝑙.𝑙𝑎𝑏𝑒𝑙) ==∞ then
5 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑 ((𝛿𝛾(𝑙.𝑙𝑎𝑏𝑒𝑙) ≤ 𝑙.𝑢𝑝𝑝𝑒𝑟()− 𝑙.𝑙𝑜𝑤𝑒𝑟()) ∧ (𝛾+(𝑙.𝑙𝑎𝑏𝑒𝑙) ̸=∞));

6 else
7 𝑛𝑒𝑥𝑡← 𝐶.𝑛𝑒𝑥𝑡(𝑙);
8 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒𝑠← [𝑙, 𝑛𝑒𝑥𝑡];
9 while 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒𝑠.𝑤𝑒𝑖𝑔ℎ𝑡() > 𝛾′(𝑙.𝑙𝑎𝑏𝑒𝑙) do

10 𝑛𝑒𝑥𝑡← 𝐶.𝑛𝑒𝑥𝑡(𝑛𝑒𝑥𝑡);
11 𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑛𝑒𝑥𝑡);

12 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑎𝑑𝑑

(︃
𝛾+(𝑙.𝑙𝑎𝑏𝑒𝑙) ≤

∑︀
𝑙′∈𝑠𝑢𝑏𝑝𝑎𝑡ℎ𝐸𝑑𝑔𝑒𝑠

(︃
𝑜𝑟𝑖𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝑙′) +

∑︀
𝑎∈𝑙′.𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠()

𝑎

)︃)︃
;

13 return 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠.𝑓𝑖𝑙𝑡𝑒𝑟(𝑟 → (𝑟(⟨𝛾+, 𝛿𝛾⟩) == 𝑓𝑎𝑙𝑠𝑒))
Algorithm 12: Algorithm for extracting possible resolutions for a reported semi-
reducible negative cycle.

constraints are all linear, and nonlinearity only comes into play when assessing the

probability density function. When the function itself is smooth, it is straightforward

to use off-the-shelf solvers, such as IPOPT [9] or SNOPT [27], in our implementation.

The algorithm works as follows. We initially consider the full range of values that

the variable-delay function 𝛾 could take on (line 2). At each step in the search process,

variable-delay controllability is checked by transforming it to a delay controllability

problem (line 5) and using Algorithm 1 from Chapter 4 to check controllability (line

6). If the network is controllable, the algorithm returns immediately, reporting true

if the solution is within our risk bound (line 8). The use of A* to guide the search

optimally guarantees that we end at the lowest-cost approximation, and because our

window approximation is conservative, we have a guarantee that our algorithm is

166

Input: STNU 𝑆, variable-delay function 𝛾 for which a probability distribution
function 𝑝 is defined, tolerated level of risk ∆;

Output: True if 𝑆 is chance-constrained variable-delay controllable with respect
to risk tolerance ∆, and false otherwise;

Initialization:
1 𝑞𝑢𝑒𝑢𝑒← [] // priority queue of constraints to enforce on restrictions to 𝛾;

ChanceConstrainedVariableDelayControllable?:
2 𝑞𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑(⟨∅, 𝛾⟩, 0);
3 while 𝑞𝑢𝑒𝑢𝑒.𝑠𝑖𝑧𝑒() > 0 do
4 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝛾′, 𝑐𝑜𝑠𝑡← 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝𝑀𝑖𝑛();
5 𝑆 ′, 𝛾′ ← ConvertToFixedDelayWithWidth(𝑆, 𝛾′);
6 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒, 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡← FixedDelayControllable(𝑆 ′, 𝛾′);
7 if 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑙𝑒 then
8 return 𝑡𝑟𝑢𝑒;
9 for 𝑟 ∈ ExtractResolutions(𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡, 𝛾′, 𝛾′) do

10 𝑛𝑒𝑤𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠← 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.𝑐𝑜𝑝𝑦();
11 𝑛𝑒𝑤𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑟);
12 𝛾′′, 𝑜𝑏𝑗 ← 𝑁𝐿𝑃.𝑓𝑖𝑛𝑑𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑊𝑖𝑛𝑑𝑜𝑤𝑠(𝑛𝑒𝑤𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠);
13 if 𝑜𝑏𝑗 ̸= ∅ and 𝑜𝑏𝑗 ≤ ∆ then
14 𝑞𝑢𝑒𝑢𝑒.𝑎𝑝𝑝𝑒𝑛𝑑(⟨𝑛𝑒𝑤𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝛾′′⟩, 𝑜𝑏𝑗);
15 return 𝑓𝑎𝑙𝑠𝑒;
Algorithm 13: Algorithm that evaluates whether an STNU is chance-constrained
variable-delay controllable with respect to risk bound ∆.

sound; whenever it returns true, there does exist an execution strategy within the

given risk bounds.

In the event that the network is not controllable, a conflict is extracted and possible

adjustments to 𝛾+ and 𝛿𝛾 are enqueued in the form of a new 𝛾. However, rather than

just enqueueing the values, we also enqueue the derived constraints. This approach

is important because it allows us flexibility when determining the cost of our window

tightening. To determine the cost of satisfying a new constraint, we frame a nonlinear

program with one of the new constraints derived from the conflict as well as all of

the constraints that were passed in as part of this state space (line 12). Given these

constraints, we ask our nonlinear program solver to provide a solution subject to the

objective of maximizing the overall probability of values falling within that window.

Thus, our process is able to fluidly adjust its window according to the particularities

of the probability distribution as well as the set of conflicts we have derived.

167

Variable-delay
controllable

Variable-delay
uncontrollable

Min-fixed controllable 245 292

Min-fixed uncontrollable 0 463

Mean-fixed controllable 245 23

Mean-fixed
uncontrollable 0 732

Max-fixed controllable 245 15

Max-fixed
uncontrollable 0 740

Table 6.1: Variable-delay vs. minimum, mean, and maximum fixed-delay controlla-
bility and results when using an exponential delay function with 𝜆 = 0.5.

6.4 Empirical Evaluation

In this section, we provide empirical evaluations of our variable-delay controllability

checking algorithms, showing first that variable-delay controllability gives us a level of

modeling expressiveness that cannot be captured by approximations that use delay

controllability alone. We second show that our chance-constrained variable-delay

controllability algorithm empirically conforms to established risk bounds.

6.4.1 Controllability Experiments

The introduction of variable-delay controllability gives us a level of expressiveness

that we previously lacked. In this section, we attempt to characterize the gap in

expressiveness by showing how attempting to evaluate variable-delay problems using

other models as approximations leads to incorrect results.

To evaluate the comparative quality of the different approaches, we construct a

set of randomly generated STNUs. Each STNU has 10 contingent constraints with

lower-bound 0 and an integer upper-bound uniformly chosen between 1 and 4. Each

contingent constraint has a variable-delay function with a lower-bound of 0 and upper-

bound chosen from the exponential distribution 𝑓(𝑡) = 𝜆𝑒−𝜆𝑡 with 𝜆 = 0.5. For each

pair of contingent constraint endpoints, we establish a requirement constraint between

168

them with probability 1
40

. Each requirement constraint has a lower-bound of 0 and an

integer upper-bound uniformly chosen between 1 and 4. We choose these parameters

because they represent a reasonable trade-off between simplicity in degenerate cases

and sufficient complexity to exhibit interesting behaviors.

We employ three different strategies for our fixed-delay approximations: 𝛾(𝑥𝑐) =

𝛾−(𝑥𝑐), 𝛾(𝑥𝑐) = 𝛾−+𝛾+

2
, and 𝛾(𝑥𝑐) = 𝛾+(𝑥𝑐). For each strategy, we know that when-

ever the original STNU is variable-delay controllable with respect to 𝛾, it is also

fixed-delay controllable with respect to 𝛾. Each choice of 𝛾 represents a potential re-

alization of the delays offered by 𝛾, and the fixed-delay approximation has the added

benefit of eliminating uncertainty in observation.

We generate 1000 different STNUs and compare the variable-delay controllability

results to the different fixed-delay controllability approaches (Table 6.1). The in-

stances that are of greatest interest are those where the STNU is not variable-delay

controllable but the fixed-delay approximations determine it to be controllable.

This false positive rate of the minimum fixed-delay controllability approximation

is quite high, at 39%. The mean and maximum fixed-delay approximations have more

reasonable false positive rates at 4.5% and 3.0%, respectively. Since all approxima-

tions yield the correct answer when the original STNU is variable-delay controllable,

it makes sense that the maximum fixed-delay approximation has the lowest false

positive rate, as it is the most demanding of the three.

We note that these results are also dependent on the width of the variable-delay

ranges found in the network. We can increase the likelihood that a delay takes longer

by decreasing the choice of 𝜆 in our exponential delay function. When we vary

our delay function using 𝜆 = 0.5, 0.1, 0.05, 𝑎𝑛𝑑0.01, the false positives of the max-

delay approximation are 3.0%, 3.4%, 3.9%, and 5.2%, respectively. As expected, this

indicates that as the uncertainty in our delay grows, there is an increasing advantage,

from a correctness perspective, to using variable-delay controllability.

In addition to simulating the network using fixed-delays, we also consider the

effect of combining the two sources of uncertainty, the duration of the action and

the delay in observation, into one new source of uncertainty. Unlike the fixed-delay

169

Variable-delay
controllable

Variable-delay
uncontrollable

Elongated controllable 144 0

Elongated
uncontrollable 101 755

Table 6.2: Variable-delay controllability vs. the controllability of a network that
elongates its contingent constraints to account for observational uncertainty when
using an exponential delay function with 𝜆 = 0.5.

approximations, we know that if a network under this transformation is controllable,

then so too is the original network, as this approach discards any existing knowledge

about the difference in uncertainties between the original event and the observation

of that event.

As seen in Table 6.2, this approach yields no false positives, but unfortunately

has a high false negative rate of 41.2%. An appropriate approximation strategy can

be adopted to prevent either false positives or false negatives; however, such a wide

disparity in results strongly reinforces the value of modeling observational uncertainty

directly.

6.4.2 Chance-Constrained Experiments

In this section we evaluate our chance-constrained variable-delay controllability algo-

rithms, with particular attention paid to the speed with which we are able to find a

solution, as well as how close our derived execution scheme is with respect to the risk

bound.

As a representative example, we elect to model the efficiency of a rental car agency

in a problem setup very similar to the Zipcar problem, adapted to chance-constrained

temporal networks [12, 25]. In this scenario, a rental car shop rents out each car for

a specified number of trips per day and wants the cars out for as long as possible,

in order to maximize revenue. Since the trip durations are largely determined by

the routes picked by the renters, the only real control the renters have is in the time

spent between when the car is dropped off and when it is picked up again. It takes a

170

minimum of five minutes to clean and inspect the car, and management wants the car

to sit on the lot for no more than 30 minutes, before it is given to the next customer.

Complicating this procedure is the fact that the attendants checking in the cars

are different from the ones interacting with the customers. Depending on who is

checking in the cars, the customer-facing worker at the front desk will learn that

certain cars are checked back in at different times. Worker #1 reports that the car

has been checked in immediately, 99% of the time, and forgets to report about the

car’s status, 1% of the time. Worker #2 is lazier and reports the status of the car

after 15 minutes, 99% of the time, and similarly forgets to report the car’s status, 1%

of the time. Worker #3 generally reports the car’s status after 15 minutes, doing so

90% of the time, but never forgets, reporting the car’s return immediately, 5% of the

time, and reporting it after 30 minutes, the remaining 5% of the time.

In our experiments, we craft scenarios where cars make one of 2, 5, 10, 15, 20, or

25 trips in total. For each choice of parameters, we created 100 distinct scenarios, and

in each scenario, each car return is chosen to be processed randomly by a different

worker. Since this scenario has no reliable guarantee that all constraints can be met,

we set an upper-bound for risk at 15% and evaluate how close our algorithm is to the

proposed risk bounds. All experiments were run on an Intel i7 processor with 4 cores

and on a machine with 40GB of RAM.

The results of our experiments fall in line with our expectations of the system and

demonstrate the utility of such a system in practice. As expected, we see the risk of

failure grow in a linear fashion with the number of trips scheduled per car (see Figure

6-9). Despite the fact that our chance-constrained variable-delay controllability al-

gorithm only allocates risk in single contiguous windows, it is still capable of finding

reasonable solutions within the specified risk bound.

Importantly, we also examine the runtime of the algorithm to understand whether

it is fast enough to be used in a practical sense (see Figure 6-10). The chance-

constrained variant of the variable-delay controllability checker explicitly searches

over different windows and as such is expected to have an exponential growth curve.

We see this in our empirical results, as once we scale up to 25 trips per car, determining

171

Figure 6-9: Empirical comparison of the risk of failure versus the number of trips
considered in a single plan.

whether we can satisfy our risk bound takes nearly 20 seconds. Most activities have

on the order of low tens of activities per agent and involve execution times that span

hours; having a chance-constrained variable-delay controllability checker that runs

in under a few seconds for typical networks, and in under a minute for even the

most complex networks, implies that the algorithm is sufficiently fast for use in larger

systems.

6.5 Discussion

In this chapter, we introduced variable-delay controllability as an extension to fixed-

delay controllability over STNUs. We provide a formal definition showing how it

generalizes fixed-delay controllability, while also providing an efficient sound and

complete algorithm for determining the variable-delay controllability of an STNU.

172

Figure 6-10: Empirical considerations of the runtime required to find a minimum-risk
plan versus the number of trips included in a single plan.

Because variable-delay controllability execution reduces to fixed-delay controllability

execution, we are able to demonstrate that variable-delay controllability is a formal-

ism that can be used in practice to construct and evaluate schedules in the face of

both temporal and observational uncertainty.

173

174

Chapter 7

Concluding Remarks

7.1 Contributions

In this thesis, we aimed to improve the function of real-time executives in multi-agent

scenarios. Of particular importance to us was the handling of multi-agent scenarios

where there was some sort of limit on communication that made it so communi-

cation was not guaranteed to happen instantaneously. The work presented in this

thesis provides a set of definitions, algorithms, and corresponding theoretical anal-

ysis that demonstrates how to build a temporal executive capable of operating in a

communication-limited world.

In Chapter 3, we laid out our desiderata and a framework satisfying it. At its core,

we wanted a framework that could represent delays between actions and communi-

cation around those actions, describe the cost associated with the communication

(and the corresponding problem to find low-cost communication windows), and be

robust to imprecise communication. Respectively, we solved these problems by in-

troducing delay controllability, the Communication Cost Minimization Problem, and

variable-delay controllability. In subsequent chapters, we provided efficient algorithms

for handling the types of problems that the framework satisfying our desiderata was

mean to address.

In Chapter 4, we introduced a series of algorithms for checking delay controllabil-

ity, which allowed us to incorporate notions of communication delay that are common

175

in multi-agent scenarios to our temporal networks while still guaranteeing feasibility

checking and execution in polynomial time.

Delay controllability gave us a means to determine whether we could construct a

satisfying schedule given a planned communication strategy, but it did not provide

us a straightforward way to construct such a strategy. In Chapter 5, we addressed

this problem and showed how to adapt conflict-directed search methods to generate

valid communication plans, subject to some cost function. Of importance, we showed

that while certain suboptimal algorithms can give polynomially bad approximations

of the optimal communication strategy in theory, in practice these algorithms are

significantly faster and provide results that are near optimal. We then introduce

a procedure for reactively adapting these communication strategies. When dealing

with real agents, slight deviations from a plan need to be handled in order to ensure

robust execution. Our work shows how to maintain a temporal horizon to preserve

plan feasibility for as long as possible.

Finally, we built on the notion that our executive should be robust by adding in

the capability to handle noisy communication. In Chapter 6, we introduced variable-

delay controllability as a means of representing communication about events that have

some uncertainty associated with it. We showed that this problem can be reduced to

checking for ordinary delay controllability in the set-bounded case, and when given a

distribution over communication noise, we considered the notion of checking chance-

constrained variable-delay controllability. Our approach interleaved conflict-directed

search with the use of a non-linear program solver and is fast enough for practical

use.

7.2 Future Work

As we turn our attention forward, there are many interesting extensions and contin-

uations of this work that are worth pursuing.

We expect that in the future significantly more work will be done on expanding the

controllability checking problem to different types of communication models. While

176

the formalism that we have presented with delay controllability is powerful, it makes

relatively simple assumptions about the nature of communication. We assume that

the success, failure, and delays in communication across all events are independent

of one another and that they are simply a function of the original event. Including

additional conditions on communication, like we did in Chapter 5 when describing

flaky network outages, requires separate independent reasoning on top of the existing

algorithms. We expect that as this model is tested and expanded, the need for richer

communication models may be apparent. Communication may only be permissible

in certain windows, may come as a large batched response, or may vary across time

as specified by some distribution. Our work provides a strong foundation that should

help future researchers as they choose to study richer communication models.

Another avenue for future research is to more directly tackle the problem of un-

derstanding the controllability of POSTNUs. Modelers who hope to use planners

and executives to tackle problems select their models based on the trade-off between

speed of evaluation and expressiveness of the model. While this thesis has put in a

significant amount of work to prove theoretical bounds for many types of networks

that modelers might choose, the POSTNU (and MaSTNU) remain open questions.

In many ways, however, the work of this thesis may provide insights as to whether

checking POSTNU controllability is a problem that may be tractable. The work done

on checking delay controllability and notably on checking variable-delay controllabil-

ity represent significant advantages over the existing state of the art. Practical algo-

rithms for checking the controllability of POSTNUs only exist if they are known to

be chain-free [10], but our work on variable-delay controllability demonstrates how it

might be possible to augment this controllability checking for certain types of chained

contingent constraints. There is, of course, much more nuance to this problem, but

we are optimistic that there is exciting work in this space ahead.

177

178

Appendix A

Controllability Complexity for

Different Temporal Networks

In temporal planning, many different temporal formalisms are used to model real

world situations and, in particular, can be used to varying different degrees to en-

code and reason over multi-agent execution. The choice of any particular type of

network in modeling a problem has inherent trade-offs. If a temporal model sup-

ports more features, it can model a given scenario with higher fidelity. However,

the additional features come at the expense of performance; modelers care about

constructing schedules for temporal networks, and the presence of additional feature

types can dramatically slow the runtime of scheduling algorithms.

Disjunctive constraints are important for modeling common phenomena like re-

source constraints and mutual exclusion (i.e. I can eat 30 minutes before swimming

or after, but cannot eat while in the pool). These types of networks have been studied

extensively in the forms of Temporal Constraint Satisfaction Problems (TCSPs) [22]

and Disjunctive Temporal Networks (DTNs) [49]. Another important feature that

is needed to faithfully model non-determinism in temporal events, such as the effect

of traffic on a drive across town, is temporal uncertainty. Temporal uncertainty and

disjunction have been studied together in Temporal Constraint Satisfaction Problems

with Uncertainty (TCSPUs) [55] and Disjunctive Temporal Networks with Uncer-

tainty (DTNUs) [57]. Finally, it is possible to directly model multi-agent interac-

179

tions using Multi-agent Simple Temporal Networks (MaSTNs) [11], Multi-agent Sim-

ple Temporal Networks with Uncertainty (MaSTNUs) [15], and Partially Observable

Simple Temporal Networks with Uncertainty (POSTNUs) [36]. The computational

complexities of many of the simpler variants of these temporal models have been

well-studied, but the same cannot be said of more advanced models. Despite this

gap, there has been considerable effort put into constructing improved algorithms for

these feature-rich temporal networks [16, 17, 18, 56].

In this appendix, we examine the theoretical complexity bounds of computing

the controllability of many of these types of temporal networks. The first part of

this appendix considers networks that feature conditional constraints, disjunctive

constraints, and temporal uncertainty and reflects work originally published in AIJ

[8]. The second part of this appendix considers networks with partial observability

and temporally uncertain events and reflects work originally published in AAMAS [7].

The existing bounds for some of these results have been quite loose with most decision

problems not known to be better than EXPTIME and some not known to be better

than EXPSPACE. Our results are summarized in Figures A-1 and A-5 and represent

a significant improvement over the best-known bounds. We finally conclude with a

discussion of our results, giving practical advice to modelers who are interested in the

trade-offs of using different temporal networks and lending insight into the differences

between these networks.

There are many types of temporal networks beyond those that we focus on in

this appendix. Many include features related to actor decisions, such as Temporal

Plan Networks [34], Temporal Plan Networks with Uncertainty [33], Controllable

Conditional Temporal Problems [63], Conditional Simple Temporal Networks with

Decisions [13], and Conditional Simple Temporal Networks with Uncertainty and

Decisions [64] while others, such as Probabilistic Simple Temporal Networks [25]

and their relevant extensions, consider probabilistic temporal bounds. Despite the

existence of other networks our work covers a broad area of focus that is under active

investigation. Future work in this direction will focus on characterizing, organizing,

and providing tighter bounds for controllability in these other types of networks but

180

STN
P

STNU
SC: P
DC: P

WC: coNP-complete

CSTN
SC: P

DC: PSPACE-complete
WC: coNP-complete

TCSP
NP-complete

DTN
NP-complete

DTNU
SC: 𝚺2

P-complete
DC: PSPACE-complete

WC: 𝚷2
P-complete

TCSPU
SC: NP-complete

DC: PSPACE-complete
WC: 𝚷2

P-complete

CDTNU
SC: 𝚺2

P-complete
DC: PSPACE-complete

WC: 𝚷2
P-complete

CSTNU
SC: P

DC: PSPACE-complete
WC: coNP-complete

Uncertainty

Uncertainty

Uncertainty

Uncertainty

Con
dit

ion
s

Con
dit

ion
s

Simple
Disjunctions

Full
Disjunctions

Full
Disjunctions

Full
Disjunctions

Simple
Disjunctions

Conditions

Figure A-1: A taxonomic organization of temporal networks considered in the first
section of this appendix, how they relate to one another, and the complexity classes
to which their decision problems belong. SC, DC, and WC represent strong controlla-
bility, dynamic controllability, and weak controllability, respectively. Results in bold
represent novel results provided in this thesis.

is outside the scope of this thesis.

A.1 Conditional & Disjunctive Networks

In this section, we consider the theoretical complexity bounds of networks that feature

conditional and disjunctive constraints as well as temporal uncertainty. The full set

of networks and their corresponding set of results are summarized in Figure A-1. We

divide the discussion of temporal networks into that of base temporal networks, which

build on the simplest temporal network representations, and compositional temporal

networks, which make use of two or more features in their representation. After

describing the temporal networks in detail, we will introduce the complexity classes

that make up the polynomial-time hierarchy, as they will be useful in categorizing

181

the complexity of particular controllability classes, before providing the appropriate

complexity results.

A.1.1 Base Temporal Networks

We start by considering the different types of temporal networks that add conditional

and disjunctive constraints to STNs. These networks have been well-studied and have

corresponding completeness results associated with determining their feasibility. They

will provide an appropriate background when we consider the effect of augmenting

these networks with temporal uncertainty.

Disjunctive Networks

The first modification we make to STNs is to allow for disjunctions over temporal

constraints. In practice, we frequently construct and consider schedules with dis-

junctive constraints; during a trip to the beach, we know that we want to eat lunch

either 30 minutes before swimming or immediately afterwards – not at any moment

in between.

The two types of disjunctive networks that are used in practice, Temporal Con-

straint Satisfaction Problems (TCSPs) and Disjunctive Temporal Networks (DTNs),

differ in terms of the types of disjunctive constraints that they admit [22, 49].

Definition A.1. TCSP [22]

A TCSP is a 2-tuple ⟨𝑋,𝑅⟩ where:

∙ 𝑋 is a set of event variables, whose domains are the reals

∙ 𝑅 is a set of simple disjunctive constraints of the form 𝑥𝑟 − 𝑦𝑟 ∈
⋃︀
𝑘

[𝑙𝑟,𝑘, 𝑢𝑟,𝑘],

where 𝑥𝑟, 𝑦𝑟 ∈ 𝑋 and 𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

Definition A.2. DTN [49]

A DTN is a 2-tuple ⟨𝑋,𝑅⟩ where:

∙ 𝑋 is a set of event variables, whose domains are the reals

182

∙ 𝑅 is a set of full disjunctive constraints of the form
⋁︀
𝑘

(𝑙𝑟,𝑘 ≤ 𝑥𝑟,𝑘 − 𝑦𝑟,𝑘 ≤ 𝑢𝑟,𝑘),

where 𝑥𝑟,𝑘, 𝑦𝑟,𝑘 ∈ 𝑋 and 𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

The disjunctive constraints of TCSPs require that every constraint in a given

disjunction relates the same pair of events. In contrast, DTNs allow disjunctive con-

straints to be a disjunction over any constraints that might be found in an STN. In this

thesis, we will refer to the type of disjunctions allowed by TCSPs as simple disjunc-

tions and the type of disjunctions allowed by DTNs as full disjunctions. Checking the

feasibility of both TCSPs and DTNs is known to be NP-complete [22, 49]. It is worth

noting that a linear time transformation exists that converts DTNs into equivalent

TCSPs [45], but maintaining the distinction between the two is important because,

remarkably, as we extend the two types of networks, we see that the computational

complexity of solving them will diverge.

Conditional Networks

The Conditional Simple Temporal Network (CSTN) represents a different way to aug-

ment STNs [54]. CSTNs allow for the introduction and observation of uncontrollable

events and the conditional enforcement of constraints based on the observations of

those events.

Definition A.3. CSTN [54]

A CSTN is a tuple ⟨𝑋,𝑅, 𝑃,𝑂⟩ where:

∙ 𝑋 is a set of event variables, whose domains are the reals

∙ 𝑅 is a set of constraints of the form 𝜓𝑟 → (𝑙𝑟 ≤ 𝑥𝑟 − 𝑦𝑟 ≤ 𝑢𝑟), where 𝑥𝑟, 𝑦𝑟 ∈ 𝑋,

𝜓𝑟 is a label representing a conjunction of propositions or their negations, and

𝑙𝑟, 𝑢𝑟 ∈ R

∙ 𝑃 is a set of propositions

∙ 𝑂 is a function mapping propositions in 𝑃 to the events where their values are

observed

183

To illustrate the usefulness of CSTNs, we provide an example. If we want to

schedule the delivery of a package, we may prefer to use a CSTN to encode the

urgency of the request; a package that we see marked as urgent, may need to be

scheduled in the next 24 hours, but a package that is not marked as such can use a

more relaxed schedule that guarantees shipment within the next week. Given event

𝐴 representing when the package goes out for delivery and event 𝐵 representing when

the package must be delivered, we can encode the urgency using two constraints, if

the package is urgent, we have the constraint 𝐵 − 𝐴 ≤ 1𝑑 with label 𝑢, and if the

package is not urgent, we have the constraint 𝐵 − 𝐴 ≤ 7𝑑 with label ¬𝑢.

What makes scheduling over CSTNs notable is that we may learn about the value

of proposition 𝑢, or in this case the urgency of the package, at some unrelated event

𝐶 that may differ from the events associated with the constraints they affect. In our

given example, 𝐶 represents the time at which the customer tells us the package’s

urgency. It is possible that the customer indicates that the package is urgent the day

before dropping it off, but it is equally possible that the customer tells us the package

is urgent several hours after they have already dropped it off. We conditionally enforce

labeled constraints by observing the realized values of the propositions and checking

whether a constraint’s label, 𝜓𝑟 is true. In the package example, we know that we

will only need to enforce one of the two constraints based on what the observed value

of 𝑢 is at event 𝐶. We use the function 𝑂 to encode the events at which specific

propositions are observed.

Importantly, the true values of propositions are not “scheduled” in the same way

that events are. Different instantiations of the same problem may yield different

values for the propositions and, correspondingly, result in different constraints that

must be enforced during execution. As a result, the scheduling problem for CSTNs

is different than the one for STNs, TCSPs, and DTNs. In the previously described

temporal networks, we knew the full set of constraints that would be enforced prior to

scheduling and as such could satisfy all constraints with an implicitly static schedule.

However, with CSTNs, there is no predetermined guarantee about when the scheduler

learns about propositions, as the scheduler may have to predetermine a schedule that

184

is robust to any learned proposition values or may have the flexibility to adapt the

schedule on the fly. Across these different situations, different decisions may be made

with respect to scheduling that may trade off between learning the actual values

of propositions early in execution and maintaining a buffer of temporal flexibility.

As such, when checking feasibility of CSTNs, we use strong, weak, and dynamic

consistency to denote the different models under which the scheduler is guaranteed

to learn the actual proposition values [54]. These models of consistency are analogous

to the different notions of controllability that we consider in STNUs.

Strong consistency implies there exists a schedule that can be constructed that

assigns values to all events in 𝑋, such that for every realization of the values of the

propositions in 𝑃 , all constraints in 𝑅 are satisfied. Strong consistency checking of a

CSTN reduces to checking the temporal consistency of the underlying STN and so is

computable in 𝑂(𝑚𝑛) time [54]. A CSTN is weakly consistent if for every assignment

of values to the propositions in 𝑃 , there exists some schedule can be constructed

assigning values to event variables in 𝑋, such that all constraints in 𝑅 are satisfied.

Weak consistency checking of CSTNs is coNP-complete [54]. Dynamic consistency

is concerned with whether it is possible to dynamically construct a schedule where

assignment to values in 𝑋 happen in order of event values and the true values of

propositions 𝑝 ∈ 𝑃 are learned only when the corresponding event given by 𝑂(𝑝) is

executed. Dynamic consistency checking in CSTNs is PSPACE-complete [14].

A.1.2 Compositional Temporal Networks

We now provide definitions for the temporal networks that result when we combine

conditional constraints, disjunctive constraints, and the consideration of temporal

uncertainty.

Disjunctions and Temporal Uncertainty

We start by adding disjunctions to STNUs. As was the case with disjunctions added to

STNs, when considering disjunctive temporal networks with uncertainty, we consider

185

the effects of allowing both simple and full disjunctions.

Temporal Constraint Satisfaction Problems with Uncertainty (TCSPUs) augment

STNUs by adding simple disjunctions over constraints.

Definition A.4. TCSPU [56]

A TCSPU is a 4-tuple ⟨𝑋𝑒, 𝑋𝑐, 𝑅𝑟, 𝑅𝑐⟩ where:

∙ 𝑋𝑒 is the set of executable events

∙ 𝑋𝑐 is the set of contingent events

∙ 𝑅𝑟 is the set of simple disjunctive temporal constraints over 𝑋𝑐 ∪𝑋𝑒

∙ 𝑅𝑐 is the set of simple disjunctive contingent constraints

By augmenting a TCSPU with full disjunctions over temporal constraints, we get

Disjunctive Temporal Networks with Uncertainty (DTNUs) [57].

Definition A.5. DTNU [44]

A DTNU is a 4-tuple ⟨𝑋𝑒, 𝑋𝑐, 𝑅𝑟, 𝑅𝑐⟩ where:

∙ 𝑋𝑒 is the set of executable events

∙ 𝑋𝑐 is the set of contingent events

∙ 𝑅𝑟 is the set of full disjunctive temporal constraints over 𝑋𝑐 ∪𝑋𝑒

∙ 𝑅𝑐 is the set of simple disjunctive contingent constraints

It is worth noting that for DTNUs, all disjunctive contingent constraints are sim-

ple. Most models of temporal uncertainty assume that the duration of a contingent

constraint is independent of any action taken by the scheduler. Accordingly, allowing

disjunctive constraints to span different contingent constraints or to span contingent

and requirement constraints would violate the spirit of this approach.

The concepts of strong, weak, and dynamic controllability as defined for STNUs

scale immediately to temporal networks with disjunctions. However, the introduction

of disjunctions makes the act of computing controllability much more difficult. The

186

best available algorithms for deciding strong controllability of temporal networks with

uncertainty and disjunction are in EXPSPACE [44]. Dynamic and weak controlla-

bility of these networks can be computed in EXPTIME, but these approaches also

use exponential space. It is unknown whether any form of controllability checking for

DTNUs or TCSPUs can be done in polynomial space [16, 57].

Conditions and Temporal Uncertainty

Extending STNUs instead with conditional constraints gives us Conditional Simple

Temporal Networks with Uncertainty (CSTNUs) [30].

Definition A.6. CSTNU [18]

A CSTNU is a tuple ⟨𝑋𝑒, 𝑋𝑐, 𝑅𝑒, 𝑃, 𝑂⟩ where:

∙ 𝑋𝑒 is a set of executable events

∙ 𝑋𝑐 is a set of contingent events

∙ 𝑅𝑟 is a set of requirement constraints of the form 𝜓𝑟 → (𝑙𝑟 ≤ 𝑥𝑟 − 𝑦𝑟 ≤ 𝑢𝑟),

where 𝑥𝑟, 𝑦𝑟 ∈ 𝑋𝑒 ∪𝑋𝑐, 𝜓𝑟 is a label representing a conjunction of propositions

or their negations, and 𝑙𝑟, 𝑢𝑟 ∈ R

∙ 𝑅𝑐 is a set of contingent constraints of the form 0 ≤ 𝑙𝑟 ≤ 𝑐𝑟 − 𝑒𝑟 ≤ 𝑢𝑟, where

𝑐𝑟 ∈ 𝑋𝑐, 𝑒𝑟 ∈ 𝑋𝑒 and 𝑙𝑟, 𝑢𝑟 ∈ R

∙ 𝑃 is a set of propositions

∙ 𝑂 is a function mapping propositions in 𝑃 to the events where their values are

observed

With CSTNUs, we now have two sources of external uncertainty, the observed

values of propositions and the realized durations of contingent constraints. While

we could evaluate consistency and controllability conditions separately (e.g. checking

whether a network is strongly consistent while being dynamically controllable), we

typically consider the two jointly. In other words, we assume that both the dura-

tions of contingent constraints and the values of the propositions are either never

187

observed, all observed before execution, or observed along the way when we evaluate

strong, weak, and dynamic controllability, respectively. Dynamic controllability of

CSTNUs belongs to EXPTIME [16], but the complexity of checking strong and weak

controllability are still open questions.

Conditions, Disjunctions, and Temporal Uncertainty

Finally, we combine conditions, disjunctions, and temporal uncertainty in a single

network to get Conditional Disjunctive Temporal Networks with Uncertainty (CDT-

NUs).

Definition A.7. CDTNU

A CDTNU is a tuple ⟨𝑋𝑒, 𝑋𝑐, 𝑅𝑒, 𝑃, 𝑂⟩ where:

∙ 𝑋𝑒 is a set of executable events

∙ 𝑋𝑐 is a set of contingent events

∙ 𝑅𝑒 is a set of requirement constraints of the form⋁︀
𝑘

𝜓𝑟,𝑘 → (𝑙𝑟,𝑘 ≤ 𝑥𝑟,𝑘 − 𝑦𝑟,𝑘 ≤ 𝑢𝑟,𝑘), where 𝑥𝑟,𝑘, 𝑦𝑟,𝑘 ∈ 𝑋, 𝜓𝑟,𝑘 is a label represent-

ing a conjunction of propositions or their negations, and 𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

∙ 𝑅𝑐 is a set of simple disjunctive contingent constraints

∙ 𝑃 is a set of propositions

∙ 𝑂 is a function mapping propositions in 𝑃 to the events where their values are

observed

We can apply the same techniques as those found in CSTNUs and DTNUs to

show that dynamic controllability of CDTNUs can be computed in EXPTIME [16].

Algorithms for strong and weak controllability of CDTNUs have not yet been devel-

oped.

188

A.1.3 Polynomial Time Hierarchy

Before we continue to the actual complexity results it is useful to briefly introduce

the polynomial-time hierarchy [50], as it will allow us to more precisely characterize

the difficulty of some of our controllability problems.

The classes Σ𝑃
𝑘 and Π𝑃

𝑘 are defined recursively. We start with Σ𝑃
1 = NP and Π𝑃

1 =

coNP and define Σ𝑃
𝑘+1 as NPΣ𝑃

𝑘 and Π𝑃
𝑘+1 as coNPΣ𝑃

𝑘 , where 𝐴𝐵 represents the set

of problems that can be solved in complexity class 𝐴 if an oracle for a 𝐵-complete

problem is provided.

In this appendix, we will pay close attention to the complexity classes Σ𝑃
2 and

Π𝑃
2 and will make heavy use of the fact that Σ𝑃

𝑘 = coΠ𝑃
𝑘 and that ∀∃3SAT is a Π𝑃

2 -

complete problem, where ∀∃3SAT is the problem of determining whether for a given

3-CNF Φ(𝑥⃗, 𝑦⃗) it is the case that for all 𝑦⃗, there exists 𝑥⃗, such that Φ(𝑥⃗, 𝑦⃗) is true

[50]. Σ𝑃
𝑘 and Π𝑃

𝑘 are also known to be fully contained within PSPACE, meaning that

membership to any complexity class in the polynomial-time hierarchy guarantees the

existence of a deterministic algorithm that uses at most polynomial space.

A.1.4 Evaluating Complexity

While complexity results for the base temporal networks we have described are well-

known, very few tight bounds exist for the networks derived from their composition,

despite the fact that much work has been done to develop algorithms for them. Many

of their hardness lower-bounds can be inherited from the base temporal networks,

but it is an open question whether or not they are tight.

In this subsection, we will prove complexity class completeness results for each of

strong, weak, and dynamic controllability for each network, updating the hardness

lower-bounds as needed before demonstrating membership to the appropriate class.

When describing the controllability decision problems, we will use the prefixes SC-,

WC-, and DC- to refer to checking the strong, weak, and dynamic controllability of

the denoted temporal network, respectively.

189

Hardness Results

We start by providing tighter hardness lower-bounds for the controllability problems

across temporal networks. Existing results for CSTNs give us appropriate lower-

bounds for CSTNUs, but for the temporal networks with disjunction and uncertainty,

we need tighter analysis than the NP-hardness provided by TCSPs and DTNs.

Lemma A.1. Checking the weak controllability of a TCSPU is Π𝑃
2 -hard.

Proof. To show WC-TCSPU is Π𝑃
2 -hard, we will provide a reduction from ∀∃3SAT.

In other words, we want to construct a TCSPU 𝑇 such that a formula ∀𝑦⃗,∃𝑥⃗ : 𝜑(𝑥⃗, 𝑦⃗)

is weakly controllable if and only if 𝑇 is weakly controllable, where 𝑥⃗, 𝑦⃗ are vectors of

boolean values, and 𝜑 is a 3-CNF formula.

We start by defining our events, starting with a reference event 𝑍. For each 𝑥𝑖,

we construct event 𝑡𝑥𝑖 with disjunctive constraint 𝑡𝑥𝑖 −𝑍 ∈ [0, 0]∪ [1, 1]. For each 𝑦𝑗,

we also construct event 𝑡𝑦𝑗 with contingent constraint 𝑡𝑦𝑗 − 𝑍 ∈ [0, 0] ∪ [1, 1]. These

events will represent the initial values chosen against which we will evaluate 𝜑 with

0 corresponding to an assignment of false and 1 corresponding to true.

For convenience, we also add events corresponding to the negations of each vari-

able. 𝑡𝑥𝑖 has two corresponding constraints, 𝑡𝑥𝑖 − 𝑍 ∈ [0, 0] ∪ [1, 1] and 𝑡𝑥𝑖 − 𝑡𝑥𝑖 ∈

[−1,−1] ∪ [1, 1]. This ensures that 𝑡𝑥𝑖 takes on a different value than 𝑡𝑥𝑖 . Simi-

larly, we add new events 𝑡𝑦𝑗 with requirement constraints 𝑡𝑦𝑗 − 𝑍 ∈ [0, 0] ∪ [1, 1] and

𝑡𝑦𝑗 − 𝑡𝑦𝑗 ∈ [−1,−1] ∪ [1, 1]. We will rely on the fact that we are evaluating weak

controllability to ensure that we set the events for the negated variables in response

to the values assigned by nature.

We now move on to encoding each individual clause of 𝜑 into our TCSPU 𝑇 . Our

approach is going to be highly inspired by the reduction from 3SAT to the 3-coloring

problem on graphs and the reduction from 3-coloring to computing feasibility of a

TCSP [22]. We will emulate the three colors by requiring all events to occur at

time 0, 1, or 2 and enforce that two nodes 𝑡𝑖, 𝑡𝑗 differ in value by requiring that

𝑡𝑖 − 𝑡𝑗 ∈ {−2,−1, 1, 2}.

For each clause 𝑐𝑘 of 𝜓, we create a new gadget whose output represents the truth

190

Requirement Link

Gk,1

Ak,1 Ak,2

Ak,3

Ak,4

Ak,6

Ak,5

Gk,2 Gk,3

{-2, -1,
1, 2}

{-2, -1,
1, 2}

{-2, -1,
1, 2}

[1, 1]

{-2, -1,
1, 2}

{-2, -1,
1, 2}

{-2, -1,
1, 2} {-2, -1,

1, 2}

{-2, -1,
1, 2}

{-2, -1,
1, 2}

{-2, -1, 1, 2}

Z

Figure A-2: A gadget used in the proof that WC-TCSPU is Π𝑃
2 -hard. The 𝐴𝑘 events

can each take on any value from {0, 1, 2}. The value 𝐴𝑘,6 represents the disjunction
of 𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 and is constrained to equal one.

value of 𝑐𝑘 (see Figure A-2). Each event 𝐺𝑘,𝑙 represents the truth value of literal 𝑙 of

clause 𝑐𝑘. We require that the value matches the initially assigned value of literal 𝑞

by adding the constraint 𝐺𝑘,𝑙 − 𝑡𝑞 = 0. The layout of events 𝐴𝑘 weakly emulate an

or-gate, where 𝐴𝑘,6 is the output and constrained to have a value of 1. For any values

of the events 𝐺𝑘, it is possible to assign all of the events 𝐴𝑘 such that 𝐴𝑘,6 = 1 except

for when 𝐺𝑘,1 = 𝐺𝑘,2 = 𝐺𝑘,3 = 0. As a result, it is possible to choose a set of values

for the events to satisfy the constraints of the gadget so long as at least one literal of

the original clause 𝑐𝑘 is true.

Taken together, if there exists an assignment of values to events such that each

gadget’s constraints are satisfied, then for whichever particular 𝑦⃗ we start with, then

191

∃𝑥⃗ : 𝜑(𝑥⃗, 𝑦⃗). When checking weak controllability, all executable events are assigned

values after the contingent events, so as we have constructed it, 𝑇 is weakly control-

lable if and only if ∀𝑦⃗,∃𝑥⃗ : 𝜑(𝑥⃗, 𝑦⃗). Thus, WC-TCSPU is Π𝑃
2 -hard.

Lemma A.2. Checking the dynamic controllability of a TCSPU is PSPACE-hard.

Proof. To show that DC-TCSPU is PSPACE-hard, we provide a reduction from

TQBF, which is known to be PSPACE-complete, to DC-TCSPU. In particular, for

a problem of the form ∃𝑥1∀𝑦1...∃𝑥𝑛∀𝑦𝑛 : 𝜑(𝑥⃗, 𝑦⃗), we construct a TCSPU 𝑇 such that

𝑇 is dynamically controllable if and only if ∃𝑥1∀𝑦1...∃𝑥𝑛∀𝑦𝑛 : 𝜑(𝑥⃗, 𝑦⃗), where 𝜑 is a

3-CNF formula.

Ideally, we would employ a strategy similar to our transformation for WC-TCSPU

in Lemma A.1, but in that construction, many of the clausal gadget events can occur

before the contingent events they relate to are assigned by nature. Because dynamic

controllability requires events to be assigned reactively in a just-in-time manner, we

must make sure that all values of 𝑦⃗ are encoded and specified by the network before

we do any subsequent computation.

We start by encoding the alternating choice of 𝑥𝑖 and 𝑦𝑖 as represented by the

values decided by the scheduler and nature. We start with an anchor point 𝑂 and

for each 𝑥𝑖 and 𝑦𝑖, we create events 𝜏𝑥𝑖,𝑠, 𝜏𝑥𝑖,𝑒, 𝜏𝑦𝑖,𝑠, and 𝜏𝑦𝑖,𝑒. For each 𝑥𝑖, we create

a requirement constraint of 𝜏𝑥𝑖,𝑒 − 𝜏𝑥𝑖,𝑠 ∈ [0, 0] ∪ [1, 1], and for each 𝑦𝑖, we create a

contingent constraint of 𝜏𝑦𝑖,𝑒 − 𝜏𝑦𝑖,𝑠 ∈ [0, 0] ∪ [1, 1]. This enforces that the difference

between the start and end values is either 0 or 1, corresponding to an assignment of

false or true in the original formula. To ensure that the values are chosen in order

when evaluated in a dynamic controllability setting, we require that 𝜏𝑥𝑖,𝑠−𝑂 = 2𝑖−2

and that 𝜏𝑦𝑖,𝑠 − 𝑂 = 2𝑖− 1. This gives us the exact alternating pattern as described

by the original formula, and what remains is to evaluate the truth condition.

Our strategy for evaluating the truth of the formula is to replicate the same

structures used by the constructed TCSPU in Lemma A.1. We create a secondary

anchor point 𝑍 with 𝑍−𝑂 = 2𝑛+2 to ensure that 𝑍 happens after all boolean values

have been assigned, and then create new events corresponding to the values of 𝑥⃗ and

192

𝑦⃗ that are anchored at 𝑍 instead of at different times during the execution. For each

𝑥𝑖, we create 𝑡𝑥𝑖 with the constraint 𝑡𝑥𝑖−𝜏𝑥𝑖,𝑒 = 2(𝑛− 𝑖)+4, and for each 𝑦𝑖, we create

𝑡𝑦𝑖 with the constraint 𝑡𝑦𝑖 − 𝜏𝑦𝑖,𝑒 = 2(𝑛− 𝑖) + 3. The rest of the construction, namely

the construction of the negated literal values and the clausal gadgets, remains the

same, and by the same reasoning, we see that it is possible for a given assignment,

it is possible for all constraints to be respected if and only if 𝜑 is satisfied by that

assignment of values. Since the initial events are set up such that when the entire

network is dynamically controllable the values of events are chosen in the same order

as the quantification of the original TQBF formula, we know that 𝑇 is dynamically

controllable if and only if ∃𝑥1∀𝑦1...∃𝑥𝑛∀𝑦𝑛 : 𝜑(𝑥⃗, 𝑦⃗). Because the new network can be

constructed in polynomial time, we have a polynomial time reduction from TQBF to

DC-TCSPU, so DC-TCSPU is PSPACE-hard.

Lemma A.3. Checking the strong controllability of a DTNU is Σ𝑃
2 -hard.

Proof. To prove that SC-DTNU is Σ𝑃
2 -hard, we will reduce the complement of ∀∃3SAT,

a Π𝑃
2 -complete problem, to SC-DTNU.

An example problem of ∀∃3SAT is of the form ∀𝑥⃗,∃𝑦⃗ : 𝜑(𝑥⃗, 𝑦⃗), where 𝑥⃗, 𝑦⃗ are

vectors of boolean values and 𝜑 is a 3-CNF formula. The complementary problem is

∃𝑥⃗,∀𝑦⃗ : 𝜓(𝑥⃗, 𝑦⃗), where 𝜓 is a 3-DNF formula representing the negation of 𝜑. Given the

input problem, we construct a corresponding DTNU 𝐷 that is strongly controllable

if and only if the complementary formula 𝜓 is true (if the original formula 𝜑 is false).

First we define the events of𝐷. We start with a reference event 𝑍, which represents

the first point to be executed. For each 𝑥𝑖 ∈ 𝑥⃗, we add points 𝑡𝑥𝑖 and 𝑡𝑥𝑖 to represent

the value of 𝑥𝑖 and its negation during some candidate assignment to our formula.

We do the same thing for 𝑦⃗ adding 𝑡𝑦𝑗 and 𝑡𝑦𝑗 for each 𝑦𝑗 ∈ 𝑦⃗. We also introduce

a new gadget per clause of 𝜓 (see Figures A-3 and A-4) and in each gadget, we

introduce ten new events. Events 𝐺𝑘,1, 𝐺𝑘,2, and 𝐺𝑘,3 represent the values of each

literal of clause 𝑘 and event 𝐺𝑘,𝑎𝑛𝑑 represents the value of the conjunction of those

literals. For each clause, we also add 𝐴𝑘,1, 𝐴𝑘,2, 𝐴𝑘,3, 𝐴𝑘,4, 𝐴𝑘,5, and 𝐴𝑘,6 which are

193

used collectively to simulate an and clause. By appropriately adding contingent and

requirement constraints between these events, we will get a DTNU that is controllable

if and only if the original formula 𝜓 is true.

We start by adding constraints to encode the initial assignment of values. For

each 𝑡𝑥𝑖 we add a simple disjunctive constraint requiring that 𝑡𝑥𝑖 − 𝑍 ∈ [0, 0] ∪ [1, 1].

Similarly, for each 𝑡𝑦𝑗 , we add a disjunctive contingent constraint enforcing 𝑡𝑦𝑗 −𝑍 ∈

[0, 0] ∪ [1, 1]. The choice of values for these initial events maps directly back to

an assignment of values in the 3-DNF formula 𝜓 with 0 representing false and 1

representing true.

We also enforce the values of the negations of these variables for convenience,

with the same simple disjunctive constraint requiring 𝑡𝑥𝑖 − 𝑍 ∈ [0, 0] ∪ [1, 1] and

the disjunctive contingent constraint enforcing 𝑡𝑦𝑗 − 𝑍 ∈ [0, 0] ∪ [1, 1]. To ensure

that 𝑥𝑖 and its negation take on values we also add the requirement that 𝑡𝑥𝑖 − 𝑡𝑥𝑖 ∈

∪[−1,−1]∪ [1, 1]. We will discuss our strategy for ensuring that the values of 𝑡𝑦𝑗 and

𝑡𝑦𝑗 differ below.

We now move on to the constraints associated with the clausal gadgets. 𝐺𝑘,𝑙

represents the truth value of the 𝑙𝑡ℎ element of clause 𝑘, and 𝐺𝑘,𝑎𝑛𝑑 represents the

truth value of the entire clause; each event, 𝐺𝑘,*, that is newly created for the gadget

is initialized using a contingent constraint enforcing 𝐺 − 𝑍 ∈ [0, 0] ∪ [1, 1]. We also

create a disjunctive constraint across all gadgets, such that if for any 𝑘, 𝐺𝑘,𝑎𝑛𝑑−𝑍 = 1,

then the constraint is satisfied. We call this disjunctive constraint the goal constraint.

This has an immediate correspondence to the notion that the entire formula 𝜓 is

satisfied if any of its constituent clauses is satisfied.

Our current construction makes heavy use of contingent constraints, and while

we may want the events in our gadgets to represent certain values, their values are

chosen by nature, meaning we have no way to directly control their values.

However, we do have control over the constraints of 𝐷 and, in particular, the

disjunctive constraint that spans the gadgets. Checking strong controllability can be

seen as a two-player game, where the scheduler goes first and nature goes second.

Nature’s goal is to construct an assignment such that some constraint is violated.

194

Disjunctive Link

Gk,1

Z

Ak,1 Ak,2

Ak,3

Ak,4

Ak,6

Ak,5

Gk,2 Gk,3

Gk,and

[1, ∞)

[1, ∞)

(-∞, -1]

[1, 1]

[1, ∞)

[0, 0]

[0, 0]

[0, 0]

[0, 0] [0, 0]

[0, 0][0, 0]

[0, 0]

[0, 0]

[0, 0]

Figure A-3: A description of the disjunctive goal constraints found in each gadget
used in the proof that SC-DTNU is Σ𝑃

2 -hard. The 𝐴𝑘 event can each take on any
value from {0, 1, 2}. The value 𝐴𝑘,6 will only be precluded from taking on a value of
0 when all of 𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 are 1. The disjunctive constraints of this gadget are all
individual parts of the larger collective disjunctive goal constraint.

Upon closer examination, we see that in our construction, the only constraint that

can be affected by the contingent constraint durations chosen by nature is the goal

constraint. If there exist certain combinations of contingent constraint durations

that we want to preclude from our evaluation, we preclude them by adding additional

195

Gk,1

Z

Ak,1 Ak,2

Ak,3

Ak,4

Ak,6

Ak,5

Gk,2 Gk,3

Gk,and

Contingent Link

{0, 1}

{0, 1, 2} {0, 1, 2}

{0, 1, 2}

{0, 1, 2}

{0, 1, 2}

{0, 1, 2}

{0, 1}{0, 1} {0, 1}

Figure A-4: A description of the contingent constraints found in each gadget used in
the proof that SC-DTNU is Σ𝑃

2 -hard. The constraints between 𝑍 and each 𝐺𝑘,𝑙 are
contingent constraints but are constrained to be equal in length to the original 𝑥𝑖, 𝑦𝑗
they relate to using the shared disjunctive goal constraint.

disjunct to the goal constraint that are satisfied when those contingent constraints

take on those durations. In this way, any contingent constraint values that do not

conform to our desired structure make 𝐷 trivially controllable, and controllability

then reduces to controllability under our desired set of constraints across contingent

constraints.

196

First, we need to make sure that the events 𝑡𝑦𝑗 and 𝑡𝑦𝑗 take on different values.

We ensure this by adding 𝑡𝑦𝑗 − 𝑡𝑦𝑗 = 0 to our goal constraint; if nature gives 𝑡𝑦𝑗 and

𝑡𝑦𝑗 the same value, then we trivially ignore this case. Similarly, since we want 𝐺𝑘,𝑙

to take on the same value as the literal 𝑞 it represents, we augment our disjunctive

goal constraint with 𝐺𝑘,𝑙 − 𝑡𝑞 ∈ [−1,−1] and 𝐺𝑘,𝑙 − 𝑡𝑞 ∈ [1, 1] where 𝑡𝑞 is the event

associated with literal 𝑞. As a result, if the clausal representation of the variable

differs from our assignment, our network is trivially controllable.

We enforce the conjunction of the elements of each clause by augmenting our goal

constraint with 𝐺𝑘,𝑎𝑛𝑑 −𝐺𝑘,𝑙 ≥ 1 for each 𝐺𝑘,𝑙 of our clause gadget. Since each event

of our gadget can take on a value of 0 or 1, this constraint will only be satisfied if some

literal value is 0 while 𝐺𝑘,𝑎𝑛𝑑 has a value of 1. In these situations, 𝐺𝑘,𝑎𝑛𝑑 does not

represent the conjunction of the literals of clause 𝑘, and our network then becomes

trivially controllable.

Unfortunately, our network still does not perfectly encode the conjunction seen in

a DNF clause. It is possible for each 𝐺𝑘,𝑙 to take on a value of 1 while 𝐺𝑘,𝑎𝑛𝑑 is assigned

a value of 0. As a result, it may be the case that the original problem, ∃𝑥⃗∀𝑦⃗𝜓(𝑥⃗, 𝑦⃗) is

true but each 𝐺𝑘,𝑎𝑛𝑑 is set to 0, meaning that the network is not strongly controllable.

To fix this, we must augment our gadget to enforce that identical inputs have the

same output. This is the reason for introducing events 𝐴𝑘,𝑚, and these events’ values

are set by new contingent constraints that enforce 𝐴𝑘,𝑚 − 𝑍 ∈ [0, 0] ∪ [1, 1] ∪ [2, 2].

Through an exhaustive enumeration of possible values, we can confirm that whenever

𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 are all 1, either 𝐴𝑘,6 will be 1 or one of the disjuncts of the goal

constraints (see Figure A-3) will be satisfied. In this case, when we add 𝐴𝑘,6−𝐺𝑘,𝑎𝑛𝑑 ≥

1 to the goal constraint, we know that when 𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 are all equal to 1, 𝐷 is

controllable, as either 𝐺𝑘,𝑎𝑛𝑑 = 1, meaning 𝐺𝑘,𝑎𝑛𝑑 − 𝑍 = 1, which satisfies the goal

constraint, or 𝐺𝑘,𝑎𝑛𝑑 = 0, implying 𝐴𝑘,6 − 𝐺𝑘,𝑎𝑛𝑑 = 1, which also satisfies the goal

constraint.

Before continuing, we need to confirm that the addition of the new sub-gadget

does not introduce any new problems. For all other values of 𝐺𝑘,1, 𝐺𝑘,2, and 𝐺𝑘,3, we

know it is possible for 𝐴𝑘,6 to take on a value of 0. Since 𝐴𝑘,6 is the only event of

197

the or-gate that is related to other values by the goal constraint and setting it to 0

does not satisfy the goal constraint, we know that if 𝐺𝑘,1, 𝐺𝑘,2, 𝐺𝑘,3 are not all 1, then

there exists a choice of values by nature such that the goal constraint is not satisfied

by gadget 𝑘.

Our transformation is complete and because there is one gadget per clause in 𝜓 and

each gadget is of constant size, we see that the transformation takes polynomial time.

What remains is to show that 𝐷 is strongly controllable if and only if ∃𝑥⃗∀𝑦⃗𝜓(𝑥⃗, 𝑦⃗) is

true. This is evident from our construction.

If 𝐷 is strongly controllable, there must be some set of assignment to values 𝑡𝑥𝑖
such that no possible assignment of values to the other events violates any of the

constraints. We prove this by contradiction, assuming that although our choice of

𝑡𝑥𝑖 guarantees the satisfaction of all other constraints in 𝐷, there is no choice of 𝑥⃗

that guarantees satisfaction of ∀𝑦⃗𝜓(𝑥⃗, 𝑦⃗). Let 𝑥⃗ be specified such that 𝑥𝑖 is true if

and only if 𝑡𝑥𝑖 = 1. If 𝜓 is not guaranteed to be satisfied, there must be some 𝑦⃗

such that 𝜓(𝑥⃗, 𝑦⃗) is false. Returning to 𝐷, assume that nature specifies 𝑡𝑦𝑗 such that

𝑡𝑦𝑗 = 1 if and only if 𝑦𝑗 is true. Since 𝐷 is strongly controllable, we know that

some disjunctive goal constraint is satisfied no matter the assignment of contingent

event variables. Let’s assume that all 𝑡𝑦𝑗 are chosen such that they represent the

negation of their corresponding 𝑡𝑦𝑗 , that all 𝐴𝑘,𝑚 of the gadgets are chosen such that

the disjunctive constraints involved between all 𝐺𝑘,𝑙 and 𝐴𝑘,𝑚 are not satisfied, and

that all 𝐺𝑘,𝑎𝑛𝑑 are chosen to be 0. The only remaining disjunctive constraints are

those involving each 𝐺𝑘,𝑎𝑛𝑑. For any particular 𝑘, setting 𝐺𝑘,𝑎𝑛𝑑 to 0 only satisfies a

constraint if 𝐴𝑘,6 is 1, so given all these assumptions, at least one 𝐴𝑘,6 must be set to

1 (otherwise the system would be uncontrollable). As we demonstrated earlier, 𝐴𝑘,6

is only constrained to be 1 when all of 𝐺𝑘,1, 𝐺𝑘,2, and 𝐺𝑘,3 are also 1. But those three

values correspond exactly to literals in a clause of 𝜓(𝑥⃗, 𝑦⃗). If all three are 1, then we

have a true clause and because 𝜓 is a 3-DNF formula, this means that 𝜓 is true. We

have a contradiction. Therefore if 𝐷 is controllable, ∃𝑥⃗∀𝑦⃗𝜓(𝑥⃗, 𝑦⃗).

To conclude we show the reverse direction, that if ∃𝑥⃗∀𝑦⃗𝜓(𝑥⃗, 𝑦⃗) is true, then 𝐷 is

strongly controllable. Let 𝑥⃗ be the assignment of variables that guarantees ∀𝑦⃗𝜓(𝑥⃗, 𝑦⃗);

198

we show how to use 𝑥⃗ to show that 𝐷 is strongly controllable. We pick our 𝑡𝑥𝑖 such

that 𝑡𝑥𝑖 = 1 if and only if 𝑥𝑖 is true and will pick our 𝑡𝑥𝑖 such that 𝑡𝑥𝑖 ̸= 𝑡𝑥𝑖 . Again,

we proceed with proof by contradiction, assuming that 𝐷 is not strongly controllable.

Our choice of 𝑡𝑥𝑖 and 𝑡𝑥𝑖 satisfy all constraints except the disjunctive goal constraint, so

there must be a choice of contingent events that violate the disjunctive goal constraint.

We know setting 𝐺𝑘,𝑎𝑛𝑑 = 1 satisfies the goal constraint, so all 𝐺𝑘,𝑎𝑛𝑑 = 0. By proxy,

for all 𝑘, 𝐴𝑘,6 = 0 to ensure that the goal constraint is not satisfied because of the

constraint between 𝐴𝑘,6 and 𝐺𝑘,𝑎𝑛𝑑. Because 𝐴𝑘,6 = 0, it must be the case that for

each gadget, at least one of 𝐺𝑘,1, 𝐺𝑘,2, or 𝐺𝑘,3 must equal zero. In order for the goal

disjunctive constraint to remain unsatisfied, each 𝐺𝑘,𝑙 must maintain the same value

as some 𝑡𝑥𝑖 , 𝑡𝑥𝑖 , 𝑡𝑦𝑗 , or 𝑡𝑦𝑗 based on the values of the clauses of 𝜑. This forces a

particular assignment of values to 𝑡𝑦𝑗 which can be mapped back to some 𝑦⃗. For that

particular assignment, we know that 𝜓(𝑥⃗, 𝑦⃗) is true, or that there is some clause 𝑘′

with all literals set to true. This contradicts the fact that for all 𝑘, at least one of

𝐺𝑘,1, 𝐺𝑘,2, or 𝐺𝑘,3 must be zero. Thus, 𝐷 must be strongly controllable, and we have

proven that SC-DTNU is Σ𝑃
2 -hard.

Completeness

We now move on to proving completeness for the controllability problems on each

temporal network. Our general approach for characterizing the complexity of con-

trollability problems will be to map an inputted temporal network to a corresponding

system of conditional linear inequalities that encode the same constraints. We will

then use existential and universal quantifiers over the variables to dictate which type

of controllability is being determined.

Our transformation proceeds as follows. We imagine the execution of a temporal

network as being a game played between two agents, the scheduler and nature, where

the scheduler assigns times to executable events and nature assigns times to contin-

gent events. In general the question of determining controllability will reduce to the

problem of evaluating a quantified linear system and our techniques draw inspiration

199

from and are related to approaches in those areas [24, 51].

For notational convenience, we will split our variables into 𝑥⃗ and 𝑦⃗ for those

assigned by the scheduler and nature, respectively. For each executable event 𝑒𝑖, we

create a new variable 𝑥𝑖, and for each contingent event 𝑐𝑖, we create a new variable

𝑦𝑖.

We create a one-to-one mapping between the set of temporal network constraints

and the new linear inequalities. First, we replace all executable events 𝑒𝑖 with the

corresponding 𝑥𝑖. With the contingent events, however, we need to be more careful.

For each contingent event 𝑐𝑖, we find the contingent constraint that restricts it of the

form 𝑙𝑐 ≤ 𝑐𝑖 − 𝑒𝑗 ≤ 𝑢𝑐. We then replace each instance of 𝑐𝑖 in our constraints with

𝑦𝑖+𝑥𝑗. Our reason for doing this has to do with the nature of contingent constraints.

In temporal networks, there is a guarantee that nature respects the contingent con-

straint bounds in relation to its corresponding starting executable event. So while free

constraints relate events in terms of the absolute time of their occurrence, contingent

constraints require nature to respect relative timings of events. If the durations of

contingent constraints are to be known before scheduling begins, as is the case with

weak controllability, then the constructed system of linear inequalities will fail to map

to the base temporal network if nature is asked to pick the precise times of contingent

events.

After the substitutions, each constraint is a combination of conditional linear in-

equalities of the form 𝜓 → 𝑎⃗ ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏, where 𝑏 is some constant, 𝜓 is a (possibly

empty) precondition for the enforcement of the constraint, and 𝑎⃗ represents the coeffi-

cients of the constraints where each coefficient is either -1, 0, or 1. Since all constraints

are relative, without loss of generality, we specify that the earliest event happens at

time 𝑡 = 0, meaning we can safely require that 𝑥⃗ ≥ 0. When we quantify over vari-

ables to pick controllability, we require that each 𝑥𝑖 has an existential quantifier and

each 𝑦𝑖 has a for-all quantifier drawn from the union of the ranges [𝑙1, 𝑢1], ..., [𝑙𝑑, 𝑢𝑑],

where 𝑙𝑗 and 𝑢𝑗 are retrieved from one of 𝑐𝑖’s corresponding contingent constraints.

When evaluating controllability for disjunctive networks, it is useful to consider

200

each contingent range separately, and so we will define Ω as a mapping from each

variable 𝑦𝑖 and one of its possible continuous ranges. In general, we will use the

shorthand ∀Ω to indicate that we are considering all possible mappings and ∀𝑦⃗ ∈ Ω

to specify that we are drawing our 𝑦⃗ from one particular mapping. Our choice of the

ordering of the quantifiers will dictate which type of controllability will be considered.

We also must consider how conditions affect our model, and will define Ψ as the full

set of conditions that can be observed by the scheduler when our temporal networks

include conditional constraints.

It is also worth noting that whenever we consider a vector of values 𝑥𝑐 that repre-

sent a solution to our scheduling problem, we assume that the representation of 𝑥𝑐 is

polynomial in the size of the original input. While we are agnostic to which particular

representation is used, we do still require a fixed number of bits required to represent

each individual number. The implication of this is that between any two numbers,

there are a finite number of intermediate values that can be represented.

The rest of our analysis is divided into an analysis of strong controllability over

temporal networks, weak controllability over temporal networks, and dynamic con-

trollability over temporal networks.

Strong Controllability

Theorem A.4. Checking strong controllability of a CSTNU is in P.

Proof. We start by encoding the SC-CSTNU problem in our described format:

∃𝑥⃗∀𝑦⃗∀Ψ :
⋀︁
𝑖

𝜓𝑖 → 𝑎𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖

Because ∀
⋀︀
𝜑 is the same as

⋀︀
∀𝜑, we can rewrite our problem as:

∃𝑥⃗∀𝑦⃗
⋀︁
𝑖

∀Ψ : 𝜓𝑖 → 𝑎𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖

201

Since the inner equation must hold for all Ψ, it must also hold when 𝜓𝑖 is true,

allowing us to eliminate the conditionals:

∃𝑥⃗∀𝑦⃗
⋀︁
𝑖

: 𝑎𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖

But of course, this is exactly the encoding for checking strong controllability of an

STNU. Since STNU strong controllability is verifiable in polynomial time [58], our

work demonstrates that strong controllability of a CSTNU can be determined in

polynomial time through reduction to an STNU.

Theorem A.5. Checking the strong controllability of TCSPUs is NP-complete.

Proof. We know that checking the feasibility of a TCSP is NP-hard [22], and because

TCSPUs are a generalization of TCSPs, it follows that SC-TCSPU is NP-hard. To

prove completeness, we show that SC-TCSPU ∈ NP.

In a TCSPU, all disjunctive requirement constraints span the same pair of vari-

ables, meaning that every requirement constraint is of the form 𝑡𝑖 − 𝑡𝑗 ∈ [𝑙1, 𝑢1] ∪

... ∪ [𝑙𝑘, 𝑢𝑘], where for every 𝑝 < 𝑞, 𝑢𝑝 < 𝑙𝑞. This allows us to rewrite all individual

constraints as:

𝑡𝑖 − 𝑡𝑗 ≥ 𝑙1 ∧

(︃
𝑘⋀︁
𝑝=2

𝑡𝑖 − 𝑡𝑗 ≤ 𝑢𝑝−1 ∨ 𝑡𝑖 − 𝑡𝑗 ≥ 𝑙𝑝

)︃
∧

𝑡𝑖 − 𝑡𝑗 ≤ 𝑢𝑘

Now when we encode strong controllability of a TCSPU, we can write the formula as:

∃𝑥⃗∀𝑦⃗ :
⋀︁
𝑖

⋁︁
𝑗

𝑎𝑖𝑗 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗

202

∃𝑥⃗
⋀︁
𝑖

∀𝑦⃗ :
⋁︁
𝑗

𝑎𝑖𝑗 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗

∃𝑥⃗
⋀︁
𝑖

¬∃𝑦⃗ :
⋀︁
𝑗

𝑎𝑖𝑗 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ > 𝑏𝑖𝑗

For any fixed 𝑥̂ and 𝑖, we can solve the problem ∃𝑦⃗ :
⋀︀
𝑗

[𝑥̂𝑇 ; 𝑦⃗𝑇] · 𝑎𝑖𝑗 > 𝑏𝑖𝑗 in

polynomial time. We know that linear programs can be optimized in polynomial

time [32], and so to derive an answer for our original problem, we solve the linear

program
⋀︀
𝑗

[𝑎𝑖𝑗
𝑇 ;−1]

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥̂

𝑦⃗

𝜖

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 𝑏𝑖𝑗 maximizing 𝜖. If no solution exists, then there is no

valid 𝑦⃗. If a solution exists with 𝜖 ≤ 0, then there was some constraint for which

[𝑥̂𝑇 ; 𝑦⃗𝑇] · 𝑎𝑖𝑗 > 𝑏𝑖𝑗 did not hold as there was a non-positive margin required to make

all inequalities hold. Thus, only if 𝜖 > 0, do we say that there exists a 𝑦⃗ satisfying

our original constraints.

This immediately implies that we have a routine for verifying a certificate for SC-

TCSPU in polynomial time. Given a certificate 𝑥̂, then for each of the constraints 𝑖,

we run our subroutine for determining whether a 𝑦⃗ exists that satisfies the specified

sub-constraints. Since the verification algorithm runs in polynomial time, we know

that SC-TCSPU ∈ NP, and that SC-TCSPU is NP-complete.

Theorem A.6. Checking the strong controllability of DTNUs and CDTNUs are Σ𝑃
2 -

complete.

Proof. We know that checking the strong controllability of a DTNU is Σ𝑃
2 -hard from

Lemma A.3 and because CDTNUs generalize DTNUs, SC-CDTNU is also Σ𝑃
2 -hard.

To demonstrate that both are Σ𝑃
2 -complete, we show that checking the strong con-

trollability of a CDTNU is in Σ𝑃
2 .

To do so, we show that with an NP oracle we can verify that a CDTNU is strongly

203

controllable in polynomial time. We start with an encoding of our problem:

∃𝑥⃗∀Ψ∀Ω∀𝑦⃗ ∈ Ω :
⋀︁
𝑖

⋁︁
𝑗

𝜓𝑖𝑗 →
⋀︁
𝑘

𝑎⃗𝑖𝑗𝑘 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗𝑘

and we let our certificate be the assignment of values to all executable events, 𝑥̂.

Given this certificate, an NP-oracle is capable of evaluating:

∃Ψ∃Ω∃𝑦⃗ ∈ Ω : ¬
⋀︁
𝑖

⋁︁
𝑗

𝜓𝑖𝑗 →
⋀︁
𝑘

𝑎⃗𝑖𝑗𝑘 ·

⎡⎢⎢⎣𝑥̂
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗𝑘

We can see this simply, as when we provide a certificate comprised of Ψ̂, Ω̂, 𝑦, it takes

linear time to verify whether the conditional constraints are all satisfied.

Thus, when given a candidate assignment 𝑥̂, we can use an NP-oracle to evaluate

the negation of the remainder of the formula. If the negation has no solution, then

we know that the original formula is true, and we have a way to verify SC-CDTNU

in polynomial time. Thus, SC-CDTNU ∈ Σ𝑃
2 , so SC-DTNU and SC-CDTNU are

Σ𝑃
2 -complete.

Weak Controllability

Next, we move on to evaluating the complexity of weak controllability in temporal

networks.

Theorem A.7. Checking the weak controllability of CSTNUs is coNP-complete.

Proof. Checking the weak controllability of STNUs is coNP-complete [39], so similarly

checking the weak controllability of CSTNUs must be coNP-hard. To demonstrate

that WC-CSTNU is coNP-complete, we must show that WC-CSTNU ∈ coNP. We

see this clearly when we look at the quantified linear system we get when evaluating

204

a CSTNU’s weak controllability:

∀Ψ∀𝑦⃗∃𝑥⃗ :
⋀︁
𝑖

𝜓𝑖 → 𝑎⃗𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖

To show that WC-CSTNU is in coNP, we show that its complement problem is in

NP, or that we can verify the following formula in polynomial time:

∃Ψ∃𝑦⃗¬∃𝑥⃗ :
⋀︁
𝑖

𝜓𝑖 → 𝑎⃗𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖

In this instance, we take as our certificate a particular choice of Ψ̂ and 𝑦. We can

verify these values directly:

¬∃𝑥⃗ :
⋀︁

𝑖:Ψ̂�𝜓𝑖

𝜓𝑖 → 𝑎⃗𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦

⎤⎥⎥⎦ ≤ 𝑏𝑖

¬∃𝑥⃗ :
⋀︁

𝑖:Ψ̂�𝜓𝑖

𝑎⃗𝑖 ·

⎡⎢⎢⎣𝑥⃗
𝑦

⎤⎥⎥⎦ ≤ 𝑏𝑖

Of course, we can evaluate all linear inequalities simultaneously through the evalua-

tion of a linear program:

¬∃𝑥⃗ : 𝐴Ψ̂

⎡⎢⎢⎣𝑥⃗
𝑦

⎤⎥⎥⎦ ≤ 𝑏⃗Ψ̂

Since linear programs can be evaluated in polynomial time [32], we can verify the

complement of WC-CSTNU in polynomial time, meaning that WC-CSTNU ∈ coNP

and is coNP-complete.

Theorem A.8. Checking the weak controllability of TCSPUs, DTNUs, and CDTNUs

are Π𝑃
2 -complete.

205

Proof. By Lemma A.1, we know that computing the weak controllability of TCSPUs

are Π𝑃
2 -hard, meaning computing WC-DTNU and WC-CDTNU are both also Π𝑃

2 -

hard. To show that all three are Π𝑃
2 -complete, we must show that WC-CDTNU

∈ Π𝑃
2 . We start with the quantified formula representation of weak controllability in

a CDTNU:

∀Ψ∀Ω∀𝑦⃗ ∈ Ω∃𝑥⃗ :
⋀︁
𝑖

⋁︁
𝑗

𝜓𝑖𝑗 →

⎛⎜⎜⎝⋀︁
𝑘

𝑎⃗𝑖𝑗𝑘 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗𝑘

⎞⎟⎟⎠
For our purposes, it will be useful to show that the complementary problem is in Σ𝑃

2 :

∃Ψ∃Ω∃𝑦⃗¬∃𝑥⃗ :
⋀︁
𝑖

⋁︁
𝑗

𝜓𝑖𝑗 →

⎛⎜⎜⎝⋀︁
𝑘

𝑎⃗𝑖𝑗𝑘 ·

⎡⎢⎢⎣𝑥⃗
𝑦⃗

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗𝑘

⎞⎟⎟⎠
To prove that solving the above formula is in Σ𝑃

2 , we show that with an NP-oracle,

we can construct a verification algorithm that runs in polynomial time. Our verifier

will take in the certificate composed of Ψ̂, Ω̂, 𝑦, leaving the subproblem:

¬∃𝑥⃗ :
⋀︁
𝑖

⋁︁
𝑗:Ψ̂�𝜓𝑖𝑗

𝜓𝑖𝑗 →

⎛⎜⎜⎝⋀︁
𝑘

𝑎⃗𝑖𝑗𝑘 ·

⎡⎢⎢⎣𝑥⃗
𝑦

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗𝑘

⎞⎟⎟⎠

¬∃𝑥⃗ :
⋀︁
𝑖

⋁︁
𝑗:Ψ̂�𝜓𝑖𝑗

⋀︁
𝑘

𝑎⃗𝑖𝑗𝑘 ·

⎡⎢⎢⎣𝑥⃗
𝑦

⎤⎥⎥⎦ ≤ 𝑏𝑖𝑗𝑘

The unnegated version of this problem is clearly in NP. Given a certificate 𝑥̂, we can

verify whether or not the formula holds in linear time. As a result, with an NP-oracle,

we can solve the presented subproblem, meaning that our complement problem is in

Σ𝑃
2 and our original problem is thus in Π𝑃

2 . This proves that WC-TCSPU, WC-

DTNU, and WC-CDTNU are Π𝑃
2 -complete.

206

Dynamic Controllability

Finally, we show that checking dynamic controllability for any temporal network with

uncertainty and either disjunctions or conditional constraints is PSPACE-complete.

Theorem A.9. Checking the dynamic controllability of CSTNUs, TCSPUs, DTNUs,

and CDTNUs are PSPACE-complete.

Proof. We know from Lemma A.2 that DC-TCSPU is PSPACE-hard, meaning that

checking the dynamic controllability of DTNUs and CDTNUs must also be PSPACE-

hard. Similarly because checking the dynamic controllability of CSTNs is PSPACE-

hard [14], DC-CSTNU must also be PSPACE-hard. In order to show that determining

dynamic controllability for any of these four networks in PSPACE-complete, we pro-

vide an algorithm for checking the dynamic controllability of CDTNUs which requires

polynomial space (see Algorithm 14).

Before we explain the details of the algorithm, we need to extend some concepts

to describe a partially executed CDTNU, as our algorithm for determining dynamic

controllability will recursively act on partially executed networks. We say that events

are scheduled if they have been assigned a specific value, whether by the scheduler or

by nature. We say that a contingent constraint is active if its starting event has been

scheduled but its ending event has not. Finally, given a group of active contingent

constraints, we say that the set of all realizations from some time 𝜏 is the set of all

possible times at which the contingent constraints could end with none of them ending

sooner than 𝜏 . We now describe the operation of the algorithm before demonstrating

that it uses at most polynomial space.

The algorithm works by recursively simulating all possible strategies used by an

agent in a dynamically controllable setting. As input, it takes in a list of events

whose values have already been scheduled (either by the scheduler or by nature), a

list of active contingent constraints, a list of unexecuted events, the CDTNU, and the

current time. While there are still executable events that need to be scheduled, the

algorithm searches for one that guarantees a valid dynamically controllable strategy.

In the context of dynamic controllability, an agent only has one of two possible

207

Input: A list of events with assigned values, 𝑇 ;
A list of active contingent constraints, 𝐴;
A set of yet-to-be-executed events 𝐸;
The input CDTNU 𝐺;
The current time, 𝜏
Output: Whether the CDTNU is dynamically controllable.
CheckDC:

1 if 𝐸.𝑒𝑚𝑝𝑡𝑦() then
2 for 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∈ 𝐴.𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠𝐹𝑟𝑜𝑚(𝜏) do
3 if !𝐺.𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑇.𝑒𝑥𝑡𝑒𝑛𝑑(𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)) then
4 return(𝑓𝑎𝑙𝑠𝑒);
5 return(𝑡𝑟𝑢𝑒);
6 for 𝑡 ∈ 𝐸 do
7 for 𝜏 ′ ∈ [𝜏,𝐺.𝑡𝑀𝑎𝑥] do
8 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑← 𝑡𝑟𝑢𝑒;
9 for 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∈ 𝐴.𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠𝐹𝑟𝑜𝑚(𝜏) do

10 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡← 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛.𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡();
11 if 𝑒𝑎𝑟𝑙𝑦.𝑡𝑖𝑚𝑒 ≤ 𝜏 ′ then
12 if !CheckDC(𝑇 ∪ {𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡},
13 𝐴.𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝑠(𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡),
14 𝐸,
15 𝐺,
16 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡.𝑡𝑖𝑚𝑒) then
17 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
18 break;
19 else
20 if !CheckDC(𝑇 ∪ {EventAssignment(𝑡, 𝜏 ′)},
21 𝐴.𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝑠(EventAssignment(𝑡, 𝜏 ′)),
22 𝐸 ∖ 𝑡,
23 𝐺,
24 𝜏 ′) then
25 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
26 break;
27 if 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 then
28 return 𝑡𝑟𝑢𝑒;
29 return(𝑓𝑎𝑙𝑠𝑒);

Algorithm 14: PSPACE algorithm for checking DC-CDTNU.

actions: they can either unconditionally schedule an action or schedule an action to

occur so long as no other contingent event occurs in the interim. We model this

behavior by modeling all scheduling actions as interruptible by contingent events.

In other words, if a contingent event occurs before an event that is unconditionally

208

scheduled, the algorithm still gives the agent the choice to adapt their strategy. In

the case of an unconditionally scheduled action, the agent would just reaffirm their

previous choice.

To model all strategies, the algorithm iterates over all possible events that can

be scheduled (line 6) and all possible times at which they can be scheduled (line 7).

If at least one scheduling of an event given the input parameters is valid, then the

CDTNU is dynamically controllable. When there are no active contingent constraints

that might be scheduled before the event that is chosen to be schedule, the algorithm

will recurse on that assignment to get an answer (line 20-26). In the case that there

are contingent constraints that may occur earlier, the algorithm must respond to them

in turn (lines 9-18). If all possible realizations of contingent constraint values still

guarantee that the CDTNU is consistent, then the system is dynamically controllable.

Now, we show that the algorithm uses at most polynomial space. If there are no

more events to schedule, then the algorithm remains in lines 1-5 of the algorithm,

which check consistency over all possible realizations of the remaining contingent

constraints. Checking consistency is a polynomial time operation, as it just requires

iterating through each constraint and verifying that it is satisfied. While there are

exponentially many such realizations, the algorithm does not have to store each par-

ticular realization; instead it merely has to remember the current realization and

know how to increment to the next one. As a result, handling all realizations also

takes polynomial space.

In the event that there are executable events to schedule, the algorithm operates

over lines 6-29. Iterating over each event at line 6 takes polynomial space, and when

iterating over all 𝜏 ′ at line 7, there exist an exponentially large but finite number of

values to choose from, but it only takes polynomially many bits to represent such

a choice. At line 9, the algorithm handles realizations in the same way it did at

line 2, meaning it only needs polynomial space, and then the space needed for the

remaining recursive calls. If we look at the number of possible stack frames, we see

that every time CheckDC is called, the algorithm adds a new event to 𝑇 , corre-

spondingly removing it from either 𝐴 (line 13) or 𝐸 (line 22). The set 𝐸 never grows,

209

and because every contingent constraint’s ending event is unique, the algorithm will

never add the same event to 𝐴 twice. This means that after at most |𝑋𝑒 ∪ 𝑋𝑏| re-

cursive calls, the algorithm will reach a state where 𝐸 is empty, and the recursive

calls will terminate. This preserves the guarantee that the algorithm use polynomial

space, meaning that Algorithm 14 decides DC-CDTNU and is in PSPACE. Thus,

deciding dynamic controllability for CSTNUs, TCSPUs, DTNUs, and CDTNUs are

all PSPACE-complete.

A.2 Multi-Agent Disjunctive Temporal Networks

To this point, we have focused on single-agent temporal network formalisms that use

particular types of constraints to emulate multi-agent behavior. While it is reason-

able to do so, these approaches occasionally have their shortcomings. Such models

either assume that all agents can be jointly controlled, which is too strong of an

assumption in practice, or more conservatively, that the actions of other agents are

themselves modeled as temporally uncertain processes and cannot be strategically

reasoned about. While such approaches provide some correctness guarantees, they

require agents to act in a way that is robust to all possible actions that other agents

might take rather than reasoning over joint strategies that permit coordination with-

out absolute control of all other agents.

In this section, we introduce multi-agent temporal networks with disjunctions and

uncertainty and provide completeness results for their complexity. We demonstrate

that the addition of temporal uncertainty to multi-agent disjunctive temporal network

problems raises the complexity to PSPACE-completeness in the case of Partially

Observable Disjunctive Temporal Networks with Uncertainty (PODTNUs) and to

NEXP-completeness in the case of Multi-agent Disjunctive Temporal Networks with

Uncertainty (MaDTNUs). The contributions of this section are summarized in Figure

A-5. These results represent the first completeness results for multi-agent temporal

networks. While these results indicate that using multi-agent networks directly is

likely too computationally expensive in practice, these results are instrumental in

210

STNU
P

DTNU
PSPACE-complete

POSTNU
???

MaSTNU
???

MaDTNU
NEXP-complete

PODTNU
PSPACE-complete

Disjunctions

Disjunctions

Disjunctions

Partial
Observability

Full
Multi-Agents

Full
Multi-Agents

Partial
Observability

Figure A-5: A taxonomic organization of temporal networks considered in the second
section of this appendix, how they relate to one another, and the complexity classes to
which their decision problems belong. Results in bold represent novel results provided
in this thesis.

shaping how we choose to tackle the multi-agent modeling problem going forward.

A.2.1 Motivation for Multi-Agent Extensions

Before we explore these new network variants, it is worth considering whether these

new networks give us additional expressive power to model interesting behavior. Con-

sider an example that involves a series of humans and robots in a warehouse working

collaboratively to fill orders. Two dexterous (potentially heterogeneous) picker robots

are tasked with retrieving individual items from bins across the warehouse and a third

delivery robot is tasked with taking bins of objects that compose orders to a group

of human packers who will inspect the items for defects before placing them in a box

with appropriate packing materials.

We have two new orders come in each with two different objects, and the two

211

picker robots are tasked with retrieving one item from each order as matches their

skill sets. Retrieving a single item takes 20-30 minutes, and each picker locally has the

flexibility to choose the order in which it undertakes tasks. Once a bin of objects is

assembled, it takes 15 minutes for the delivery robot to bring it to the human packer.

It takes a human packer 15 minutes to inspect and assemble a package once the items

are delivered.

In this problem, warehouses must maintain a high level of throughput, imposing

temporal deadlines, and traffic within the warehouse and the variable difficulties of

grasping tasks implies that there is temporal variability in the execution of actions.

It’s clear that there needs to exist some capability of representing choices (i.e. choose

which object to grab first) and disjunctive constraints give us a powerful way to do

that (i.e. we require that either the pickup of object 1 ends before pickup of object 2

starts or vice versa). The remaining question is whether it suffices to use a series of

single-agent simplifications, such as DTNs or DTNUs, to model this problem.

Unfortunately, the answer is no. A single-agent projection of our problem allows

a robot to freely choose the ordering of their own actions but the actions of others

are then abstracted to entirely stochastic, uncorrelated and uncontrollable actions.

If the two packages must be fully prepared within 90 minutes, we know the task is

impossible. The first picker robot cannot know a priori which object the second one

will grab first and so the two may choose objects from different orders. If it took

both robots the full 30 minutes to grab the orders, then the delivery robot could

only deliver the packages after an hour; the packer would get the deliveries after 75

minutes and would need at least 30 to finish with both.

In contrast, modeling the system using multi-agent temporal networks, as is done

with POSTNUs and MaSTNUs, would allow us to correctly determine that all con-

straints can be satisfied. Though the pickers may not know what the other is doing

in real-time, they can adopt contingency and coordination strategies that eliminate

much of the network’s cross-agent uncertainty. PODTNUs and MaDTNUs allow for

the encoding of multi-agent coordination strategies that is are common across many

other game-playing formalisms.

212

A.2.2 Multi-agent Disjunctive Definitions

Extending DTNUs to include partial observability yields Partially Observable Dis-

junctive Temporal Networks with Uncertainty (PODTNUs). PODTNUs make a dis-

tinction between contingent events that are observable and unobservable, allowing the

modeler to chain together contingent constraints to model shared causes of stochas-

ticity.

Definition A.8. PODTNU

A PODTNU is a 5-tuple ⟨𝑋𝑒, 𝑋𝑐, 𝑋𝑢, 𝑅𝑟, 𝑅𝑐⟩ where:

∙ 𝑋𝑒 is the set of executable events

∙ 𝑋𝑐 is the set of observable contingent events

∙ 𝑋𝑢 is the set of unobservable contingent events

∙ 𝑅𝑟 is the set of full disjunctive temporal constraints indexed by 𝑘, called re-

quirement constraints, of the form⋁︀
𝑘

(𝑙𝑟,𝑘 ≤ 𝑥𝑟,𝑘 − 𝑦𝑟,𝑘 ≤ 𝑢𝑟,𝑘), where 𝑥𝑟,𝑘, 𝑦𝑟,𝑘 ∈ 𝑋𝑒 ∪𝑋𝑐 ∪𝑋𝑢 and 𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

∙ 𝑅𝑐 is the set of simple disjunctive contingent constraints indexed by 𝑘, of the

form 𝑥𝑟 − 𝑦𝑟 ∈
⋃︀
𝑘

[𝑙𝑟,𝑘, 𝑢𝑟,𝑘], where 𝑦𝑟 ∈ 𝑋𝑒 ∪ 𝑋𝑐 ∪ 𝑋𝑢, 𝑥𝑟 ∈ 𝑋𝑐 ∪ 𝑋𝑢, and

𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

PODTNUs are powerful because they allow us to model shared dependencies

between different events, but they still make the assumption that external agents act

without regard to the ego agent’s goals and constraints. To truly take advantage

of multi-agent coordination that we see in multi-agent interaction, we should not

assume randomness from an agent’s collaborators. Instead, we should recognize that

we can partially coordinate joint approaches to guarantee constraint satisfaction.

With POSTNUs, we accomplish this by extending our model to Multi-agent Simple

Temporal Networks with Uncertainty (MaSTNUs) [15], and for PODTNUs, we can

similarly extend our formalism to that of Multi-agent Disjunctive Temporal Networks

with Uncertainty (MaDTNUs).

213

Definition A.9. MaDTNU

An MaDTNU is a 5-tuple ⟨𝐴,𝑋𝑒, 𝑋𝑐, 𝑅𝑟, 𝑅𝑐⟩ where:

∙ 𝐴 is a (non-empty) set of agents

∙ 𝑋𝑒 is the set of executable events

∙ 𝑋𝑐 is the set of contingent events

∙ 𝑅𝑟 is the set of full disjunctive temporal constraints indexed by 𝑘, called re-

quirement constraints, of the form⋁︀
𝑘

(𝑙𝑟,𝑘 ≤ 𝑥𝑟,𝑘 − 𝑦𝑟,𝑘 ≤ 𝑢𝑟,𝑘), where 𝑥𝑟,𝑘, 𝑦𝑟,𝑘 ∈ 𝑋𝑒 ∪𝑋𝑐 and 𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

∙ 𝑅𝑐 is the set of simple disjunctive contingent constraints indexed by 𝑘, of the

form 𝑥𝑟 − 𝑦𝑟 ∈
⋃︀
𝑘

[𝑙𝑟,𝑘, 𝑢𝑟,𝑘], where 𝑦𝑟 ∈ 𝑋𝑒 ∪𝑋𝑐, 𝑥𝑟 ∈ 𝑋𝑐, and 𝑙𝑟,𝑘, 𝑢𝑟,𝑘 ∈ R

The set of events 𝑋 = 𝑋𝑒 ∪ 𝑋𝑐 is partitioned across all agents in 𝐴, such that

each event is assigned to exactly one agent. We generally carve out an exemption

for a single anchor event 𝑍, visible to all agents, that represents the start of all

execution. MaDTNUs require us to specify the observability of each event during

execution, as the observation of events by specific agents can significantly aid in the

eventual success of the scheduling process. With MaDTNUs, we assume that each

event, whether executable or contingent, can only be observed by the agent the event

is assigned to. In order to make an event observable to another agent, it suffices to

add a new contingent constraint from the original event to a new contingent event

with zero duration that is observable by the second agent. The second agent should

be able to infer the timing of the original event from the contingent event they can

observe.

When we consider the feasibility of temporal networks with uncertainty, like

PODTNUs and MaDTNUs, we cannot just validate a statically constructed sched-

ule. The actual outputted schedule depends heavily on the conditions under which

we observe the temporally uncertain events. As such, we often consider a temporal

network’s controllability in determining whether or not it is possible to construct a

214

schedule. We traditionally care about the strong, dynamic, or weak controllability of

a network, concepts that are adapted from the evaluation of STNUs [58].

Dynamic controllability tends to be the most interesting of the three forms of

controllability as it provides the agents the power to react to the actual situations

that manifest themselves during execution. As such, the remainder of this appendix

will focus on understanding the complexity of determining the dynamic controllability

of these networks; we will call these problems DC-PODTNU and DC-MaDTNU for

short.

A.2.3 PODTNU Controllability

In the case of partially observable temporal networks, determining strong and weak

controllability reduces to computing the same type of controllability over a fully

observable version of the same network. This follows naturally from the definitional

differences between the two different types of networks. Strong controllability assesses

whether a schedule can be obstructed in absence of any observations, in practice mak-

ing all contingent events unobservable, whereas weak controllability assesses whether

a schedule can always be constructed when given perfect foresight, adding a condition

even stronger than making all contingent events observable.

The same reasoning cannot be applied to dynamic controllability in PODTNUs.

When dynamically executing a PODTNU, certain values remain hidden while others

are readily exposed upon execution. What is quite noteworthy, however, is that the

revealed value of certain observable contingent events may reveal information about

other unobservable ones.

This makes the question of determining DC-PODTNU more involved than that

of determining dynamic controllability for ordinary DTNUs. In this section, we will

show that despite this difference, DC-PODTNU complexity matches that of dynamic

controllability for DTNUs, which is PSPACE-complete [8]. In order to prove that

DC-PODTNU is PSPACE-complete, we must show that it is both PSPACE-hard

and that it is solvable in PSPACE. We know that PODTNUs generalize DTNUs, as

a DTNU is a PODTNU without unobservable contingent events. Because we know

215

checking the dynamic controllability of a DTNU is PSPACE-hard [8], we thus know

that DC-PODTNU is PSPACE-hard. What remains is to show that DC-PODTNU

is solvable in PSPACE.

Theorem A.10. DC-PODTNU ∈ PSPACE.

Proof. In order to demonstrate this, we will provide an algorithm that checks the dy-

namic controllability of a PODTNU (Algorithm 15) and show that it runs in PSPACE.

Our algorithm is adapted heavily from the algorithm for checking dynamic control-

lability of Conditional Disjunctive Temporal Networks with Uncertainty [8] and as

such relies on the fact that at most a polynomial number of bits are being used to

represent event values. Our algorithm, however, makes no assumptions about how

specifically numbers are represented and only relies on the ability of a computer to

iterate through all representable numbers.

Our algorithm operates on our original PODTNU 𝑃 and makes use of a DTNU 𝐷

derived from it. 𝐷 is constructed by removing all unobservable events and modifying

the related set of temporal constraints. We start with requirement constraints that

involve unobservable contingent events. For a given unobservable contingent event

𝐵, we eliminate all disjuncts of requirement constraints that involve 𝐵. Note that if

a fully disjunctive temporal constraint involves 𝐵 in every disjunct, then the entire

constraint is eliminated. Next, we consider all contingent constraints that involve

𝐵. If 𝐵 is involved in more than one contingent constraint then it must be in the

form 𝐴
𝑅1=⇒ 𝐵

𝑅2=⇒ 𝐶 since each contingent constraint has a unique endpoint. We

eliminate 𝐵 in 𝐷 by replacing each such chain of contingent constraints with a new

single contingent constraint 𝐴 𝑅1+𝑅2====⇒ 𝐶, where the new constraint bounds are given

using standard interval arithmetic [52]. After recursively applying this procedure, we

have eliminated all constraints involving unobservable contingent events and thus can

safely remove those events to turn our PODTNU into a DTNU. We then feed in the

original PODTNU 𝑃 and the derived DTNU 𝐷 into our algorithm, CheckPODC.

CheckPODC works by recursively enumerating all possible strategies for assign-

ments to executable events and accurately simulating all possible observable events

216

Input: A list of events with assigned values, 𝑇 ;
A list of active contingent constraints, 𝐴;
A set of yet-to-be-executed events 𝐸;
The input PODTNU 𝑃 ;
𝑃 ’s projection to a DTNU, 𝐷;
The current time, 𝜏
Output: Whether the PODTNU is dynamically controllable.
CheckPODC:

1 if 𝐸.𝑒𝑚𝑝𝑡𝑦() then
2 for 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∈ 𝐷.𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠𝐹𝑟𝑜𝑚(𝐴, 𝜏) do
3 𝑇 ′ ← 𝑇.𝑒𝑥𝑡𝑒𝑛𝑑(𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛);
4 for 𝑢𝑛𝑜𝑏𝑠𝑅𝑒𝑎𝑙𝑖𝑧 ∈ 𝑃.𝑢𝑛𝑜𝑏𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝐹𝑟𝑜𝑚(𝑇 ′) do
5 if 𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ(𝑢𝑛𝑜𝑏𝑠𝑅𝑒𝑎𝑙𝑖𝑧, 𝑇 ′) then
6 continue;
7 if !𝑃.𝑖𝑠𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑇 ′) then
8 return(𝑓𝑎𝑙𝑠𝑒);
9 return(𝑡𝑟𝑢𝑒);

10 for 𝑡 ∈ 𝐸 do
11 for 𝜏 ′ ∈ [𝜏, 𝑃.𝑡𝑀𝑎𝑥] do
12 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑← 𝑡𝑟𝑢𝑒;
13 for 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∈ 𝐷.𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠𝐹𝑟𝑜𝑚(𝐴, 𝜏) do
14 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡← 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛.𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡();
15 if 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡.𝑡𝑖𝑚𝑒 ≤ 𝜏 ′ then
16 if !CheckPODC(𝑇 ∪ {𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡},
17 𝐴.𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝑠(𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡),
18 𝐸,𝑃,𝐷, 𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡.𝑡𝑖𝑚𝑒) then
19 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
20 break;
21 else
22 if !CheckPODC(𝑇 ∪ {EventAssignment(𝑡, 𝜏 ′)},
23 𝐴.𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝑠(EventAssignment(𝑡, 𝜏 ′)),
24 𝐸 ∖ 𝑡, 𝑃,𝐷, 𝜏 ′) then
25 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
26 break;
27 if 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 then
28 return 𝑡𝑟𝑢𝑒;
29 return(𝑓𝑎𝑙𝑠𝑒);

Algorithm 15: PSPACE algorithm for checking DC-PODTNU.

of the inputted DTNU. At any given call to CheckPODC, some event values have

been fixed, which we denote by 𝑇 , and some contingent constraints have their start-

ing event executed but their ending event still unexecuted, which we denote by 𝐴.

217

The algorithm starts by picking an unexecuted event (line 10) and a time at which

to execute it (line 11). It then looks over all possible values of the ending contingent

constraints of 𝐴 (line 13) and checks whether it comes before our stated execution

time. If it does, the algorithm checks whether our strategy still holds after observing

the ending contingent event (lines 16-20), and if not, it executes our chosen event

and continue onwards (lines 22-26). The algorithm uses 𝑎𝑙𝑙𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 to keep track

of whether for any particular choice of event to execute, every possible scenario still

guarantees success.

It is important to note that at this point, the algorithm does not consider the effect

of requirement constraints and that the contingent constraints that are informing our

search come from 𝐷 and not 𝑃 . It is possible then that our choice of values for

contingent events differs from what is possible in 𝑃 . For example if we originally had

contingent constraints 𝐴
[0,10]
==⇒ 𝐵, 𝐵

[0,1]
==⇒ 𝐶, and 𝐵

[0,1]
==⇒ 𝐶 ′ in 𝑃 , where only 𝐵 was

unobservable, our transformation to 𝐷 would give us edges 𝐴
[0,11]
==⇒ 𝐶, and 𝐴

[0,11]
==⇒ 𝐶 ′.

This would suggest that we might be able to have 𝐴 = 0, 𝐶 = 0, and 𝐶 ′ = 11, but

this is inconsistent with 𝑃 . We will remedy this problem shortly.

Eventually, the algorithm reaches a point where 𝐸 is empty because in each re-

cursive step, it either assigns a contingent event (line 18) or assigns an executable

event (line 22). When 𝐸 is empty, it then checks for feasibility. At this point, the

algorithm considers the constraints of 𝑃 . It first assigns any unassigned observable

events (line 2) and then iterates through all possible values for the unobservable

contingent values that were unassigned during execution (line 4). If it discovers a

scenario where the choice of observable events does not match the contingent con-

straints of the POSTNU, the algorithm skips that particular choice (lines 5-6). If it

is a valid configuration, the algorithm then checks whether the POSTNU constraints

are satisfied. If the POSTNU constraints are satisfied across all possible valid choices

of unobservable contingent events, the algorithm returns true, and if not, it returns

false. Thus, our procedure returns the correct answer because it considers execution

strategies operating over a superset of all possible situations of POSTNU 𝑃 and re-

turns true if there exists an execution strategy that satisfies all valid realizations of

218

uncertain values.

What remains is to show that the algorithm uses at most polynomial space. If 𝑛 is

the number of events in our graph, there are at most 𝑛 recursive calls at any one given

time since each call assigns a new value to a variable. The algorithm iterates over

each event (line 10), each potential time (line 11), and each realization of contingent

values (line 13). While there are exponentially many values each of these can take on,

writing them down requires only polynomially many bits. Finally checking for valid

contingent event values when adding observable values and checking overall PODTNU

consistency takes linear time (and thus at most linear space) and can be done simply

by iterating through each constraint and checking correctness. Thus, the procedure

determining dynamic controllability requires at most polynomial space.

Because DC-PODTNU is PSPACE-hard and can be determined with polynomial

space, we know that DC-PODTNU is PSPACE-complete.

A.2.4 MaDTNU Controllability

When we expand multi-agent disjunctive reasoning to consider agents that can co-

ordinate their strategies, the task of determining controllability becomes much more

difficult.

To show that DC-MaDTNU is NEXP-hard, we first introduce the TILING prob-

lem which is itself NEXP-complete [2, 43]. The TILING problem asks whether it

is possible to number a 𝑛 × 𝑛 board according to the following rules (see Figure

A-6 for reference). Each tile on the board can be filled in with a number from 1

to 𝑚, and there are a set of horizontal and vertical pairwise rules, respectively 𝐻

and 𝑉 , that indicate how numbers can adjoin each other on the board. We say

that 𝑓 : {0, 1, ..., 𝑛 − 1} × {0, 1, ..., 𝑛 − 1} → {1, 2, ...,𝑚} is a tiling function map-

ping from each of the row and column indices to the number on that tile. In order

to ensure that the horizontal and vertical pairwise rules are respected, we require

that ∀𝑖 ∈ {0, 1, ..., 𝑛 − 1},∀𝑗 ∈ {0, 1, ..., 𝑛 − 2} : ⟨𝑓(𝑖, 𝑗), 𝑓(𝑖, 𝑗 + 1)⟩ ∈ 𝐻 and

219

Available Tiles: {1, 2, 3}
n = 4

2 3 2

1232

2

3

1

2

2

3

1

2

1

0 1 2 3

0

1

2

3

V =
1

1

1

2

2

1

2

2

2

3

3

1

3

2{ {
1 2 1 3 2 1

2 33 2

H = { {

Figure A-6: Example TILING problem with accompanying solution.

⟨𝑓(𝑗, 𝑖), 𝑓(𝑗 + 1, 𝑖)⟩ ∈ 𝑉 . We say that a solution for the TILING problem exists

if there exists an 𝑓 satisfying the pairwise rules with 𝑓(0, 0) = 1. Note that since

it takes 𝑢 = ⌈log 𝑛⌉ bits to represent 𝑛, enumerating a tiling function to serve as a

certificate may take exponential time.

In order to prove hardness, we simply show that TILING is reducible to DC-

MaDTNU.

Lemma A.11. DC-MaDTNU is NEXP-hard.

Proof. To show that DC-MaDTNU is NEXP-hard, we demonstrate how to construct

an MaDTNU that is dynamically controllable if and only if a corresponding TILING

problem has a valid solution.

Our strategy for the reduction is to give each of two agents a location on the

TILING grid and have them report back a tile value to put at that spot without

knowing which location was provided to the other agent. As such, our MaDTNU

220

construction must first simulate the hidden random TILING grid location selection

and must also enforce adjacency rules if the two agents are given locations that adjoin

one another.

We construct our two-agent MaDTNU as follows (see Figure A-7). The MaDTNU

has a single event 𝑍 that is observable by all (which for convenience we will assume

is always assigned at time 𝑡 = 0), and all other events will be visible to exactly one of

the agents. Each agent will have 2𝑢 contingent constraints that the other cannot see,

and we say that each contingent constraint is made up of events 𝐴𝑖,𝑝
[0,0]∨[2𝑖,2𝑖]
======⇒ 𝐶𝑖,𝑝,

where 𝑖 is the index of the contingent constraint (from 0 to 2𝑢− 1) and 𝑝 represents

the player it corresponds to. We add a requirement constraint 𝑍
[0,0]−−→ 𝐴0,𝑝 for each

agent as well as requirement constraints 𝐶𝑖,𝑝
[0,0]−−→ 𝐴𝑖+1,𝑝 for each 𝑖 and 𝑝. We finally

add new events 𝑋1, 𝑋2 with requirement constraints enforcing 𝐶2𝑢−1,𝑝
{1,2,...,𝑚}−−−−−→ 𝑋𝑝.

With the given structure, we have a way to implicitly select a spot on the original

TILING grid for each agent. The first 𝑢 contingent constraints represent the selection

of the row index and the second 𝑢 contingent constraints represent the column index.

Specifically, we represent row index 𝑟 and column index 𝑐 by assigning contingent

constraints in a way that ensures 𝐶2𝑢−1,𝑝 occurs at time 𝑟 + 𝑐 · 2𝑢. It is worth noting

that in instances where 𝑛 is not a power of two, there will be some assignments of

contingent constraints that do not correspond to valid positions on the TILING grid;

we will handle these situations when we consider how to enforce adjacency rules.

Before we add any of the tiling adjacency constraints, it is clear that our MaDTNU

is dynamically controllable. Each 𝐴𝑖+1,𝑝 is assigned immediately when 𝐶𝑖,𝑝 is assigned

and any valid tile value can be picked to satisfy the requirement constraints associated

with 𝑋1 and 𝑋2. We now add constraints to enforce that adjacent tiles respect the

pairwise tiling rules and show how those new constraints are sufficient to complete

the reduction.

First, we consider how to handle contingent constraint values that are not valid

tiling locations. In these cases, we should assume that any tiling choices are valid

and ensure that all constraints are satisfied in those instances. To accommodate this

for each of the constraints 𝜓 we introduce, we amend the constraint to instead be

221

Disjunctive Link

Requirement Link
Contingent Link

A0,1

C0,1 C0,2

C2u-1,1 C2u-1,2

C1,1 C1,2

Cu-1,1 Cu-1,2

A1,1 A1,2

X1 X2

Au-1,1 Au-1,2

A2u-1,1 A2u-1,2

A0,2Z
[0, 0]

[0, 0] [0, 0]

{1, 2, ..., m} {1, 2, ..., m}

[0, 0] ∨ [1, 1] [0, 0] ∨ [1, 1]

[0, 0] ∨ [22u-1, 22u-1] [0, 0] ∨ [22u-1, 22u-1]

[0, 0] ∨ [2, 2] [0, 0] ∨ [2, 2]

[0, 0] ∨ [2u-1, 2u-1] [0, 0] ∨ [2u-1, 2u-1]

[0, 0]

Agent 1 Timepoints Agent 2 Timepoints

T
IL

IN
G

 adjacency rules

Figure A-7: The two-agent MaDTNU produced by a reduction from an input TILING
problem. There are 𝑂(log 𝑛) events in total and 𝑂(|𝐻| + |𝑉 | + log 𝑛) constraints in
total, each of which are 𝑂(|𝐻|+ |𝑉 |) in size.

𝜑𝑜𝑜𝑏 ∨ 𝜓, where:

𝜑𝑜𝑜𝑏 = (𝐶𝑢−1,1 − 𝑍 ≥ 𝑛) ∨ (𝐶𝑢−1,2 − 𝑍 ≥ 𝑛)∨

222

(𝐶2𝑢−1,1 − 𝐶𝑢−1,1 ≥ 2𝑢 · 𝑛) ∨ (𝐶2𝑢−1,2 − 𝐶𝑢−1,2 ≥ 2𝑢 · 𝑛)

In the instance that the contingent constraints are realized such that the correspond-

ing tiling location is outside the established bounds, all constraints vacuously hold,

and the network is dynamically controllable.

Now, we move on to encoding the pairwise rules. For convenience, we will use

the shorthand 𝑇𝑝 to represent 𝑋𝑝 −𝐶2𝑢−1,𝑝. We write the horizontal rules as follows,

starting with the instance where agent 1 must pick a tile to the left that of agent 2:

𝜑𝑜𝑜𝑏 ∧ (𝐶2𝑢−1,2 − 𝐶2𝑢−1,1 = 2𝑢) =⇒ ⟨𝑇1, 𝑇2⟩ ∈ 𝐻

To simplify our exposition, we will split this constraint into several constraints that

vary based on agent 1’s choice for 𝑇1. In other words, for each 𝑗 ∈ {1, 2, ...,𝑚}, we

now consider the constraint:

𝜑𝑜𝑜𝑏 ∧ (𝐶2𝑢−1,2 − 𝐶2𝑢−1,1 = 2𝑢) ∧ (𝑇1 = 𝑗)

=⇒ ⟨𝑗, 𝑇2⟩ ∈ 𝐻

We can rewrite our equation to eliminate the implication, and since all of our values

are guaranteed to be integers by construction, we can rewrite any statements involving

̸= with inequalities on both sides. Finally, we know that ⟨𝑗, 𝑇2⟩ ∈ 𝐻 is equivalent to⋁︀
𝑙∈{1,2,...,𝑚}:⟨𝑗,𝑙⟩∈𝐻 𝑇2 = 𝑙, and substituting those values in we get:

𝜑𝑜𝑜𝑏 ∨ (𝐶2𝑢−1,2 − 𝐶2𝑢−1,1 ≥ 2𝑢 + 1)∨

(𝐶2𝑢−1,2 − 𝐶2𝑢−1,1 ≤ 2𝑢 − 1) ∨ (𝑇1 ≥ 𝑗 + 1)

∨ (𝑇1 ≤ 𝑗 − 1) ∨
⋁︁

𝑙∈{1,2,...,𝑚}:⟨𝑗,𝑙⟩∈𝐻

𝑇2 = 𝑙

It is worth noting that this approach adds 𝑂(|𝐻|) constraints each of which is 𝑂(|𝐻|)

in size, meaning that our reduction still requires at most polynomial time. For com-

pleteness, we also must consider the case where agent 1 picks a tile to the right of

223

agent 2. This requires switching the roles of agents 1 and 2 in the rules:

𝜑𝑜𝑜𝑏 ∧ (𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 = 2𝑢) =⇒ ⟨𝑇2, 𝑇1⟩ ∈ 𝐻

and again, this can be expanded for each 𝑗 ∈ {1, 2, ...,𝑚} into a simple disjunctive

constraint of the form:

𝜑𝑜𝑜𝑏 ∨ (𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 ≥ 2𝑢 + 1)∨

(𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 ≤ 2𝑢 − 1) ∨ (𝑇2 ≥ 𝑗 + 1)

∨ (𝑇2 ≤ 𝑗 − 1) ∨
⋁︁

𝑙∈{1,2,...,𝑚}:⟨𝑗,𝑙⟩∈𝐻

𝑇1 = 𝑙

We take a similar approach for satisfying the vertical rules, seeing if the final

contingent constraint values of the two agents differ by exactly one, but in this case,

we now need to make sure that the two values are still in the same column instead

of being wrapped around to a new one. To accommodate this, we now have to

additionally verify that the larger of the two tile indices is not in the 0th row. This

yields constraints of the form:

𝜑𝑜𝑜𝑏 ∧ (𝐶2𝑢−1,2 − 𝐶2𝑢−1,1 = 1) ∧ (𝐶𝑢−1,2 ̸= 0)

=⇒ ⟨𝑇1, 𝑇2⟩ ∈ 𝑉

and:

𝜑𝑜𝑜𝑏 ∧ (𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 = 1) ∧ (𝐶𝑢−1,1 ̸= 0)

=⇒ ⟨𝑇2, 𝑇1⟩ ∈ 𝑉

By applying the same approach as with the horizontal rules, we again create

distinct constraints for each 𝑗 ∈ {1, 2, ...,𝑚} and can rewrite our rules to get simple

disjunctive constraints:

𝜑𝑜𝑜𝑏 ∨ (𝐶2𝑢−1,2 − 𝐶2𝑢−1,1 ≥ 2)∨

224

(𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 ≤ 0) ∨ (𝐶𝑢−1,2 = 0)

∨ (𝑇1 ≥ 𝑗 + 1) ∨ (𝑇1 ≤ 𝑗 − 1)

∨
⋁︁

𝑙∈{1,2,...,𝑚}:⟨𝑗,𝑙⟩∈𝑉

𝑇2 = 𝑙

and:

𝜑𝑜𝑜𝑏 ∨ (𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 ≥ 2)∨

(𝐶2𝑢−1,1 − 𝐶2𝑢−1,2 ≤ 0) ∨ (𝐶𝑢−1,1 = 0)

∨ (𝑇2 ≥ 𝑗 + 1) ∨ (𝑇2 ≤ 𝑗 − 1)

∨
⋁︁

𝑙∈{1,2,...,𝑚}:⟨𝑗,𝑙⟩∈𝑉

𝑇1 = 𝑙

Finally, for the sake of simplicity, we will also require that if the two agents receive

the same value from their contingent constraints, then they must report the same 𝑇𝑝.

This adds the constraint:

𝜑𝑜𝑜𝑏 ∨ (𝐶2𝑢−1,1 = 𝐶2𝑢−1,1) =⇒ 𝑇1 = 𝑇2

which can be rewritten as:

𝜑𝑜𝑜𝑏 ∨ (𝐶2𝑢−1,1 ≥ 𝐶2𝑢−1,1 + 1)

∨ (𝐶2𝑢−1,1 ≤ 𝐶2𝑢−1,1 − 1) ∨ (𝑋1 −𝑋2 = 0)

It is clear by construction that if a solutions exists for a TILING grid then the

MaDTNU we constructed is dynamically controllable. An acceptable strategy is for

both agents to pre-compute a shared valid tiling and to use that tiling to pick 𝑋1, 𝑋2

based on the values of the contingent constraints each can observe. What remains is to

demonstrate that knowing that our constructed MaDTNU is dynamically controllable

implies that the corresponding TILING problem has a valid solution.

Our decision to add a constraint requiring that both agents report the same value

225

when queried for the same tile simplifies our analysis, as it requires the two agents

to have the same, deterministic strategy. Thus, our problem reduces to being able

to prove that a solution to the TILING problem exists if the agents have a strategy

that renders the network controllable.

We start with the observation that each agent really has only one decision point,

namely when to schedule 𝑋𝑝. Each of the intermediate 𝐴𝑖,𝑝s are scheduled immedi-

ately after the corresponding preceding contingent events, so there are no real deci-

sions to be made in scheduling 𝐴𝑖,𝑝. There are 22𝑢 possible values that event 𝐶2𝑢−1,𝑝

can be assigned to, but thanks to 𝜑𝑜𝑜𝑏, we only care about 𝑛2 of them. If we take the

agent’s strategy for those 𝑛2 time points that correspond to a row-column indexing

into the original grid, we can immediately translate that into a valid tiling. We prove

this by contradiction.

Assume momentarily that translating the first agent’s strategy does not yield

a viable tiling. If the agent’s strategy were stochastic, we could take any possible

grounded strategy and use that as our main one, as controllability implies that all

constraints are satisfied across all possible agent strategy realizations. This means

that for the tiling to be invalid, there must be a pair of tiles that adjoin one an-

other that violate the original tiling rules. Let’s call these indices 𝑖 and 𝑗 and the

corresponding tiles assigned by agent 1 for these indices 𝑇𝑖 and 𝑇𝑗.

We know that in order for the system to be controllable, agent 2’s strategies for

𝑖 and 𝑗 must also be to assign 𝑇𝑖 and 𝑇𝑗 because of the rule that requires reporting

the same values when the contingent constraint values are all the same. Because our

original MaDTNU was known to be dynamically controllable, this means that for all

possible uncertain values all constraints are satisfied, including when agent 1 must

assign a value for index 𝑖 and when agent 2 must assign a value for index 𝑗. In this

situation, they must produce values 𝑇𝑖 and 𝑇𝑗, respectively, but because indexes 𝑖

and 𝑗 adjoin one another and all constraints are known to be satisfied, then 𝑇𝑖 and 𝑇𝑗

must satisfy the appropriate adjacency relation. This means that the tiling derived

from the strategy cannot have a pair of indices that adjoin one another and violate

a rule, concluding the proof that TILING is reducible to DC-MaDTNU and that

226

DC-MaDTNU is NEXP-hard.

Our reduction demonstrates that DC-MaDTNU is NEXP-hard. Now, we show

that DC-MaDTNU can be solved by a non-deterministic Turing machine in exponen-

tial time.

Lemma A.12. DC-MaDTNU ∈ NEXP.

Proof. To show that DC-MaDTNU ∈ NEXP, we will generate strategies for each

agent and show that the joint execution of these strategies guarantees success.

First, we need to generate strategies for each agent. We know that it is possible to

describe a dynamic execution strategy for an agent in a DTNU that can be efficiently

executed [17]. Even though these strategies when enumerated can be exponential

in the size of the input, this will suffice for our purposes. Note that an important

part of this approach is that we assume that it takes a fixed number of bits (though

possibly polynomially many) to represent individual numbers but is agnostic as to

how specifically numbers are represented.

In order to construct a strategy for the overall MaDTNU, we will start by guessing

a strategy for each agent with respect to their locally projected events. We define the

locally projected events of an agent in an MaDTNU as the collection of events that are

directly observable by that agent. Whereas events in the MaDTNU were subdivided

into events assigned by the ego agent, events assigned by nature, and events assigned

by each of the other agents, the locally projected events will only be subdivided into

events assigned by the ego agent and events assigned by others.

Given a set of locally projected events, we guess a DTNU strategy non-deterministically

over that set of events. Note that we are guessing this strategy without explicit

knowledge of any dependencies between events or decisions strategically made by

other agents; at this moment, we are leaning on non-determinism to generate local

strategies for each agent that are together globally consistent.

The strategies we generated can each be exponentially large, but, importantly, it

takes at most exponential time to guess an exponentially large string. Through the

227

Input: An MaDTNU 𝐺
Output: Whether 𝐺 is dynamically controllable.
Initialization:

1 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠← guessed local strategies for each agent;
DC-MaDTNU:

2 for 𝜔 ∈ 𝐺.𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠() do
3 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑← ∅;
4 𝑡𝑖𝑚𝑒← 0;
5 while 𝑙𝑒𝑛(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑) < 𝐺.𝑛𝑢𝑚𝐸𝑣𝑒𝑛𝑡𝑠() do
6 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑠← {𝑠.𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑, 𝑡𝑖𝑚𝑒) | 𝑠 ∈ 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠};
7 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑠.𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡();
8 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑠← {⟨𝑦, 𝑡⟩ | 𝑦 /∈ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ∧ ∃𝑥 ∈ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 : ⟨𝑥, 𝑦, 𝑡⟩ ∈

𝐺.𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡𝑠()};
9 𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡← 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑠.𝑒𝑎𝑟𝑙𝑖𝑒𝑠𝑡();

10 if 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛.𝑏𝑒𝑓𝑜𝑟𝑒(𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡) then
11 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑.𝑎𝑑𝑑(⟨𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛.𝑒𝑣𝑒𝑛𝑡(), 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛.𝑡𝑖𝑚𝑒()⟩);
12 𝑡𝑖𝑚𝑒← 𝑛𝑒𝑥𝑡𝐴𝑐𝑡𝑖𝑜𝑛.𝑡𝑖𝑚𝑒();
13 else
14 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑.𝑎𝑑𝑑(⟨𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡.𝑒𝑣𝑒𝑛𝑡(), 𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡.𝑡𝑖𝑚𝑒()⟩);
15 𝑡𝑖𝑚𝑒← 𝑛𝑒𝑥𝑡𝐶𝑜𝑛𝑡.𝑡𝑖𝑚𝑒();
16 if 𝐺.𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠𝑉 𝑖𝑜𝑙𝑎𝑡𝑒𝑑(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑) then
17 return(𝑓𝑎𝑙𝑠𝑒);
18 return(𝑡𝑟𝑢𝑒);

Algorithm 16: NEXP algorithm for checking DC-MaDTNU.

strategy generation step, we are still well within our established time bounds.

Now, we must validate that the strategies we guessed ensure dynamic controlla-

bility. Or that for any possible realization of the uncertain duration of constraints,

we can still guaranteeably satisfy all constraints. We do so by brute force iteration

(see Algorithm 16).

Our brute force enumeration relies on the fact that the bits required to encode any

particular uncertain state are polynomial in the problem input size. In other words,

writing down a realization of contingent constraint values takes at most polynomial

space even though there are exponentially many such realizations.

For any given eventual realization of contingent constraint durations, a fixed strat-

egy will yield a deterministic output. Our algorithm gives a straightforward simula-

tion operating on behalf of each individual agent. We build out our simulation by

iteratively grounding the values of individual events based on agent strategies and

228

the different realized durations of contingent constraints; these values are stored in

the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 variable (line 3).

Each agent’s strategy only allows them to observe a subset of events and make

decisions off of those events, and those decisions reduce to unconditionally executing

an event at a certain point in time or conditionally waiting to observe an uncontrolled

event before making a decision. In the event that an agent’s action is to conditionally

wait for another event, we instead record the agent that action would take if that

uncontrolled event took on its latest allowable value; these actions are chosen at line

6 from the nondeterministically guessed agent strategy.

While some uncontrollable actions are chosen by other agents, some are controlled

by nature through contingent constraints. Though the durations of these contingent

constraints are determined when we grounded them (line 2), their values are not

yet visible to the agents and so must be learned iteratively. We can imagine that

nature behaves like a non-cooperative (or for the sake of controllability checking,

even adversarial) agent in the way that it picks its events, and so similarly consider

the next contingent values to be realized (line 8). We update the 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 variable

one event at a time, selecting the earliest values from the derived agent actions and

contingent constraint values (lines 7, 9, 10) to ensure that strategies can be adjusted

based on new information.

Now we show that the process as a whole takes at most exponential time on a

non-deterministic Turing machine.

We have already demonstrated that it takes exponential time to generate the

strategies at line 1 of Algorithm 16, and since there are exponentially many realiza-

tions of contingent constraint uncertainties, we turn our focus to the runtime of the

body of the for loop at line 2. The while loop goes through 𝑂(𝑛) iterations in total

since 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 grows by one after each iteration (lines 11 and 14). The generation

of 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐶𝑜𝑛𝑡𝑠 at line 8 takes at most 𝑂(𝑛) time since there are at most 𝑛 con-

tingent constraints, but the most expensive part of the process is the generation of

𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑐𝑡𝑖𝑜𝑛𝑠 at line 6. Since each strategy is exponentially large, and it takes time

linear in strategy size to determine what action to take next, the strategy generation

229

at line 6 takes exponential time. However, that this exponential time operation hap-

pens an exponential number of times still guarantees that the overall runtime of the

algorithm is exponential. Thus, Algorithm 16 runs in NEXP time, and DC-MaDTNU

∈ NEXP.

By Lemma A.11, we know that DC-MaDTNU is NEXP-hard, and by Lemma A.12,

we know that DC-MaDTNU ∈ NEXP. Thus, DC-MaDTNU is NEXP-complete.

A.3 Discussion

Our work provides novel complexity results that are much tighter than existing bounds

and require at most polynomial space for strong, weak, and dynamic controllability of

several distinct types of temporal networks; these results summarized in Figures A-1

and A-5. Beyond the contribution of the relevant proofs, the value of these results is

that it gives modelers insight into which types of features have a significant impact

on the runtime complexity of a problem. Many of these insights are not immediately

obvious, and in the remainder of this section we discuss a few of them.

First we consider CSTNUs. CSTNUs are a generalization of CSTNs and STNUs

and share much in common with their predecessors. In particular, strong controllabil-

ity of CSTNUs, being in P, can be computed quite efficiently. Our proof for Theorem

A.4 actually proves a stronger result that a CSTNU is strongly controllable if and

only if the corresponding STNU derived by making all constraints unconditional is

strongly controllable. This implies that strong controllability of CSTNUs can be com-

puted in 𝑂(𝑚𝑛) time, which is as fast as it takes to compute the feasibility of a simple

STN. When we turn to weak and dynamic controllability, we see that checking the

controllability of a CSTNU is in the same class as checking controllability of a CSTN.

From the perspective of the modeler, this implies that there is a surprisingly low cost

to adding uncertainty to a temporal constraint model that already uses conditional

constraints.

230

While CSTNU controllability checking matches the complexity of CSTN control-

lability checking, it only matches the controllability checking complexity of strong

and weak controllability for STNUs. In fact, dynamic controllability checking across

all types of single-agent networks, with the exception of STNUs, is PSPACE-hard. In

scheduling problems, modelers must often make the trade-off between using strong

controllability, which is often easier to compute, and dynamic controllability, which

gives more flexibility during execution but is more expensive. In instances where dy-

namic controllability is deemed necessary, there is a significant advantage to relaxing

the underlying temporal model, eliminating conditional and disjunctive constraints,

to use an STNU. It is still quite surprising that despite the fact that STNU dynamic

controllability can be determined in polynomial time, every other modification makes

computing dynamic controllability at least PSPACE-hard.

The complexity of controllability for single-agent disjunctive temporal networks

also yields interesting results. The two single-agent temporal network models that

use disjunctions without temporal uncertainty are TCSPs and DTNs; TCSPs have

simple disjunctions, only requiring disjunctions over a single constraint, while DTNs

have full disjunctions, allowing disjunctions to span multiple constraints. Since deter-

mining feasibility for both network structures is NP-complete, intuition would suggest

that after adding uncertainty the complexity of checking controllability for TCSPUs

and DTNUs would also be the same. While this is the case for weak and dynamic

controllability, we do see a difference in strong controllability, meaning that strong

controllability is easier to compute in TCSPUs than it is in DTNUs, assuming NP

̸= Σ𝑃
2 , implying there is a meaningful difference between the two types of disjunctions.

The results for multi-agent disjunctive networks are also highly suggestive. While

MaDTNUs provide a high degree of fidelity for modelers, the extreme complexity of

deriving a solution makes it an undesirable framework to use in practice. Taking

a pragmatic approach, we have two axes against which we can select across multi-

agent model. The first axis considers whether we admit disjunctive constraints and

the latter considers the fidelity of multi-agent interactions. If we assume a fully ob-

servable model of multi-agent uncertainty, our two options are DTNUs and STNUs.

231

While dynamic controllability can be computed for the former is PSPACE-complete

[8], the latter can be determined in 𝑂(𝑛3) time [38]. When we expand our views to

include partial observability, we see that while DC-PODTNU has the same compu-

tational complexity as dynamic controllability checking for DTNUs, we do not yet

know the computational complexity of checking the controllability of POSTNUs or

even MaSTNUs. While we do have polynomial time algorithms for checking the dy-

namic controllability of POSTNUs [10] and MaSTNUs [15], these algorithms are not

complete.

It is important to underscore the future importance of investigating the theoret-

ical complexity of dynamic controllability checking for POSTNUs and MaSTNUs.

Our work demonstrates that adding partial observability to DTNUs has no impact

on the computational complexity of solving the problem, but it is not immediately

clear whether the same can be said for STNUs and if they can, whether those benefits

continue to hold for full multi-agent networks. While current work has established

that certain POSTNUs and MaSTNUs can be checked for controllability in polyno-

mial time, proving a result analogous to the one we present here would significantly

expand the set of situations that can be modeled and evaluated efficiently. We believe

addressing this question represents an important avenue for future research.

As we look forward, there are still many areas worthy of future research efforts.

One of note is the development of novel algorithms for determining the controllability

of these networks. Our work establishes bounds on the complexity of computing

controllability but does minimal work to provide algorithms for doing so. In practice,

our proofs admit the trivial polynomial-space strategy of recursive enumeration of

certificates but these algorithms are likely impractical. Our new theoretical bounds

open up the challenge of finding novel algorithms that are reasonable for practical

use while still respecting polynomial time bounds.

232

Appendix B

LP Duality and STNs

STNs at their core are systems of linear inequalities, and while it is sufficient to

evaluate the system of linear inequalities directly, converting the STN to a distance

graph and searching for a negative cycle tends to be quicker in practice. In this

appendix, we will attempt to give a stronger intuition for why checking for negative

cycles is sufficient. To do so, we consider the linear inequalities more directly and

show how the dual LP problem evaluates to exactly the problem of finding a negative

cycle in an STN’s distance graph.

Because all constraints are in the form of linear inequalities, it is possible to

evaluate consistency using a linear program solver (and using an arbitrary objective

function). But separately, we can learn more about the underlying structure of STNs

and arrive at a more efficient solution method by studying the corresponding LP dual.

We briefly describe the matrix-based representation of the linear inequalities in

Figure 2-1a in order to allow us to transform it into the corresponding LP dual. Let

𝑥 be the vector of events in an STN, and let 𝐴 be a matrix with each row corresponds

to a constraint and each column corresponding to an event.

Each row’s values are exactly the linear coefficients of the corresponding con-

straint; if constraint 𝑖 is modeled by 𝑢𝑖 ≤ 𝑥𝑗 − 𝑥𝑘 ≤ 𝑣𝑖, then we say that 𝐴𝑖𝑗 = 1,

𝐴𝑖𝑘 = −1, ∀𝑙 ̸= 𝑗, 𝑘 : 𝐴𝑖𝑙 = 0. We let 𝑢 be the vector of lower-bounds for each

constraint 𝑖 and let 𝑣 be the vector of upper-bounds.

Given a set of linear inequalities and a desire to find any satisfying solution, it

233

suffices to pass those linear inequalities to an LP solver, setting the objective function

to zero:

max 0

𝐴𝑥 ≤ 𝑣

𝐴𝑥 ≥ 𝑢

While it suffices to use an LP solver to evaluate an STN’s set of linear equalities

and extract a candidate solution, in this instance looking at the LP’s dual formulation

gives us more information about the nature of the problem and points us towards a

more efficient graph-based solution method:

min 𝑦1 · 𝑣 − 𝑦2 · 𝑢

𝐴𝑇𝑦1 − 𝐴𝑇𝑦2 = 0

𝑦1, 𝑦2 ≥ 0

By strong duality, if we find that the dual is unbounded, we know that the primal

is infeasible. If we find a solution whose cost is less than zero, we know that the

dual is unbounded (since we can scale any 𝑦 by a constant, in order to respect the

constraint).

In the context of the STN’s distance graph, an assignment to 𝑦1 selects a set

of edges that have the same direction as the graphical STN constraints, while an

assignment of values to 𝑦2 selects from those edges with the opposite direction. The

objective function minimizes the total weight of the selected edges, and the constraint

enforces that these edges form a cycle. Taken together, the dual is unbounded if and

only if there is a negative cycle on the STN’s distance graph. In other words, our

STN is consistent if and only if there is no negative cycle in its representative distance

graph.

234

Appendix C

Label Reduction Rules

In Chapter 4, we introduced a series of reduction rules, which are reproduced below

in Table C.1. In this appendix, we provide a series of lemmas that indicate that these

rules are altogether sound.

To simplify our notation, we will use 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 to represent events. 𝐶

and 𝐸 will always refer to contingent events, while 𝐴, 𝐵, and 𝐷 may refer to any type

of events (either executable or contingent). As such, we provide no guarantee that

the edges described in the generation rules come from particular types of constraints.

They edges may come from requirement constraints, contingent constraints, or might

be byproducts of other edge generation rules.

The first two rules we consider are the no-case and upper-case rules. These rules

Edge Generation Rules

Input edges Conditions Output edge

No-Case Rule 𝐴
𝑢−→ 𝐷, 𝐷 𝑣−→ 𝐵 N/A 𝐴

𝑢+𝑣−−→ 𝐵

Upper-Case Rule 𝐴
𝑢−→ 𝐷, 𝐷 𝐶:𝑣−−→ 𝐵 N/A 𝐴

𝐶:𝑢+𝑣−−−→ 𝐵

Lower-Case Rule 𝐴
𝑐:𝑥−→ 𝐶, 𝐶 𝑤−→ 𝐷 𝑤 < 𝛾(𝐶), 𝐶 ̸= 𝐷 𝐴

𝑥+𝑤−−→ 𝐷

Cross-Case Rule 𝐴
𝑐:𝑥−→ 𝐶, 𝐶 𝐸:𝑤−−→ 𝐷 𝑤 < 𝛾(𝐶), 𝐸 ̸= 𝐶,

𝐶 ̸= 𝐷
𝐴

𝐸:𝑥+𝑤−−−−→ 𝐷

Label Removal
Rule

𝐵
𝐶:𝑢−−→ 𝐴, 𝐴

[𝑥,𝑦]
==⇒ 𝐶 𝑢 > −𝑥 𝐵

𝑢−→ 𝐴

Table C.1: Edge generation rules for a labeled distance graph

235

are identical to edge reduction rules of STNs.

Lemma C.1. No-Case Rule

If we have 𝐴 𝑢−→ 𝐷 and 𝐷 𝑣−→ 𝐵, then we can add edge 𝐴 𝑢+𝑣−−→ 𝐵.

Proof. The first two edges correspond to “𝐷 − 𝐴 ≤ 𝑢” and “𝐵 −𝐷 ≤ 𝑣.” Summing

the right and left sides of the two constraints, we get that 𝐵 − 𝐴 ≤ 𝑢+ 𝑣.

Lemma C.2. Upper-Case Rule

If we have 𝐴 𝑢−→ 𝐷 and 𝐷 𝐶:𝑣−−→ 𝐵, then we can add edge 𝐴 𝐶:𝑢+𝑣−−−→ 𝐵.

Proof. The first edge gives us the constraint “𝐷 − 𝐴 ≤ 𝑢”. The second provides a

conditional constraint “if the contingent constraint ending at 𝐶 were to take on its

maximum possible duration, then 𝐵 −𝐷 ≤ 𝑣”.

We proceed with a conditional proof. Assume that the contingent constraint

ending at 𝐶 takes on its maximum possible duration. By modus ponens, we have

that 𝐵 − 𝐷 ≤ 𝑣. We can sum this result with the constraint 𝐷 − 𝐴 ≤ 𝑢 on both

sides to get 𝐵 − 𝐴 ≤ 𝑢 + 𝑣. This result holds under the original condition of our

proof, implying that the conditional constraint “if the contingent constraint ending at

𝐶 were to take on its maximum possible duration, then 𝐵 − 𝐴 ≤ 𝑢+ 𝑣” is true.

Next come the lower-case and cross-case rules. These are the first rules that

strengthen conditional constraints to unconditional ones and the first ones that take

into account the effects of delay.

Lemma C.3. Lower-Case Rule

If we have 𝐴 𝑐:𝑥−→ 𝐶, 𝐶 𝑤−→ 𝐷, 𝐶 ̸= 𝐷, and 𝑤 < 𝛾(𝐶), then we can add edge 𝐴 𝑥+𝑤−−→ 𝐷.

Proof. Since 𝑤 < 𝛾(𝐶) (and 𝐶 ̸= 𝐷), 𝐷 must occur before we observe the value of

𝐶. Hence, 𝐶 is not known until after 𝐷 must be assigned.

For the sake of contradiction, assume that the constraint represented by 𝐴 𝑥+𝑤−−→ 𝐷

is not always satisfiable, or that it is possible to assign 𝐷 to occur at some time

𝑡 > 𝑥 + 𝑤 after 𝐴 occurs. In other words, 𝐷 − 𝐴 > 𝑥 + 𝑤 We still assume that the

original input conditions hold. If we later observe that 𝐶 happened exactly 𝑥 units

236

of time after 𝐴 (or that 𝐶−𝐴 = 𝑥), then we have that 𝐷−𝐴− (𝐶−𝐴) > 𝑥+𝑤−𝑥,

which simplifies to 𝐷 − 𝐶 > 𝑤 and violates the original constraint, 𝐶 𝑤−→ 𝐷. Thus,

we must unconditionally enforce the constraint “𝐷 − 𝐴 ≤ 𝑥 + 𝑤”, yielding the edge

𝐴
𝑥+𝑤−−→ 𝐷 in our labeled distance graph.

The cross-case rule follows the same logic as the lower-case rule, but in this case,

the constraint on 𝐶 −→ 𝐷 is conditioned on some other contingent constraint ending

at 𝐸 taking on its maximum possible duration.

In this instance, we are combining two conditional edges, one upper-case and one

lower-case, hence, the use of the term cross-case. The original conditional constraint

ending at 𝐶 behaves the same when 𝐵 takes on its maximum possible value, so the

same logic as the lower-case rule applies but with all participating constraints similarly

conditioned on 𝐵 taking on its maximum value. The rule is explained formally in the

following lemma:

Lemma C.4. Cross-Case Rule

If we have 𝐴 𝑐:𝑥−→ 𝐶, 𝐶 𝐸:𝑤−−→ 𝐷, 𝐸 ̸= 𝐶, 𝐶 ̸= 𝐷, and 𝑤 < 𝛾(𝐶), then we can add edge

𝐴
𝐸:𝑥+𝑤−−−−→ 𝐷.

Proof. We can proceed using a conditional proof and assume the antecedent that the

contingent constraint ending at 𝐸 takes on its maximum possible duration. In this

case, we can take the upper-case labeled edge 𝐶 𝐸:𝑤−−→ 𝐷 and rewrite it as 𝐶 𝑤−→ 𝐷

since its antecedent condition holds.

We now have two edges 𝐴 𝑐:𝑥−→ 𝐶, 𝐶 𝑤−→ 𝐷, where 𝐶 ̸= 𝐷 and 𝑤 < 𝛾(𝐶), so we

can immediately apply the lower-case rule and get 𝐴 𝑥+𝑤−−→ 𝐷.

But because this was a conditional proof, we have that the newly derived conse-

quence only holds when the contingent constraint ending at 𝐸 takes on its maximum

possible duration. To represent this in the edge, we can add the upper-case label 𝐸,

so we get that our original inputs yield the new rule 𝐴 𝐸:𝑥+𝑤−−−−→ 𝐷.

The final rule is the label removal rule. Like the lower-case and cross-case rules,

the label removal rule eliminates a label by recognizing that we have to assign val-

ues to both events in a constraint before we can determine whether the antecedent

237

represented by the label is true. Whereas in the previous two rules, we eliminated a

lower-case label, with the label removal rule, we remove upper-case labels.

Lemma C.5. Label Removal Rule

If we have 𝐵 𝐶:−𝑢−−−→ 𝐴, 𝐴
[𝑥,𝑦]
==⇒ 𝐶, 𝑢 < 𝑥, then we can add 𝐵 −𝑢−→ 𝐴.

Proof. In this rule, the first edge tells us that whenever the duration of the contingent

link ending at 𝐶 takes on its maximum value, 𝐵 happens at most 𝑢 after 𝐴. Since

𝑢 < 𝑥, we know that we will not observe 𝐶’s actual value before we assign values that

satisfy this constraint. As such, instead of having to satisfy 𝐵
𝐶:−𝑢−−−→ 𝐴 whenever 𝐶

takes on its maximum value, we have to satisfy it unconditionally. This is the same

as saying that we always have to satisfy the constraint “𝐵−𝐴 ≥ −𝑢” or that 𝐵 −𝑢−→ 𝐴

is a valid edge in our distance graph.

238

Bibliography

[1] Benjamin Ayton, Nikhil Bhargava, Tiago Vaquero, Eric Timmons, Brian
Williams, and Richard Camilli. Risk-bounded goal-directed mission planning
for ocean exploration. In IJCAI’2017 Workshop on Artificial Intelligence in the
Oceans and Space, 2017.

[2] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The
complexity of decentralized control of markov decision processes. Mathematics
of operations research, 27(4):819–840, 2002.

[3] Nikhil Bhargava, Christian Muise, Tiago Vaquero, and Brian Williams. De-
lay controllability: Multi-agent coordination under communication delay. In
DSpace@MIT, 2018.

[4] Nikhil Bhargava, Christian Muise, Tiago Vaquero, and Brian Williams. Man-
aging communication costs under temporal uncertainty. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18, pages 84–90. International Joint Conferences on Artificial Intelligence Orga-
nization, 7 2018.

[5] Nikhil Bhargava, Christian J Muise, and Brian Charles Williams. Variable-delay
controllability. In IJCAI, pages 4660–4666, 2018.

[6] Nikhil Bhargava, Tiago Vaquero, and Brian Williams. Faster conflict generation
for dynamic controllability. In Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-26, 2017, pages 4280–4286, 2017.

[7] Nikhil Bhargava and Brian Williams. Multiagent disjunctive temporal networks.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems AAMAS-19, 2019.

[8] Nikhil Bhargava and Brian C Williams. Complexity bounds for the controllability
of temporal networks with conditions, disjunctions, and uncertainty. Artificial
Intelligence, 271:1–17, 2019.

[9] Lorenz T Biegler and Victor M Zavala. Large-scale nonlinear programming us-
ing ipopt: An integrating framework for enterprise-wide dynamic optimization.
Computers & Chemical Engineering, 33(3):575–582, 2009.

239

[10] Arthur Bit-Monnot, Malik Ghallab, and Félix Ingrand. Which contingent events
to observe for the dynamic controllability of a plan. In International Joint Con-
ference on Artificial Intelligence (IJCAI-16), 2016.

[11] James C Boerkoel and Edmund H Durfee. Distributed reasoning for multiagent
simple temporal problems. Journal of Artificial Intelligence Research, 47:95–156,
2013.

[12] Jon E Burkhardt and Adam Millard-Ball. Who is attracted to carsharing? Trans-
portation Research Record, 1986(1):98–105, 2006.

[13] Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Posen-
ato, Romeo Rizzi, and Matteo Zavatteri. Incorporating decision nodes into con-
ditional simple temporal networks. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 90. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

[14] Massimo Cairo and Romeo Rizzi. Dynamic controllability of conditional simple
temporal networks is pspace-complete. In The 23rd International Symposium on
Temporal Representation and Reasoning (TIME), pages 90–99. IEEE, 2016.

[15] Guillaume Casanova, Cédric Pralet, Charles Lesire, and Thierry Vidal. Solv-
ing dynamic controllability problem of multi-agent plans with uncertainty using
mixed integer linear programming. In ECAI, pages 930–938, 2016.

[16] Alessandro Cimatti, Luke Hunsberger, Andrea Micheli, Roberto Posenato, and
Marco Roveri. Sound and complete algorithms for checking the dynamic con-
trollability of temporal networks with uncertainty, disjunction and observation.
In The 21st International Symposium onTemporal Representation and Reasoning
(TIME), pages 27–36. IEEE, 2014.

[17] Alessandro Cimatti, Andrea Micheli, and Marco Roveri. Dynamic controllability
of disjunctive temporal networks: Validation and synthesis of executable strate-
gies. In Association for the Advancement of Artificial Intelligence (AAAI), pages
3116–3122, 2016.

[18] Carlo Combi, Luke Hunsberger, and Roberto Posenato. An algorithm for check-
ing the dynamic controllability of a conditional simple temporal network with
uncertainty. Evaluation, 1:1, 2013.

[19] Carlo Comin and Romeo Rizzi. Dynamic consistency of conditional simple tem-
poral networks via mean payoff games: a singly-exponential time dc-checking.
In 22nd International Symposium on Temporal Representation and Reasoning
(TIME-2015), pages 19–28. IEEE, 2015.

[20] Patrick R Conrad and Brian Charles Williams. Drake: An efficient executive for
temporal plans with choice. Journal of Artificial Intelligence Research, 42:607–
659, 2011.

240

[21] Johan De Kleer and Brian C Williams. Diagnosing multiple faults. Artificial
intelligence, 32(1):97–130, 1987.

[22] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Ar-
tificial intelligence, 49(1-3):61–95, 1991.

[23] Robert Effinger, Brian Williams, Gerard Kelly, and Michael Sheehy. Dynamic
controllability of temporally-flexible reactive programs. In Proceedings of the 19th
International Conference on Automated Planning and Scheduling, Thessaloniki,
Greece, September 2009.

[24] Pavlos Eirinakis, Salvatore Ruggieri, K Subramani, and Piotr Wojciechowski. On
quantified linear implications. Annals of Mathematics and Artificial Intelligence,
71(4):301–325, 2014.

[25] Cheng Fang, Peng Yu, and Brian C Williams. Chance-constrained probabilistic
simple temporal problems. 2014.

[26] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research, 20:61–
124, 2003.

[27] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp algorithm
for large-scale constrained optimization. SIAM review, 47(1):99–131, 2005.

[28] Luke Hunsberger. Efficient execution of dynamically controllable simple temporal
networks with uncertainty. Acta Informatica, 53(2):89–147, 2016.

[29] Luke Hunsberger and Roberto Posenato. Checking the dynamic consistency of
conditional simple temporal networks with bounded reaction times. In Proceed-
ings of the Twenty-Sixth International Conference on International Conference
on Automated Planning and Scheduling (ICAPS-2016), pages 175–183, 2016.

[30] Luke Hunsberger, Roberto Posenato, and Carlo Combi. The dynamic control-
lability of conditional stns with uncertainty. arXiv preprint arXiv:1212.2005,
2012.

[31] Michel Donald Ingham. Timed model-based programming: Executable specifica-
tions for robust mission-critical sequences. PhD thesis, Massachusetts Institute
of Technology, 2003.

[32] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
pages 302–311. ACM, 1984.

[33] Erez Karpas, Steven James Levine, Peng Yu, and Brian C Williams. Robust
execution of plans for human-robot teams. In International Conference on Au-
tomated Planning and Scheduling, pages 342–346, 2015.

241

[34] Phil Kim, Brian C Williams, and Mark Abramson. Executing reactive, model-
based programs through graph-based temporal planning. In International Joint
Conference on Artificial Intelligence (IJCAI-01), pages 487–493, 2001.

[35] Steven Levine and Brian Williams. Concurrent plan recognition and execution
for human-robot teams. In ICAPS-14, 2014.

[36] Michael D Moffitt. On the partial observability of temporal uncertainty. In
Proceedings of the National Conference on Artificial Intelligence, volume 22, page
1031. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2007.

[37] Paul Morris. A structural characterization of temporal dynamic controllability. In
International Conference on Principles and Practice of Constraint Programming,
pages 375–389. Springer, 2006.

[38] Paul Morris. Dynamic controllability and dispatchability relationships. In Inter-
national Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 464–479. Springer, 2014.

[39] Paul Morris and Nicola Muscettola. Managing temporal uncertainty through
waypoint controllability. In International Joint Conference on Artificial Intelli-
gence (IJCAI-99), pages 1253–1258, 1999.

[40] Paul Morris and Nicola Muscettola. Temporal dynamic controllability revis-
ited. In Association for the Advancement of Artificial Intelligence (AAAI), pages
1193–1198, 2005.

[41] Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental dynamic
controllability revisited. In Proceedings of the International Conference on In-
ternational Conference on Automated Planning and Scheduling (ICAPS-2013),
pages 337–341, 2013.

[42] Mikael Nilsson, Jonas Kvarnström, and Patrick Doherty. Incremental dynamic
controllability in cubic worst-case time. In 21st International Symposium on
Temporal Representation and Reasoning (TIME-2014), pages 17–26. IEEE, 2014.

[43] C.H. Papadimitriou. Computational complexity. Addison-Wesley Reading, 1994.

[44] Bart Peintner, Kristen Brent Venable, and Neil Yorke-Smith. Strong controlla-
bility of disjunctive temporal problems with uncertainty. In International Con-
ference on Principles and Practice of Constraint Programming, pages 856–863.
Springer, 2007.

[45] Léon Planken. Temporal reasoning problems and algorithms for solving them.
2007.

242

[46] Pedro Santana, Tiago Vaquero, Claudio Fabiano Motta Toledo, Andrew J. Wang,
Cheng Fang, and Brian C. Williams. Paris: a polynomial-time, risk-sensitive
scheduling algorithm for probabilistic simple temporal networks with uncertainty.
In Proceedings of the 26th International Conference on Automated Planning and
Scheduling, 2016.

[47] Julie A Shah, John Stedl, Brian C Williams, and Paul Robertson. A fast incre-
mental algorithm for maintaining dispatchability of partially controllable plans.
In Proceedings of the International Conference on International Conference on
Automated Planning and Scheduling (ICAPS-2007), pages 296–303, 2007.

[48] John Stedl and Brian C Williams. A fast incremental dynamic controllability
algorithm. In Proceedings of the ICAPS Workshop on Plan Execution: A Reality
Check, pages 69–75, 2005.

[49] Kostas Stergiou and Manolis Koubarakis. Backtracking algorithms for disjunc-
tions of temporal constraints. Artificial Intelligence, 120(1):81–117, 2000.

[50] Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3(1):1–22, 1976.

[51] K Subramani. On a decision procedure for quantified linear programs. Annals
of Mathematics and Artificial Intelligence, 51(1):55–77, 2007.

[52] Teruo Sunaga. Theory of interval algebra and its application to numerical anal-
ysis. RAAG memoirs, 2(29-46):209, 1958.

[53] Eric Timmons, Tiago Vaquero, Brian Williams, and Richard Camilli. Prelimi-
nary deployment of a risk-aware goal-directed executive on autonomous under-
water glider. In PlanRob Workshop, ICAPS 2016, 2016.

[54] Ioannis Tsamardinos, Thierry Vidal, and Martha E Pollack. Ctp: A new
constraint-based formalism for conditional, temporal planning. Constraints,
8(4):365–388, 2003.

[55] Kristen Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-Smith.
Weak and dynamic controllability of temporal problems with disjunctions and
uncertainty. In Workshop on constraint satisfaction techniques for planning &
scheduling, pages 50–59, 2010.

[56] Kristen Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-Smith.
Weak and dynamic controllability of temporal problems with disjunctions and
uncertainty. In Workshop on Constraint Satisfaction Techniques for Planning &
Scheduling, pages 50–59, 2010.

[57] Kristen Brent Venable and Neil Yorke-Smith. Disjunctive temporal planning
with uncertainty. In International Joint Conference on Artificial Intelligence
(IJCAI-05), pages 1721–1722, 2005.

243

[58] Thierry Vidal and Helene Fargier. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of Experimental & The-
oretical Artificial Intelligence, 11(1):23–45, 1999.

[59] Andrew J. Wang and Brian C. Williams. Chance-constrained scheduling via
conflict-directed risk allocation. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, January 2015.

[60] Brian C Williams and Robert J Ragno. Conflict-directed a* and its role in
model-based embedded systems. Discrete Applied Mathematics, 155(12):1562–
1595, 2007.

[61] Peng Yu. Collaborative Diagnosis of Over-Subscribed Temporal Plans. PhD
thesis, Massachusetts Institute of Technology, October 2016.

[62] Peng Yu, Cheng Fang, and Brian C Williams. Resolving uncontrollable condi-
tional temporal problems using continuous relaxations. In ICAPS, 2014.

[63] Peng Yu and Brian C Williams. Continuously relaxing over-constrained condi-
tional temporal problems through generalized conflict learning and resolution.
In International Joint Conference on Artificial Intelligence (IJCAI-13), pages
2429–2436, 2013.

[64] Matteo Zavatteri. Conditional simple temporal networks with uncertainty and
decisions. In LIPIcs-Leibniz International Proceedings in Informatics, volume 90.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

244

